Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Autumn Royal and Egnatia Grape Extracts Differently Modulate Cell Proliferation in Human Colorectal Cancer Cells

Author(s): Isabella Gigante, Rosa Anna Milella, Valeria Tutino, Giambattista Debiase, Luciano Notarangelo, Maria Angela Giannandrea, Valentina De Nunzio, Antonella Orlando, ">Rosalba D’Alessandro, Maria Gabriella Caruso and Maria Notarnicola*

Volume 20, Issue 10, 2020

Page: [1740 - 1750] Pages: 11

DOI: 10.2174/1871530320666200421102418

Price: $65

Abstract

Objective: Polyphenols extracted by table grape have been demonstrated to decrease cell proliferation in vitro and to exert anti-atherosclerotic and antithrombotic activities, regulating cell functions. A grape polyphenolic profile is affected by climate as well as a grape cultivar. This study was aimed to characterize the berry skin polyphenolic composition, antioxidant activity and antiproliferative properties of two black grape cultivars, Autumn Royal and Egnatia.

Methods: The phenolic composition of Grape Skin Extracts (GSEs) was determined by HPLC analyses. The antioxidant activity was determined using DPPH, ABTS and ORAC tests. Caco2, HT29 and SW480 human colon cancer cell lines were used to test the effects of GSEs in vitro. Cell proliferation and cell cycle were assessed with the MTT method and a Muse cell analyzer, respectively. qPCR and Western Blotting analysis were used to evaluate gene and protein expression, respectively.

Results: The total polyphenolic content and the total antioxidant capacity were significantly higher in Autumn Royal than in Egnatia. However, table grape Egnatia showed greater ability to affect cell proliferation and apoptosis, as well as to exert a growth arrest in the S phase of the cell cycle, particularly in the Caco2 cell line.

Conclusion: These data suggest that the new grape variety Egnatia is an interesting source of phenolic compounds that could be of interest in the food and pharmaceutical industries.

Keywords: Table grape, polyphenols, colorectal cancer, human cell lines, cell proliferation, cell cycle.

Graphical Abstract
[1]
Riboli, E.; Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr., 2003, 78(Suppl. 3), 559S-569S.
[http://dx.doi.org/10.1093/ajcn/78.3.559S] [PMID: 12936950]
[2]
Glade, M.J. Food, nutrition, and the prevention of cancer: A global perspective. American institute for cancer research/world cancer research fund, American institute for cancer research, 1997. Nutrition, 1999, 15(6), 523-526.
[PMID: 10378216]
[3]
Dinicola, S.; Cucina, A.; Pasqualato, A.; D’Anselmi, F.; Proietti, S.; Lisi, E.; Pasqua, G.; Antonacci, D.; Bizzarri, M. Antiproliferative and apoptotic effects triggered by Grape Seed Extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines. Int. J. Mol. Sci., 2012, 13(1), 651-664.
[http://dx.doi.org/10.3390/ijms13010651] [PMID: 22312277]
[4]
Wang, Z.; Chen, Y.; Labinskyy, N.; Hsieh, T.C.; Ungvari, Z.; Wu, J.M. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts. Biochem. Biophys. Res. Commun., 2006, 346(1), 367-376.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.156] [PMID: 16759640]
[5]
Kumar, A.; D’silva, M.; Dholakia, K.; Levenson, A.S. In vitro Anticancer Properties of Table Grape Powder Extract (GPE) in Prostate Cancer. Nutrients, 2018, 10(11)E1804
[http://dx.doi.org/10.3390/nu10111804] [PMID: 30463302]
[6]
Notarnicola, M.; Pisanti, S.; Tutino, V.; Bocale, D.; Rotelli, M.T.; Gentile, A.; Memeo, V.; Bifulco, M.; Perri, E.; Caruso, M.G. Effects of olive oil polyphenols on fatty acid synthase gene expression and activity in human colorectal cancer cells. Genes Nutr., 2011, 6(1), 63-69.
[http://dx.doi.org/10.1007/s12263-010-0177-7] [PMID: 21437031]
[7]
Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr., 2015, 70(4), 454-462.
[http://dx.doi.org/10.1007/s11130-015-0518-1] [PMID: 26547323]
[8]
Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res., 2016, 30(9), 1392-1403.
[http://dx.doi.org/10.1002/ptr.5644] [PMID: 27196869]
[9]
Tabeshpour, J.; Mehri, S.; Shaebani Behbahani, F.; Hosseinzadeh, H. Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytother. Res., 2018, 32(11), 2164-2190.
[http://dx.doi.org/10.1002/ptr.6168] [PMID: 30088293]
[10]
Valenzuela, M.; Bastias, L.; Montenegro, I.; Werner, E.; Madrid, A.; Godoy, P.; Parraga, M.; Villena, J. Autumn royal and ribier grape juice extracts reduced viability and metastatic potential of colon cancer cells. Evid. Based Complement. Alternat. Med., 2018, 20182517080
[11]
Loizzo, M.R.; Sicari, V.; Pellicano, T.; Xiao, J.; Poiana, M.; Tundis, R. Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food Chem. Toxicol., 2019, 127, 127-134.
[12]
Ferhi, S.; Santaniello, S.; Zerizer, S.; Cruciani, S.; Fadda, A.; Sanna, D.; Dore, A.; Maioli, M.; D’hallewin, G. Total Phenols from Grape Leaves Counteract Cell Proliferation and Modulate Apoptosis-Related Gene Expression in MCF-7 and HepG2 Human Cancer Cell Lines. Molecules, 2019, 24(3)E612
[http://dx.doi.org/10.3390/molecules24030612] [PMID: 30744145]
[13]
Xia, L.; Xu, C.; Huang, K.; Lu, J.; Zhang, Y. Evaluation of phenolic compounds, antioxidant and antiproliferative activities of 31 grape cultivars with different genotypes. J. Food Biochem., 2019, 43(6)e12626
[http://dx.doi.org/10.1111/jfbc.12626] [PMID: 31353617]
[14]
Liu, H.L.; Jiang, W.B.; Xie, M.X. Flavonoids: recent advances as anticancer drugs. Recent Patents Anticancer Drug Discov., 2010, 5(2), 152-164.
[http://dx.doi.org/10.2174/157489210790936261] [PMID: 20088766]
[15]
Kaur, M.; Singh, R.P.; Gu, M.; Agarwal, R.; Agarwal, C. Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin. Cancer Res., 2006, 12(20 Pt 1), 6194-6202.
[16]
Agarwal, C.; Veluri, R.; Kaur, M.; Chou, S.C.; Thompson, J.A.; Agarwal, R. Fractionation of high molecular weight tannins in grape seed extract and identification of procyanidin B2-3,3′-di-O-gallate as a major active constituent causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis, 2007, 28(7), 1478-1484.
[http://dx.doi.org/10.1093/carcin/bgm045] [PMID: 17331955]
[17]
Li, L.; Adams, L.S.; Chen, S.; Killian, C.; Ahmed, A.; Seeram, N.P. Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem., 2009, 57(3), 826-831.
[http://dx.doi.org/10.1021/jf803407q] [PMID: 19166352]
[18]
Soldati, L.; Di Renzo, L.; Jirillo, E.; Ascierto, P.A.; Marincola, F.M.; De Lorenzo, A. The influence of diet on anti-cancer immune responsiveness. J. Transl. Med., 2018, 16(1), 75.
[http://dx.doi.org/10.1186/s12967-018-1448-0] [PMID: 29558948]
[19]
Magrone, T.; Pugliese, V.; Fontana, S.; Jirillo, E. Human use of Leucoselect® Phytosome® with special reference to inflammatory-allergic pathologies in frail elderly patients. Curr. Pharm. Des., 2014, 20(6), 1011-1019.
[http://dx.doi.org/10.2174/138161282006140220144411] [PMID: 23701566]
[20]
Ghiringhelli, F.; Rebe, C.; Hichami, A.; Delmas, D. Immunomodulation and anti-inflammatory roles of polyphenols as anticancer agents. Anticancer. Agents Med. Chem., 2012, 12(8), 852-873.
[http://dx.doi.org/10.2174/187152012802650048] [PMID: 22292769]
[21]
Carrieri, C.; Milella, R.A.; Incampo, F.; Crupi, P.; Antonacci, D.; Semeraro, N.; Colucci, M. Antithrombotic activity of 12 table grape varieties. Relationship with polyphenolic profile. Food Chem., 2013, 140(4), 647-653.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.132] [PMID: 23692748]
[22]
Ammollo, C.T.; Semeraro, F.; Milella, R.A.; Antonacci, D.; Semeraro, N.; Colucci, M. Grape intake reduces thrombin generation and enhances plasma fibrinolysis. Potential role of circulating procoagulant microparticles. J. Nutr. Biochem., 2017, 50, 66-73.
[http://dx.doi.org/10.1016/j.jnutbio.2017.08.012] [PMID: 29040837]
[23]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free-Radical Method to Evaluate Antioxidant Activity. Food Sci Technol-Leb, 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[24]
Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond.), 1993, 84(4), 407-412.
[http://dx.doi.org/10.1042/cs0840407] [PMID: 8482045]
[25]
Gillespie, K.M.; Chae, J.M.; Ainsworth, E.A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc., 2007, 2(4), 867-870.
[http://dx.doi.org/10.1038/nprot.2007.100] [PMID: 17446887]
[26]
Tutino, V.; Orlando, A.; Russo, F.; Notarnicola, M. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line. J. Cell. Physiol., 2016, 231(2), 483-489.
[http://dx.doi.org/10.1002/jcp.25094] [PMID: 26189725]
[27]
Saunier, E.; Antonio, S.; Regazzetti, A.; Auzeil, N.; Laprévote, O.; Shay, J.W.; Coumoul, X.; Barouki, R.; Benelli, C.; Huc, L.; Bortoli, S. Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci. Rep., 2017, 7(1), 6945.
[http://dx.doi.org/10.1038/s41598-017-07006-0] [PMID: 28761044]
[28]
Dinicola, S.; Cucina, A.; Pasqualato, A.; Proietti, S.; D’Anselmi, F.; Pasqua, G.; Santamaria, A.R.; Coluccia, P.; Laganà, A.; Antonacci, D.; Giuliani, A.; Bizzarri, M. Apoptosis-inducing factor and caspase-dependent apoptotic pathways triggered by different grape seed extracts on human colon cancer cell line Caco-2. Br. J. Nutr., 2010, 104(6), 824-832.
[http://dx.doi.org/10.1017/S0007114510001522] [PMID: 20540818]
[29]
Saeki, K.; Hayakawa, S.; Isemura, M.; Miyase, T. Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry, 2000, 53(3), 391-394.
[http://dx.doi.org/10.1016/S0031-9422(99)00513-0] [PMID: 10703063]
[30]
Farinetti, A.; Zurlo, V.; Manenti, A.; Coppi, F.; Mattioli, A.V. Mediterranean diet and colorectal cancer: A systematic review. Nutrition, 2017, 43-44, 83-88.
[http://dx.doi.org/10.1016/j.nut.2017.06.008] [PMID: 28935150]
[31]
Nosrati, N.; Bakovic, M.; Paliyath, G. Molecular Mechanisms and Pathways as Targets for Cancer Prevention and Progression with Dietary Compounds. Int. J. Mol. Sci., 2017, 18(10)E2050
[http://dx.doi.org/10.3390/ijms18102050] [PMID: 28946660]
[32]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[33]
Liang, Z.; Cheng, L.; Zhong, G.Y.; Liu, R.H. Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes. PLoS One, 2014, 9(8)e105146
[http://dx.doi.org/10.1371/journal.pone.0105146] [PMID: 25133401]
[34]
Dahan, L.; Sadok, A.; Formento, J.L.; Seitz, J.F.; Kovacic, H. Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines. Br. J. Pharmacol., 2009, 158(2), 610-620.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00341.x] [PMID: 19732064]
[35]
Gill, C.I.; Boyd, A.; McDermott, E.; McCann, M.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.; McGlynn, H.; Rowland, I. Potential anti-cancer effects of virgin olive oil phenols on colorectal carcinogenesis models in vitro. Int. J. Cancer, 2005, 117(1), 1-7.
[http://dx.doi.org/10.1002/ijc.21083] [PMID: 15880398]
[36]
Hosseini, S.; Chamani, J.; Hadipanah, M.R.; Ebadpour, N.; Hojjati, A.S.; Mohammadzadeh, M.H.; Rahimi, H.R. Nano-curcumin’s suppression of breast cancer cells (MCF7) through the inhibition of cyclinD1 expression. Breast Cancer (Dove Med. Press), 2019, 11, 137-142.
[http://dx.doi.org/10.2147/BCTT.S195800] [PMID: 30936742]
[37]
Mansouri, M.; Pirouzi, M.; Saberi, M.R.; Ghaderabad, M.; Chamani, J. Investigation on the interaction between cyclophosphamide and lysozyme in the presence of three different kinds of cyclodextrins: Determination of the binding mechanism by spectroscopic and molecular modeling techniques. Molecules, 2013, 18(1), 789-813.
[http://dx.doi.org/10.3390/molecules18010789] [PMID: 23344194]
[38]
Chamani, J.; Heshmati, M. Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: spectroscopic and calorimetric approaches. J. Colloid Interface Sci., 2008, 322(1), 119-127.
[http://dx.doi.org/10.1016/j.jcis.2008.03.001] [PMID: 18405913]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy