Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives

Author(s): Gagandeep Maan, Biplab Sikdar, Ashish Kumar, Rahul Shukla and Awanish Mishra*

Volume 20, Issue 13, 2020

Page: [1169 - 1194] Pages: 26

DOI: 10.2174/1568026620666200416085330

Price: $65

Abstract

Background: Flavonoids, a group of natural dietary polyphenols, are known for their beneficial effects on human health. By virtue of their various pharmacological effects, like anti-oxidative, antiinflammatory, anti-carcinogenic and neuroprotective effects, flavonoids have now become an important component of herbal supplements, pharmaceuticals, medicinals and cosmetics. There has been enormous literature supporting neuroprotective effect of flavonoids. Recently their efficacy in various neurodegenerative diseases, like Alzheimer’s disease and Parkinson diseases, has received particular attention.

Objective: The mechanism of flavanoids neuroprotection might include antioxidant, antiapoptotic, antineuroinflammatory and modulation of various cellular and intracellular targets. In in-vivo systems, before reaching to brain, they have to cross barriers like extensive first pass metabolism, intestinal barrier and ultimately blood brain barrier. Different flavonoids have varied pharmacokinetic characteristics, which affect their pharmacodynamic profile. Therefore, brain accessibility of flavonoids is still debatable.

Methods: This review emphasized on current trends of research and development on flavonoids, especially in neurodegenerative diseases, possible challenges and strategies to encounter using novel drug delivery system.

Results: Various flavonoids have elicited their therapeutic potential against neurodegenerative diseases, however by using nanotechnology and novel drug delivery systems, the bioavailability of favonoids could be enhanced.

Conclusion: This study bridges a significant opinion on medicinal chemistry, ethanopharmacology and new drug delivery research regarding use of flavonoids in management of neurodegeneration.

Keywords: Flavonoids, Neuroprotection, Neurodegenerative diseases, Bioavailability, New drug delivery systems, Nanoformulations.

Graphical Abstract
[1]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[2]
Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res., 2008, 7(3), 1089-1099.
[http://dx.doi.org/10.4314/tjpr.v7i3.14693]
[3]
Jung, U.J.; Kim, S.R. Beneficial effects of flavonoids against Parkinson’s disease. J. Med. Food, 2018, 21(5), 421-432.
[http://dx.doi.org/10.1089/jmf.2017.4078] [PMID: 29412767]
[4]
Loscalzo, L.M.; Granger, R.; Lilly, E.; Johnston, G.; Marder, M.; Fernández, S.P.; Wasowski, C.; Granger, R.E.; Johnston, G.A.R. Paladini, central nervous system depressant action of flavonoid glycosides. Artic. Eur. J. Pharmacol., 2006, 539, 168-176.
[http://dx.doi.org/10.1016/j.ejphar.2006.04.004]
[5]
Choudhary, K.M.; Mishra, A.; Poroikov, V.V.; Goel, R.K. Ameliorative effect of Curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur. J. Pharmacol., 2013, 704(1-3), 33-40.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.012] [PMID: 23461849]
[6]
Hollman, P.C.; Katan, M.B. Dietary flavonoids: intake, health effects and bioavailability. Food Chem. Toxicol., 1999, 37(9-10), 937-942.
[http://dx.doi.org/10.1016/S0278-6915(99)00079-4] [PMID: 10541448]
[7]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[8]
Mills, S.; Bone, K. Principles of herbal pharmacology.Principles and Practice of Phytotherapy. Modern Herbal Medicine, 2nd ed; Churchill Livingstone, 2013, pp. 17-34.
[9]
Maher, P. The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int. J. Mol. Sci., 2019, 20(12), 3056.
[http://dx.doi.org/10.3390/ijms20123056] [PMID: 31234550]
[10]
Mishra, A.; Goel, R.K. Chronic 5-HT3 receptor antagonism ameliorates seizures and associated memory deficit in pentylenetetrazole-kindled mice. Neuroscience, 2016, 339, 319-328.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.010] [PMID: 27746348]
[11]
Wang, R.; Zhang, Y.; Li, J.; Zhang, C. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience, 2017, 344, 39-47.
[http://dx.doi.org/10.1016/j.neuroscience.2016.08.051] [PMID: 27600946]
[12]
Jones, Q.R.; Warford, J.; Rupasinghe, H.P.; Robertson, G.S. Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol. Sci., 2012, 33(11), 602-610.
[http://dx.doi.org/10.1016/j.tips.2012.08.002] [PMID: 22980637]
[13]
Duarte, A.B. Literature evidence and ARRIVE assessment on neuroprotective effects of flavonols in neurodegenerative diseases’ models. CNS Neurol. Disord. Drug Targets, 2018, 17(1), 34-42.
[14]
de Andrade Teles, R.B.; Diniz, T.C.; Costa Pinto, T.C.; de Oliveira Júnior, R.G.; Gama E Silva, M.; de Lavor, É.M.; Fernandes, A.W.C.; de Oliveira, A.P.; de Almeida Ribeiro, F.P.R.; da Silva, A.A.M.; Cavalcante, T.C.F.; Quintans Júnior, L.J.; da Silva Almeida, J.R.G. Flavonoids as Therapeutic Agents in Alzheimer’s and Parkinson’s Diseases: A Systematic Review of Preclinical Evidences. Oxid. Med. Cell. Longev., 2018, 2018(3), 1-21.
[http://dx.doi.org/10.1155/2018/7043213] [PMID: 29861833]
[15]
Kujawska, M.; Jodynis-Liebert, J. Polyphenols in Parkinson’s disease: A systematic review of in vivo studies. Nutrients, 2018, 10(5), 642.
[http://dx.doi.org/10.3390/nu10050642] [PMID: 29783725]
[16]
Sharma, R.K.; Singh, T.; Mishra, A.; Goel, R.K. Relative safety of different antidepressants for treatment of depression in chronic epileptic animals associated with depression. J. Epilepsy Res., 2017, 7(1), 25-32.
[http://dx.doi.org/10.14581/jer.17005] [PMID: 28775952]
[17]
Frandsen, J.R.; Narayanasamy, P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol., 2018, 14, 465-473.
[http://dx.doi.org/10.1016/j.redox.2017.10.015] [PMID: 29080525]
[18]
Orbán-Gyapai, O.; Raghavan, A.; Vasas, A.; Forgo, P.; Hohmann, J.; Shah, Z.A. Flavonoids isolated from Rumex aquaticus exhibit neuroprotective and neurorestorative properties by enhancing neurite outgrowth and synaptophysin. CNS Neurol. Disord. Drug Targets, 2014, 13(8), 1458-1464.
[http://dx.doi.org/10.2174/1871527313666141023154446] [PMID: 25345505]
[19]
Mandal, M.; Jaiswal, P.; Mishra, A. Role of curcumin and its nanoformulations in neurotherapeutics: A comprehensive review. J. Biochem. Mol. Toxicol., 2020., e22478
[http://dx.doi.org/10.1002/jbt.22478] [PMID: 32124518]
[20]
Mandal, M.; Jaiswal, P.; Mishra, A. Curcumin loaded nanoparticles reversed monocrotophos induced motor impairment and memory deficit: Role of oxidative stress and intracellular calcium level. J. Drug Deliv. Sci. Technol., 2020, 56, 101559
[http://dx.doi.org/10.1016/j.jddst.2020.101559]
[21]
Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of plant-derived flavonoids and their mechanism in attenuation of alzheimer’s and parkinson’s diseases: an update of recent data. Molecules, 2018, 23(4), 814.
[http://dx.doi.org/10.3390/molecules23040814] [PMID: 29614843]
[22]
Ahmad, A.; Ali, T.; Park, H.Y.; Badshah, H.; Rehman, S.U.; Kim, M.O. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol. Neurobiol., 2017, 54(3), 2269-2285.
[http://dx.doi.org/10.1007/s12035-016-9795-4] [PMID: 26944285]
[23]
Rauf, A.; Khan, R.; Raza, M.; Khan, H.; Pervez, S.; De Feo, V.; Maione, F.; Mascolo, N. In silico predictive study on its mechanistic effect. suppression of inflammatory response by chrysin, a flavone isolated from Potentilla evestita Th. Wolf. In silico predictive study on its mechanistic effect. Fitoterapia, 2015, 103, 129-135.
[http://dx.doi.org/10.1016/j.fitote.2015.03.019] [PMID: 25819005]
[24]
Rauf, A.; Saleem, M.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Raza, M.; Hamid, S.Z.; Khan, A.; Maione, F.; Mascolo, N.; De Feo, V. Phosphodiesterase-1 Inhibitory Activity of Two Flavonoids Isolated from Pistacia integerrima J. L. Stewart Galls. Evid. Based Complement. Alternat. Med., 2015, 2015, 506564
[http://dx.doi.org/10.1155/2015/506564] [PMID: 25945110]
[25]
Ali, M.; Rauf, A.; Hadda, T.B.; Bawazeer, S.; Abu-Izneid, T.; Khan, H.; Raza, M.; Khan, S.A.; Shah, S.U.; Pervez, S.; Patel, S.; Orhan, I.E. Mechanisms underlying anti-hyperalgesic properties of kaempferol-3,7- di-o-α-l-rhamnopyranoside isolated from dryopteris cycadina. Curr. Top. Med. Chem., 2017, 17(4), 383-390.
[http://dx.doi.org/10.2174/1568026616666160824101429] [PMID: 27558683]
[26]
Yang, J.S.; Wu, X.H.; Yu, H.G.; Teng, L.S. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology, 2017, 25(4), 471-484.
[http://dx.doi.org/10.1007/s10787-017-0348-x] [PMID: 28577132]
[27]
Erdman, J.W., Jr; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.T.; Folts, J.; Harnly, J.; Hollman, P.; Keen, C.L.; Mazza, G.; Messina, M.; Scalbert, A.; Vita, J.; Williamson, G.; Burrowes, J. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J. Nutr., 2007, 137(3)(Suppl. 1), 718S-737S.
[http://dx.doi.org/10.1093/jn/137.3.718S] [PMID: 17311968]
[28]
Bawaked, R.A.; Schröder, H.; Ribas-Barba, L.; Cárdenas, G.; Peña-Quintana, L.; Pérez-Rodrigo, C.; Fíto, M.; Serra-Majem, L. Dietary flavonoids of Spanish youth: intakes, sources, and association with the Mediterranean diet. PeerJ, 2017, 5, e3304
[http://dx.doi.org/10.7717/peerj.3304] [PMID: 28533962]
[29]
Lechtenberg, M.; Zumdick, S.; Gerhards, C.; Schmidt, T.J.; Hensel, A. Evaluation of analytical markers characterising different drying methods of parsley leaves (Petroselinum crispum L.). Pharmazie, 2007, 62(12), 949-954.
[PMID: 18214349]
[30]
Changmai, M. Purification of catechins from camellia sinensis using membrane cell inorganic smart membrane view project value added products from food waste view project. Food Bioprod. Process., 2019, 1, 203-212.
[31]
Aron, P.M.; Kennedy, J.A. Flavan-3-ols: nature, occurrence and biological activity. Mol. Nutr. Food Res., 2008, 52(1), 79-104.
[http://dx.doi.org/10.1002/mnfr.200700137] [PMID: 18081206]
[32]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[33]
Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 2000, 48(7), 2663-2669.
[http://dx.doi.org/10.1021/jf000070p] [PMID: 10898604]
[34]
Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors, 2017, 43(4), 495-506.
[http://dx.doi.org/10.1002/biof.1363] [PMID: 28497905]
[35]
Kaufman, P.B.; Duke, J.A.; Brielmann, H.; Boik, J.; Hoyt, J.E. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. J. Altern. Complement. Med., 1997, 3(1), 7-12.
[http://dx.doi.org/10.1089/acm.1997.3.7] [PMID: 9395689]
[36]
Diaconeasa, ta; Iuhas, C.I.; Ayvaz, H.; Rugină, ta; Stanilă, A.; Dulf, F.; Bunea, A.; Ancut, S.; Socaciu, C.; Pintea, A. Phytochemical characterization of commercial processed blueberry, blackberry, blackcurrant, cranberry, and raspberry and their antioxidant activity. Antioxidants, 2019, 8, 540.
[http://dx.doi.org/10.3390/antiox8110540]
[37]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[38]
Singh, M.; Kaur, M.; Silakari, O. Flavones: an important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[39]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci., 2019, 11, 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155] [PMID: 31293414]
[40]
Todorova, T.Z.; Traykov, M.G.; Tadjer, A.V.; Velkov, Z.A. Structure of flavones and flavonols. part i: role of substituents on the planarity of the system. Comput. Theor. Chem., 2013, 1017, 85-90.
[http://dx.doi.org/10.1016/j.comptc.2013.05.005]
[41]
Kang, S.S.; Lee, J.Y.; Choi, Y.K.; Kim, G.S.; Han, B.H. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Bioorg. Med. Chem. Lett., 2004, 14(9), 2261-2264.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.003] [PMID: 15081021]
[42]
Renouf, M.; Redeuil, K.; Longet, K.; Marmet, C.; Dionisi, F.; Kussmann, M.; Williamson, G.; Nagy, K. Plasma pharmacokinetics of catechin metabolite 4′-O-Me-EGC in healthy humans. Eur. J. Nutr., 2011, 50(7), 575-580.
[http://dx.doi.org/10.1007/s00394-010-0164-1] [PMID: 21212969]
[43]
Mughal, E.U.; Sadiq, A.; Ashraf, J.; Zafar, M.N.; Sumrra, S.H.; Tariq, R.; Mumtaz, A.; Javid, A.; Khan, B.A.; Ali, A.; Javed, C.O. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies. Bioorg. Chem., 2019, 91, 103124
[http://dx.doi.org/10.1016/j.bioorg.2019.103124] [PMID: 31319297]
[44]
Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Flavonoid profile and radical-scavenging activity of Mediterranean sweet lemon (Citrus limetta Risso) juice. Food Chem., 2011, 129(2), 417-422.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.093] [PMID: 30634246]
[45]
Matthies, A.; Clavel, T.; Gütschow, M.; Engst, W.; Haller, D.; Blaut, M.; Braune, A. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl. Environ. Microbiol., 2008, 74(15), 4847-4852.
[http://dx.doi.org/10.1128/AEM.00555-08] [PMID: 18539813]
[46]
Ding, K.; Wang, S. Efficient synthesis of isoflavone analogues via a suzuki coupling reaction. Tetrahedron Lett., 2005, 46(21), 3707-3709.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.143]
[47]
Essawy, A.E.; Abdou, H.M.; Ibrahim, H.M.; Bouthahab, N.M. Soybean isoflavone ameliorates cognitive impairment, neuroinflammation, and amyloid β accumulation in a rat model of Alzheimer’s disease. Environ. Sci. Pollut. Res. Int., 2019, 26(25), 26060-26070.
[http://dx.doi.org/10.1007/s11356-019-05862-z] [PMID: 31278647]
[48]
Lu, C.; Wang, Y.; Wang, D.; Zhang, L.; Lv, J.; Jiang, N.; Fan, B.; Liu, X.; Wang, F. Neuroprotective Effects of Soy Isoflavones on Scopolamine-Induced Amnesia in Mice. Nutrients, 2018, 10(7), 853.
[http://dx.doi.org/10.3390/nu10070853] [PMID: 29966363]
[49]
Giusti, M. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225.
[http://dx.doi.org/10.1016/S1369-703X(02)00221-8]
[50]
Winter, A.N.; Bickford, P.C. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants, 2019, 8(9), 333.
[http://dx.doi.org/10.3390/antiox8090333] [PMID: 31443476]
[51]
He, X.; Li, Z.; Rizak, J.D.; Wu, S.; Wang, Z.; He, R.; Su, M.; Qin, D.; Wang, J.; Hu, X. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front. Neurosci., 2017, 10, 598.
[http://dx.doi.org/10.3389/fnins.2016.00598] [PMID: 28197064]
[52]
Rendeiro, C.; Vauzour, D.; Kean, R. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats modeling and analysis of NAFLD view project brain and healthy ageing workshops-nutrition and mental performances task force-ilsi europe view project. Psychopharmacology (Berl.), 2012, 223(3), 319-330.
[http://dx.doi.org/10.1007/s00213-012-2719-8] [PMID: 22569815]
[53]
Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.F.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol., 2007, 165(12), 1364-1371.
[http://dx.doi.org/10.1093/aje/kwm036] [PMID: 17369607]
[54]
Brickman, A.M.; Khan, U.A.; Provenzano, F.A.; Yeung, L.K.; Suzuki, W.; Schroeter, H.; Wall, M.; Sloan, R.P.; Small, S.A. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat. Neurosci., 2014, 17(12), 1798-1803.
[http://dx.doi.org/10.1038/nn.3850] [PMID: 25344629]
[55]
Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Lysiuk, R. Flavonoids as detoxifying and pro-survival agents: What’s new? Food Chem. Toxicol., 2017, 110, 240-250.
[http://dx.doi.org/10.1016/j.fct.2017.10.039] [PMID: 29079495]
[56]
Jaeger, B.N.; Parylak, S.L.; Gage, F.H. Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol. Aspects Med., 2018, 61, 50-62.
[http://dx.doi.org/10.1016/j.mam.2017.11.003] [PMID: 29117513]
[57]
Janssen, C.I.F.; Zerbi, V.; Mutsaers, M.P.C.; Jochems, M.; Vos, C.A.; Vos, J.O.; Berg, B.M.; van Tol, E.A.F.; Gross, G.; Jouni, Z.E.; Heerschap, A.; Kiliaan, A.J. Effect of perinatally supplemented flavonoids on brain structure, circulation, cognition, and metabolism in C57BL/6J mice. Neurochem. Int., 2015, 89, 157-169.
[http://dx.doi.org/10.1016/j.neuint.2015.05.002] [PMID: 25959627]
[58]
Williams, R.J.; Spencer, J.P.E. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med., 2012, 52(1), 35-45.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.010] [PMID: 21982844]
[59]
Costa, S.L.; Silva, V.D.; Dos Santos Souza, C.; Santos, C.C.; Paris, I.; Muñoz, P.; Segura-Aguilar, J. Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox. Res., 2016, 30(1), 41-52.
[http://dx.doi.org/10.1007/s12640-016-9600-1] [PMID: 26951456]
[60]
Flanagan, E.; Müller, M.; Hornberger, M.; Vauzour, D. Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr. Nutr. Rep., 2018, 7(2), 49-57.
[http://dx.doi.org/10.1007/s13668-018-0226-1] [PMID: 29892788]
[61]
Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int. J. Mol. Sci., 2013, 14(2), 3540-3555.
[http://dx.doi.org/10.3390/ijms14023540] [PMID: 23434657]
[62]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[63]
He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med. Sci. Monit., 2018, 24, 8198-8206.
[http://dx.doi.org/10.12659/MSM.911175] [PMID: 30428482]
[64]
Yang, Z.; Jie, G.; Dong, F.; Xu, Y.; Watanabe, N.; Tu, Y. Radical-scavenging abilities and antioxidant properties of theaflavins and their gallate esters in H2O2-mediated oxidative damage system in the HPF-1 cells. Toxicol. In Vitro, 2008, 22(5), 1250-1256.
[http://dx.doi.org/10.1016/j.tiv.2008.04.007] [PMID: 18502093]
[65]
Walsh, D.M.; Selkoe, D.J. A β oligomers - a decade of discovery. J. Neurochem., 2007, 101(5), 1172-1184.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04426.x] [PMID: 17286590]
[66]
Yu, S.Y.; Zuo, L.J.; Wang, F.; Chen, Z-J.; Hu, Y.; Wang, Y.J.; Wang, X.M.; Zhang, W. Potential biomarkers relating pathological proteins, neuroinflammatory factors and free radicals in PD patients with cognitive impairment: a cross-sectional study. BMC Neurol., 2014, 14, 113.
[http://dx.doi.org/10.1186/1471-2377-14-113] [PMID: 24884485]
[67]
Vauzour, D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev., 2012, 2012, 914273
[http://dx.doi.org/10.1155/2012/914273] [PMID: 22701758]
[68]
Baptista, F.I.; Henriques, A.G.; Silva, A.M.S.; Wiltfang, J.; da Cruz e Silva, O.A. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(2), 83-92.
[http://dx.doi.org/10.1021/cn400213r] [PMID: 24328060]
[69]
Deshpande, P.; Gogia, N.; Singh, A. Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regen. Res., 2019, 14(8), 1321-1329.
[http://dx.doi.org/10.4103/1673-5374.253509] [PMID: 30964049]
[70]
Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial effects of green tea catechins on neurodegenerative diseases. Molecules, 2018, 23(6), 1297.
[http://dx.doi.org/10.3390/molecules23061297] [PMID: 29843466]
[71]
Airoldi, C.; La Ferla, B.; D Orazio, G.; Ciaramelli, C.; Palmioli, A. Flavonoids in the treatment of alzheimer’s and other neurodegenerative diseases. Curr. Med. Chem., 2018, 25(27), 3228-3246.
[http://dx.doi.org/10.2174/0929867325666180209132125] [PMID: 29424298]
[72]
Orhan, I.; Kartal, M.; Tosun, F.; Sener, B. Screening of various phenolic acids and flavonoid derivatives for their anticholinesterase potential. Z. Natforsch. C J. Biosci., 2007, 62(11-12), 829-832.
[http://dx.doi.org/10.1515/znc-2007-11-1210] [PMID: 18274286]
[73]
Uriarte-Pueyo, I.; Calvo, M.I. Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem., 2011, 18(34), 5289-5302.
[http://dx.doi.org/10.2174/092986711798184325] [PMID: 22087826]
[74]
Beg, T.; Jyoti, S.; Naz, F.; Ali, F. Protective effect of kaempferol on the transgenic drosophila model of alzheimer’s disease. CNS Neurol Disord-Dr, 2018, 17(6), 421-429.
[75]
Ali, M.Y.; Jannat, S.; Edraki, N.; Das, S.; Chang, W.K.; Kim, H.C.; Park, S.K.; Chang, M.S. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem. Biol. Interact., 2019, 309, 108707
[http://dx.doi.org/10.1016/j.cbi.2019.06.020] [PMID: 31194956]
[76]
Bakoyiannis, I.; Daskalopoulou, A.; Pergialiotis, V.; Perrea, D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed. Pharmacother., 2019, 109, 1488-1497.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[77]
Cui, J.; Wang, G.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L. Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: Possible role of PPAR-γ, Bax/Bcl-2, and caspase-3. Food Chem. Toxicol., 2018, 121, 95-108.
[http://dx.doi.org/10.1016/j.fct.2018.08.028] [PMID: 30130594]
[78]
Calis, Z.; Mogulkoc, R.; Baltaci, A.K. The roles of flavonoles/flavonoids in neurodegeneration and neuroinflam-mation. Mini Rev. Med. Chem., 2019, 19, 1.
[http://dx.doi.org/10.2174/1389557519666190617150051] [PMID: 31288717]
[79]
Shah, S.A.; Amin, F.U.; Khan, M.; Abid, M.N.; Rehman, S.U.; Kim, T.H.; Kim, M.W.; Kim, M.O. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J. Neuroinflammation, 2016, 13(1), 286.
[http://dx.doi.org/10.1186/s12974-016-0752-y] [PMID: 27821173]
[80]
Lou, H.; Jing, X.; Wei, X.; Shi, H.; Ren, D.; Zhang, X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology, 2014, 79, 380-388.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.026] [PMID: 24333330]
[81]
Zhang, L.F.; Yu, X.L.; Ji, M.; Liu, S.Y.; Wu, X.L.; Wang, Y.J.; Liu, R.T. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct., 2018, 9(12), 6414-6426.
[http://dx.doi.org/10.1039/C8FO00964C] [PMID: 30462117]
[82]
Qi, B.; Shi, C.; Meng, J.; Xu, S.; Liu, J. Resveratrol alleviates ethanol-induced neuroinflammation in vivo and in vitro: Involvement of TLR2-MyD88-NF-κB pathway. Int. J. Biochem. Cell Biol., 2018, 103, 56-64.
[http://dx.doi.org/10.1016/j.biocel.2018.07.007] [PMID: 30107238]
[83]
Bahar, E.; Kim, J-Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, INOS/NF-KB and HO-1/NRF2 pathways. Int. J. Mol. Sci., 2017, 18, 1989.
[http://dx.doi.org/10.3390/ijms18091989]
[84]
Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res., 2018, 128, 359-365.
[http://dx.doi.org/10.1016/j.phrs.2017.10.008] [PMID: 29055745]
[85]
Cirmi, S.; Ferlazzo, N.; Lombardo, G.E.; Ventura-Spagnolo, E.; Gangemi, S.; Calapai, G.; Navarra, M. Neurodegenerative diseases: might citrus flavonoids play a protective role? Molecules, 2016, 21(10), E1312
[http://dx.doi.org/10.3390/molecules21101312] [PMID: 27706034]
[86]
Ha, S.K.; Lee, P.; Park, J.A.; Oh, H.R.; Lee, S.Y.; Park, J.H.; Lee, E.H.; Ryu, J.H.; Lee, K.R.; Kim, S.Y. Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem. Int., 2008, 52(4-5), 878-886.
[http://dx.doi.org/10.1016/j.neuint.2007.10.005] [PMID: 18037535]
[87]
Liang, H.; Sonego, S.; Gyengesi, E.; Rangel, A.; Niedermayer, G.; Karl, T.; Muench, G. undefined. Anti-Inflammatory and neuroprotective effect of apigenin: studies in the gfap-il6 mouse model of chronic neuroinflammation. Free Red. Biol. Med., 2017, 108, S10.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.064]
[88]
Popović, M.; Caballero-Bleda, M.; Benavente-García, O.; Castillo, J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J. Psychopharmacol. (Oxford), 2014, 28(5), 498-501.
[http://dx.doi.org/10.1177/0269881113512040] [PMID: 24284476]
[89]
Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25−35-induced toxicity in mice. J. Alzheimers Dis., 2011, 24(1), 85-100.
[90]
Sheeja Malar, D.; Pandima Devi, K. Dietary polyphenols for treatment of alzheimer’s disease-future research and development. Curr. Pharm. Biot, 2014, 15(4), 330-342.
[http://dx.doi.org/10.2174/1389201015666140813122703]
[91]
Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact., 2017, 269, 67-79.
[http://dx.doi.org/10.1016/j.cbi.2017.03.016] [PMID: 28389404]
[92]
Guo, D.J.; Li, F.; Yu, P.H.F.; Chan, S.W. Neuroprotective effects of luteolin against apoptosis induced by 6-hydroxydopamine on rat pheochromocytoma PC12 cells. Pharm. Biol., 2013, 51(2), 190-196.
[http://dx.doi.org/10.3109/13880209.2012.716852] [PMID: 23035972]
[93]
Krishnamoorthy, A.; Sevanan, M.; Mani, S.; Balu, M.; Balaji, S.; P, R. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci. Lett., 2019, 709, 134382
[http://dx.doi.org/10.1016/j.neulet.2019.134382] [PMID: 31325581]
[94]
Khan, M.M.; Raza, S.S.; Javed, H.; Ahmad, A.; Khan, A.; Islam, F.; Safhi, M.M.; Islam, F. Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotox. Res., 2012, 22(1), 1-15.
[http://dx.doi.org/10.1007/s12640-011-9295-2] [PMID: 22194158]
[95]
Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[96]
Angelopoulou, E.; Pyrgelis, E.S.; Piperi, C. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochem. Int., 2020, 132, 104612
[http://dx.doi.org/10.1016/j.neuint.2019.104612] [PMID: 31785348]
[97]
Chang, X.; Rong, C.; Chen, Y.; Yang, C.; Hu, Q.; Mo, Y.; Zhang, C.; Gu, X.; Zhang, L.; He, W.; Cheng, S.; Hou, X.; Su, R.; Liu, S.; Dun, W.; Wang, Q.; Fang, S. (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Exp. Cell Res., 2015, 334(1), 136-145.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.004] [PMID: 25882496]
[98]
Yamamoto, N.; Shibata, M.; Ishikuro, R.; Tanida, M.; Taniguchi, Y.; Ikeda-Matsuo, Y.; Sobue, K. Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience, 2017, 362, 70-78.
[http://dx.doi.org/10.1016/j.neuroscience.2017.08.030] [PMID: 28844000]
[99]
Mori, T.; Koyama, N.; Tan, J.; Segawa, T.; Maeda, M.; Town, T. Combined treatment with the phenolics (-)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J. Biol. Chem., 2019, 294(8), 2714-2731.
[http://dx.doi.org/10.1074/jbc.RA118.004280] [PMID: 30563837]
[100]
Du, K.; Liu, M.; Zhong, X.; Yao, W.; Xiao, Q.; Wen, Q.; Yang, B.; Wei, M. Epigallocatechin gallate reduces amyloid β-induced neurotoxicity via inhibiting endoplasmic reticulum stress-mediated apoptosis. Mol. Nutr. Food Res., 2018, 62(8), e1700890
[http://dx.doi.org/10.1002/mnfr.201700890] [PMID: 29446867]
[101]
Guo, Y.; Zhao, Y.; Nan, Y.; Wang, X.; Chen, Y.; Wang, S. (-)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport, 2017, 28(10), 590-597.
[http://dx.doi.org/10.1097/WNR.0000000000000803] [PMID: 28520620]
[102]
Polito, C.A.; Cai, Z.Y.; Shi, Y.L.; Li, X.M.; Yang, R.; Shi, M.; Li, Q.S.; Ma, S.C.; Xiang, L.P.; Wang, K.R.; Ye, J.H.; Lu, J.L.; Zheng, X.Q.; Liang, Y.R. Association of tea consumption with risk of Alzheimer’s disease and anti-beta-amyloid effects of tea. Nutrients, 2018, 10(5), 655.
[http://dx.doi.org/10.3390/nu10050655] [PMID: 29789466]
[103]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[104]
Zhou, T.; Zhu, M.; Liang, Z. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol. Med. Rep., 2018, 17(4), 4883-4888.
[http://dx.doi.org/10.3892/mmr.2018.8470] [PMID: 29363729]
[105]
Zhou, W.; Chen, L.; Hu, X.; Cao, S.; Yang, J. Effects and mechanism of epigallocatechin-3-gallate on apoptosis and mTOR/AKT/GSK-3β pathway in substantia nigra neurons in Parkinson rats. Neuroreport, 2019, 30(2), 60-65.
[http://dx.doi.org/10.1097/WNR.0000000000001149] [PMID: 30571663]
[106]
Choi, J.Y.; Park, C.S.; Kim, D.J.; Cho, M.H.; Jin, B.K.; Pie, J.E.; Chung, W.G. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology, 2002, 23(3), 367-374.
[http://dx.doi.org/10.1016/S0161-813X(02)00079-7] [PMID: 12387363]
[107]
Zhao, J.; Xu, L.; Liang, Q.; Sun, Q.; Chen, C.; Zhang, Y.; Ding, Y.; Zhou, P. Metal chelator EGCG attenuates Fe(III)-induced conformational transition of α-synuclein and protects AS-PC12 cells against Fe(III)-induced death. J. Neurochem., 2017, 143(1), 136-146.
[http://dx.doi.org/10.1111/jnc.14142] [PMID: 28792609]
[108]
Shay, J.; Elbaz, H.A.; Lee, I.; Zielske, S.P.; Malek, M.H.; Hüttemann, M. Molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev., 2015, 2015, 181260
[http://dx.doi.org/10.1155/2015/181260] [PMID: 26180580]
[109]
Bagheri, M.; Joghataei, M-T.; Mohseni, S.; Roghani, M. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 95(3), 270-276.
[http://dx.doi.org/10.1016/j.nlm.2010.12.001] [PMID: 21144907]
[110]
Bargues, C.M.; Ingles, M.; Mallench, L.G.; Ros, J.S.; Costa, V.B.; Perez, V.H.; Tarraga, P.G.; Dromant, M.; Borras, C.; Verdugo, J.M.; Viña, J. Clearing amyloid-β through PPARΓ/ApoE activation by genistein is a treatment of experimental alzheimer’s disease. Free Radic. Biol. Med., 2017, 108, S44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.162]
[111]
Bonet-Costa, V.; Herranz-Pérez, V.; Blanco-Gandía, M.; Mas-Bargues, C.; Inglés, M.; Garcia-Tarraga, P.; Rodriguez-Arias, M.; Miñarro, J.; Borras, C.; Garcia-Verdugo, J.M.; Viña, J. Clearing amyloid-β through PPARΓ/ApoE activation by genistein is a treatment of experimental alzheimer’s disease. J. Alzheimers Dis., 2016, 51(3), 701-711.
[http://dx.doi.org/10.3233/JAD-151020] [PMID: 26890773]
[112]
Kyuhou, S. Preventive effects of genistein on motor dysfunction following 6-hydroxydopamine injection in ovariectomized rats. Neurosci. Lett., 2008, 448(1), 10-14.
[http://dx.doi.org/10.1016/j.neulet.2008.10.045] [PMID: 18952148]
[113]
Liu, L.X.; Chen, W.F.; Xie, J.X.; Wong, M.S. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci. Res., 2008, 60(2), 156-161.
[http://dx.doi.org/10.1016/j.neures.2007.10.005] [PMID: 18054104]
[114]
Arbabi, E.; Hamidi, G.; Talaei, S.A.; Salami, M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran. J. Basic Med. Sci., 2016, 19(12), 1285-1290.
[PMID: 28096960]
[115]
Wang, X.; Chen, S.; Ma, G.; Ye, M.; Lu, G. Genistein protects dopaminergic neurons by inhibiting microglial activation. Neuroreport, 2005, 16(3), 267-270.
[http://dx.doi.org/10.1097/00001756-200502280-00013] [PMID: 15706233]
[116]
Wu, H.C.; Hu, Q.L.; Zhang, S.J.; Wang, Y.M.; Jin, Z.K.; Lv, L.F.; Zhang, S.; Liu, Z.L.; Wu, H.L.; Cheng, O.M. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen. Res., 2018, 13(8), 1375-1383.
[http://dx.doi.org/10.4103/1673-5374.235250] [PMID: 30106049]
[117]
Justin Thenmozhi, A.; William Raja, T.R.; Manivasagam, T.; Janakiraman, U.; Essa, M.M. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr. Neurosci., 2017, 20(6), 360-368.
[http://dx.doi.org/10.1080/1028415X.2016.1144846] [PMID: 26878879]
[118]
Li, C.; Zug, C.; Qu, H.; Schluesener, H.; Zhang, Z. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behav. Brain Res., 2015, 281, 32-42.
[http://dx.doi.org/10.1016/j.bbr.2014.12.012] [PMID: 25510196]
[119]
Wang, D.; Liu, L.; Zhu, X.; Wu, W.; Wang, Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell. Mol. Neurobiol., 2014, 34(8), 1209-1221.
[http://dx.doi.org/10.1007/s10571-014-0098-x] [PMID: 25135708]
[120]
Tamilselvam, K.; Braidy, N.; Manivasagam, T.; Essa, M.M.; Prasad, N.R.; Karthikeyan, S.; Thenmozhi, A.J.; Selvaraju, S.; Guillemin, G.J. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid. Med. Cell. Longev., 2013, 2013, 102741
[http://dx.doi.org/10.1155/2013/102741] [PMID: 24205431]
[121]
Antunes, M.S.; Goes, A.T.R.; Boeira, S.P.; Prigol, M.; Jesse, C.R. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition, 2014, 30(11-12), 1415-1422.
[http://dx.doi.org/10.1016/j.nut.2014.03.024] [PMID: 25280422]
[122]
Kiasalari, Z.; Khalili, M.; Baluchnejadmojarad, T.; Roghani, M. Protective effect of oral hesperetin against unilateral striatal 6-hydroxydopamine damage in the rat. Neurochem. Res., 2016, 41(5), 1065-1072.
[http://dx.doi.org/10.1007/s11064-015-1796-6] [PMID: 26700436]
[123]
Poetini, M.R.; Araujo, S.M.; Trindade de Paula, M.; Bortolotto, V.C.; Meichtry, L.B.; Polet de Almeida, F.; Jesse, C.R.; Kunz, S.N.; Prigol, M. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact., 2018, 279, 177-186.
[http://dx.doi.org/10.1016/j.cbi.2017.11.018] [PMID: 29191452]
[124]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[125]
Sawmiller, D.; Li, S.; Shahaduzzaman, M.; Smith, A.J.; Obregon, D.; Giunta, B.; Borlongan, C.V.; Sanberg, P.R.; Tan, J. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. Int. J. Mol. Sci., 2014, 15(1), 895-904.
[http://dx.doi.org/10.3390/ijms15010895] [PMID: 24413756]
[126]
Liu, Y.; Fu, X.; Lan, N.; Li, S.; Zhang, J.; Wang, S.; Li, C.; Shang, Y.; Huang, T.; Zhang, L. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res., 2014, 267, 178-188.
[http://dx.doi.org/10.1016/j.bbr.2014.02.040] [PMID: 24667364]
[127]
Wang, H.; Wang, H.; Cheng, H.; Che, Z. Ameliorating effect of luteolin on memory impairment in an Alzheimer’s disease model. Mol. Med. Rep., 2016, 13(5), 4215-4220.
[http://dx.doi.org/10.3892/mmr.2016.5052] [PMID: 27035793]
[128]
Ali, F.; Rahul, ; Jyoti, S.; Naz, F.; Ashafaq, M.; Shahid, M.; Siddique, Y.H. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci. Lett., 2019, 692, 90-99.
[http://dx.doi.org/10.1016/j.neulet.2018.10.053] [PMID: 30420334]
[129]
Patil, S.P.; Jain, P.D.; Sancheti, J.S.; Ghumatkar, P.J.; Tambe, R.; Sathaye, S. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology, 2014, 86, 192-202.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.012] [PMID: 25087727]
[130]
Wruck, C.J.; Claussen, M. Fuhrmann, G.; Römer, L.; Schulz, A.; Pufe, T.; Waetzig, V.; Peipp, M.; Herdegen, T.; Götz, M. E. Luteolin protects rat PC 12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keapl-Nrf2-ARE pathway. Neuroc Dis Iintegrat Appr, 2007, 72, 57-67.
[131]
Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), E11
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[132]
Ghofrani, S.; Joghataei, M-T.; Mohseni, S.; Baluchnejadmojarad, T.; Bagheri, M.; Khamse, S.; Roghani, M. Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms. Eur. J. Pharmacol., 2015, 764, 195-201.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.001] [PMID: 26148826]
[133]
Khan, M.B.; Khan, M.M.; Khan, A.; Ahmed, M.E.; Ishrat, T.; Tabassum, R.; Vaibhav, K.; Ahmad, A.; Islam, F. Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem. Int., 2012, 61(7), 1081-1093.
[http://dx.doi.org/10.1016/j.neuint.2012.07.025] [PMID: 22898296]
[134]
Pan, R.Y.; Ma, J.; Kong, X.X.; Wang, X.F.; Li, S.S.; Qi, X.L.; Yan, Y.H.; Cheng, J.; Liu, Q.; Jin, W.; Tan, C.H.; Yuan, Z. Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing microglial amyloid-β clearance. Sci. Adv., 2019, 5(2), eaau6328
[http://dx.doi.org/10.1126/sciadv.aau6328] [PMID: 30820451]
[135]
Yang, Z.; Kuboyama, T.; Tohda, C. Naringenin promotes microglial M2 polarization and Aβ degradation enzyme expression. Phytother. Res., 2019, 33(4), 1114-1121.
[http://dx.doi.org/10.1002/ptr.6305] [PMID: 30768735]
[136]
Zhang, N.; Hu, Z.; Zhang, Z.; Liu, G.; Wang, Y.; Ren, Y.; Wu, X.; Geng, F. Protective role of naringenin against aβ25-35-caused damage via ER and PI3K/akt-mediated pathways. Cell. Mol. Neurobiol., 2018, 38(2), 549-557.
[http://dx.doi.org/10.1007/s10571-017-0519-8] [PMID: 28699113]
[137]
Sonia Angeline, M.; Sarkar, A.; Anand, K.; Ambasta, R.K.; Kumar, P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience, 2013, 254, 379-394.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.029] [PMID: 24070629]
[138]
Sugumar, M.; Sevanan, M.; Sekar, S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int. J. Neurosci., 2019, 129(6), 534-539.
[http://dx.doi.org/10.1080/00207454.2018.1545772] [PMID: 30433834]
[139]
Chen, C.; Wei, Y.Z.; He, X.M.; Li, D.D.; Wang, G.Q.; Li, J.J.; Zhang, F. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 Inflammasome Activation. Front. Immunol., 2019, 10, 936.
[http://dx.doi.org/10.3389/fimmu.2019.00936] [PMID: 31118933]
[140]
Venigalla, M.; Sonego, S.; Gyengesi, E.; Sharman, M.J.; Münch, G. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 2016, 95, 63-74.
[http://dx.doi.org/10.1016/j.neuint.2015.10.011] [PMID: 26529297]
[141]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[142]
Ahmed, T.; Javed, S.; Javed, S.; Tariq, A.; Šamec, D.; Tejada, S.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Resveratrol and Alzheimer’s disease: Mechanistic insights. Mol. Neurobiol., 2017, 54(4), 2622-2635.
[http://dx.doi.org/10.1007/s12035-016-9839-9] [PMID: 26993301]
[143]
Schweiger, S.; Matthes, F.; Posey, K.; Kickstein, E.; Weber, S.; Hettich, M.M.; Pfurtscheller, S.; Ehninger, D.; Schneider, R.; Krauß, S. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci. Rep., 2017, 7(1), 13753.
[http://dx.doi.org/10.1038/s41598-017-12974-4] [PMID: 29062069]
[144]
Karthick, C.; Periyasamy, S.; Jayachandran, K.S.; Anusuyadevi, M. Intrahippocampal administration of ibotenic acid induced cholinergic dysfunction via NR2A/NR2B expression: implications of resveratrol against Alzheimer disease pathophysiology. Front. Mol. Neurosci., 2016, 9, 28.
[http://dx.doi.org/10.3389/fnmol.2016.00028] [PMID: 27199654]
[145]
Wang, G.; Chen, L.; Pan, X.; Chen, J.; Wang, L.; Wang, W.; Cheng, R.; Wu, F.; Feng, X.; Yu, Y.; Zhang, H.T.; O’Donnell, J.M.; Xu, Y. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget, 2016, 7(14), 17380-17392.
[http://dx.doi.org/10.18632/oncotarget.8041] [PMID: 26980711]
[146]
Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jäger, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorg. Med. Chem., 2004, 12(21), 5571-5578.
[http://dx.doi.org/10.1016/j.bmc.2004.08.008] [PMID: 15465334]
[147]
Hui, W.; Wang, H.; Jiang, T.; Li, W.; Gao, N.; Zhang, T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of alzheimer’s disease mitophagy view project resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of alzheimer’s disease. Toxicol. Lett., 2017, 282, 100-108.
[148]
Lan, F.; Weikel, K.A.; Cacicedo, J.M.; Ido, Y. Resveratrol-induced AMP-activated protein kinase activation is cell-type dependent: lessons from basic research for clinical application. Nutrients, 2017, 9(7), 751.
[http://dx.doi.org/10.3390/nu9070751] [PMID: 28708087]
[149]
Tellone, E.; Galtieri, A.; Russo, A.; Giardina, B.; Ficarra, S. Resveratrol: a focus on several neurodegenerative diseases. Oxid. Med. Cell. Longev., 2015, 2015, 392169
[http://dx.doi.org/10.1155/2015/392169] [PMID: 26180587]
[150]
Gaballah, H.H.; Zakaria, S.S.; Elbatsh, M.M.; Tahoon, N.M. Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chem. Biol. Interact., 2016, 251, 10-16.
[http://dx.doi.org/10.1016/j.cbi.2016.03.023] [PMID: 27016191]
[151]
Zeng, W.; Zhang, W.; Lu, F.; Gao, L.; Gao, G. Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3β pathway in SN4741 cells. Neurosci. Lett., 2017, 637, 50-56.
[http://dx.doi.org/10.1016/j.neulet.2016.11.054] [PMID: 27894919]
[152]
Xia, D.; Sui, R.; Zhang, Z. Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J. Cell. Biochem., 2019, 120(4), 4942-4951.
[http://dx.doi.org/10.1002/jcb.27769] [PMID: 30260025]
[153]
Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol., 2017, 67, 220-235.
[http://dx.doi.org/10.1016/j.tifs.2017.07.008]
[154]
Frutos, M.J.; Rincón-Frutos, L.; Valero-Cases, E. Rutin. In: Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, 2018.
[155]
Sharma, S.; Ali, A.; Ali, J.; Sahni, J.K.; Baboota, S. Rutin : therapeutic potential and recent advances in drug delivery. Expert Opin. Investig. Drugs, 2013, 22(8), 1063-1079.
[http://dx.doi.org/10.1517/13543784.2013.805744] [PMID: 23795677]
[156]
Mohebali, N.; Shahzadeh Fazeli, S.A.; Ghafoori, H.; Farahmand, Z.; MohammadKhani, E.; Vakhshiteh, F.; Ghamarian, A.; Farhangniya, M.; Sanati, M.H. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer’s disease. Nutr. Neurosci., 2018, 21(2), 143-150.
[http://dx.doi.org/10.1080/1028415X.2016.1238026] [PMID: 27778760]
[157]
Ramalingayya, G.V.; Nampoothiri, M.; Nayak, P.G.; Kishore, A.; Shenoy, R.R.; Mallikarjuna Rao, C.; Nandakumar, K. Naringin and rutin alleviates episodic memory deficits in two differentially challenged object recognition tasks. Pharmacogn. Mag., 2016, 12(1)(Suppl. 1), S63-S70.
[PMID: 27041861]
[158]
Cheng, J.; Chen, L.; Han, S.; Qin, L.; Chen, N.; Wan, Z. Treadmill running and rutin reverse high fat diet induced cognitive impairment in diet induced obese mice. J. Nutr. Health Aging, 2016, 20(5), 503-508.
[http://dx.doi.org/10.1007/s12603-015-0616-7] [PMID: 27102787]
[159]
Xu, P.X.; Wang, S.W.; Yu, X.L.; Su, Y.J.; Wang, T.; Zhou, W.W.; Zhang, H.; Wang, Y.J.; Liu, R.T. Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav. Brain Res., 2014, 264, 173-180.
[http://dx.doi.org/10.1016/j.bbr.2014.02.002] [PMID: 24512768]
[160]
Pasic, M.D.; Diamandis, E.P.; McLaurin, J.; Holtzman, D.M.; Schmitt-Ulms, G.; Quirion, R. Alzheimer disease: advances in pathogenesis, diagnosis, and therapy. Clin. Chem., 2011, 57(5), 664-669.
[http://dx.doi.org/10.1373/clinchem.2011.161828] [PMID: 21310870]
[161]
Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int. J. Mol. Med., 2013, 32(1), 235-240.
[http://dx.doi.org/10.3892/ijmm.2013.1375] [PMID: 23670213]
[162]
Enogieru, A.B.; Haylett, W.L.; Miller, H.C.; van der Westhuizen, F.H.; Hiss, D.C.; Ekpo, O.E. Attenuation of endoplasmic reticulum stress, impaired calcium homeostasis, and altered bioenergetic functions in mpp+-exposed sh-sy5y cells pretreated with rutin. Neurotox. Res., 2019, 36(4), 764-776.
[http://dx.doi.org/10.1007/s12640-019-00048-4] [PMID: 31055769]
[163]
Park, S.E.; Sapkota, K.; Choi, J.H.; Kim, M.K.; Kim, Y.H.; Kim, K.M.; Kim, K.J.; Oh, H.N.; Kim, S.J.; Kim, S. Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem. Res., 2014, 39(4), 707-718.
[http://dx.doi.org/10.1007/s11064-014-1259-5] [PMID: 24549762]
[164]
He, G. R.; Cheng, Y. X.; Mu, X.; Li, X. X.; Yu, X.; Wang, Y. H.; Fang, L. H.; Du, G. H. Neuroprotective and antitremor effect of the mixture of luteolin and rutin on 6-hydroxydopamine induced Parkinson's disease in rat models. Chin. Pharmacol. Bull.,, 2012, 5
[165]
El-Elimat, T.; Raja, H.A.; Graf, T.N.; Faeth, S.H.; Cech, N.B.; Oberlies, N.H. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod., 2014, 77(2), 193-199.
[http://dx.doi.org/10.1021/np400955q] [PMID: 24456525]
[166]
Ali, S.H.; Sulaiman, G.M.; Al-Halbosiy, M.M.F.; Jabir, M.S.; Hameed, A.H. Fabrication of hesperidin nanoparticles loaded by poly lactic co-Glycolic acid for improved therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 378-394.
[http://dx.doi.org/10.1080/21691401.2018.1559175] [PMID: 30691314]
[167]
Khan, S.A.; Ahmed, B.; Zelalem, M.; Mohammed, A.M.; Bekhit, A.A.; Hymete, A. Synthesis and antihepatotoxic activity of some new xanthones containing 1, 4-dioxane ring system. Thaiphesatchasan, 2011, 35, 103-109.
[168]
Murata, N.; Murakami, K.; Ozawa, Y.; Kinoshita, N.; Irie, K.; Shirasawa, T.; Shimizu, T. Silymarin attenuated the amyloid β plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model. Biosci. Biotechnol. Biochem., 2010, 74(11), 2299-2306.
[http://dx.doi.org/10.1271/bbb.100524] [PMID: 21071836]
[169]
Yaghmaei, P.; Azarfar, K.; Dezfulian, M.; Ebrahim-Habibi, A. Silymarin effect on amyloid-β plaque accumulation and gene expression of APP in an Alzheimer’s disease rat model. Daru, 2014, 22(1), 24.
[http://dx.doi.org/10.1186/2008-2231-22-24] [PMID: 24460990]
[170]
Kiruthiga, P.V.; Karutha Pandian, S.; Pandima Devi, K. Silymarin prevents the toxicity induced by benzo(a)pyrene in human erythrocytes by preserving its membrane integrity: an in vitro study. Environ. Toxicol., 2014, 29(2), 165-175.
[http://dx.doi.org/10.1002/tox.20783] [PMID: 22052664]
[171]
El-Marasy, S.A.; Abd-Elsalam, R.M.; Ahmed-Farid, O.A. Ameliorative effect of silymarin on scopolamine-induced dementia in rats. Open Access Maced. J. Med. Sci., 2018, 6(7), 1215-1224.
[http://dx.doi.org/10.3889/oamjms.2018.257] [PMID: 30087724]
[172]
Soto, C.; Recoba, R.; Barrón, H.; Alvarez, C.; Favari, L. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 136(3), 205-212.
[http://dx.doi.org/10.1016/S1532-0456(03)00214-X] [PMID: 14659454]
[173]
Haddadi, R.; Nayebi, A.M.; Eyvari Brooshghalan, S. Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomed. Pharmacother., 2018, 104, 127-136.
[http://dx.doi.org/10.1016/j.biopha.2018.05.020] [PMID: 29772432]
[174]
Lovelace, E.S.; Wagoner, J.; MacDonald, J.; Bammler, T.; Bruckner, J.; Brownell, J.; Beyer, R.P.; Zink, E.M.; Kim, Y.M.; Kyle, J.E.; Webb-Robertson, B.J.M.; Waters, K.M.; Metz, T.O.; Farin, F.; Oberlies, N.H.; Polyak, S.J. Silymarin suppresses cellular inflammation by inducing reparative stress signaling. J. Nat. Prod., 2015, 78(8), 1990-2000.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00288] [PMID: 26186142]
[175]
Pérez-H, J.; Carrillo-S, C.; García, E.; Ruiz-Mar, G.; Pérez-Tamayo, R.; Chavarría, A.; Chavarría, A.; Velasco Suárez, M. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson’s disease. Toxicology, 2014, 319, 38-43.
[http://dx.doi.org/10.1016/j.tox.2014.02.009] [PMID: 24607817]
[176]
Yuan, R.; Fan, H.; Cheng, S.; Gao, W.; Xu, X.; Lv, S.; Ye, M.; Wu, M.; Zhu, X.; Zhang, Y. Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage. Biomed. Pharmacother., 2017, 93, 308-315.
[http://dx.doi.org/10.1016/j.biopha.2017.06.018] [PMID: 28651232]
[177]
Lee, Y.; Park, H.R.; Chun, H.J.; Lee, J. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J. Neurosci. Res., 2015, 93(5), 755-765.
[http://dx.doi.org/10.1002/jnr.23544] [PMID: 25677261]
[178]
Srivastava, S.; Sammi, S.R.; Laxman, T.S.; Pant, A.; Nagar, A.; Trivedi, S.; Bhatta, R.S.; Tandon, S.; Pandey, R. Silymarin promotes longevity and alleviates Parkinson’s associated pathologies in Caenorhabditis elegans. J. Funct. Foods, 2017, 31, 32-43.
[http://dx.doi.org/10.1016/j.jff.2017.01.029]
[179]
Leem, E.; Oh, Y.S.; Shin, W.H.; Jin, B.K.; Jeong, J.Y.; Shin, M.; Kim, D.W.; Jang, J.H.; Kim, H.J.; Ha, C.M.; Jung, U.J.; Moon, G.J.; Kim, S.R. Effects of silibinin against prothrombin kringle-2-induced neurotoxicity in the nigrostriatal dopaminergic system in vivo. J. Med. Food, 2019, 22(3), 277-285.
[http://dx.doi.org/10.1089/jmf.2018.4266] [PMID: 30632945]
[180]
Lee, Y.; Chun, H.J.; Lee, K.M.; Jung, Y.S.; Lee, J. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson’s disease by modulating the ERK and JNK signaling pathways. Brain Res., 2015, 1627, 233-242.
[http://dx.doi.org/10.1016/j.brainres.2015.09.029] [PMID: 26434409]
[181]
Yu, C.P.; Shia, C.S.; Tsai, S.Y.; Hou, Y.C. Pharmacokinetics and relative bioavailability of flavonoids between two dosage forms of gegen-qinlian-tang in rats. Evid. Based Complement. Alternat. Med., 2012, 2012, 308018
[http://dx.doi.org/10.1155/2012/308018] [PMID: 23258986]
[182]
Spencer, J.P.E. Metabolism of tea flavonoids in the gastrointestinal tract. J. Nutr., 2003, 133(10), 3255S-3261S.
[http://dx.doi.org/10.1093/jn/133.10.3255S] [PMID: 14519823]
[183]
Nunes, T.; Almeida, L.; Rocha, J.F.; Falcão, A.; Fernandes-Lopes, C.; Loureiro, A.I.; Wright, L.; Vaz-da-Silva, M.; Soares-da-Silva, P. Pharmacokinetics of trans-resveratrol following repeated administration in healthy elderly and young subjects. J. Clin. Pharmacol., 2009, 49(12), 1477-1482.
[http://dx.doi.org/10.1177/0091270009339191] [PMID: 19797536]
[184]
Gawande, S.; Kale, A.; Kotwal, S. Effect of nutrient mixture and black grapes on the pharmacokinetics of orally administered (-)epigallocatechin-3-gallate from green tea extract: a human study. Phytother. Res., 2008, 22(6), 802-808.
[http://dx.doi.org/10.1002/ptr.2372] [PMID: 18446840]
[185]
Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytother. Res., 2016, 30(9), 1379-1391.
[http://dx.doi.org/10.1002/ptr.5643] [PMID: 27241122]
[186]
Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomedicine, 2017, 12, 2957-2978.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[187]
Cui, W.; Li, J.; Decher, G. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery. Adv. Mater., 2016, 28(6), 1302-1311.
[http://dx.doi.org/10.1002/adma.201502479] [PMID: 26436442]
[188]
Rizwanullah, Md.; Ahmad, J.; Amin, S.; Mishra, A.; Ruhal Ain, M.; Rahman, M. Polymer-lipid hybrid systems: scope of intravenous-to-oral switch in cancer chemotherapy. Curr. Nanomed., 2019, 9, 1-13.
[http://dx.doi.org/10.2174/2468187309666190514083508]
[189]
Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O.P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm., 2016, 515(1-2), 307-314.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.024] [PMID: 27756627]
[190]
Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release, 2009, 133(3), 238-244.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[191]
Tefas, L.R.; Tomuţă, I.; Achim, M.; Vlase, L. Development and optimization of quercetin-loaded PLGA nanoparticles by experimental design. Clujul Med., 2015, 88(2), 214-223.
[PMID: 26528074]
[192]
Jain, A.K.; Thanki, K.; Jain, S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol. Pharm., 2013, 10(9), 3459-3474.
[http://dx.doi.org/10.1021/mp400311j] [PMID: 23927416]
[193]
Choi, Y.A.; Yoon, Y.H.; Choi, K.; Kwon, M.; Goo, S.H.; Cha, J.S.; Choi, M.K.; Lee, H.S.; Song, I.S. Enhanced oral bioavailability of morin administered in mixed micelle formulation with PluronicF127 and Tween80 in rats. Biol. Pharm. Bull., 2015, 38(2), 208-217.
[http://dx.doi.org/10.1248/bpb.b14-00508] [PMID: 25747979]
[194]
Jabbari, M.; Jabbari, A. Antioxidant potential and DPPH radical scavenging kinetics of water-insoluble flavonoid naringenin in aqueous solution of micelles. Colloids Surf. A Physicochem. Eng. Asp., 2016, 489, 392-399.
[http://dx.doi.org/10.1016/j.colsurfa.2015.11.022]
[195]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv., 2015, 22(4), 552-561.
[http://dx.doi.org/10.3109/10717544.2013.878003] [PMID: 24512268]
[196]
Pando, C.; Cabañas, A.; Cuadra, I.A. Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: A review. RSC Advances, 2016, 75, 71134-71150.
[http://dx.doi.org/10.1039/C6RA10917A]
[197]
Wang, C.; Tong, Q.; Hou, X.; Hu, S.; Fang, J.; Sun, C.C. Enhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitor. Cryst. Growth Des., 2016, 9, 5030-5039.
[http://dx.doi.org/10.1021/acs.cgd.6b00591]
[198]
Diniz, T.C.; Pinto, T.C.C.; Menezes, P.D.P.; Silva, J.C.; Teles, R.B.A.; Ximenes, R.C.C.; Guimarães, A.G.; Serafini, M.R.; Araújo, A.A.S.; Quintans Júnior, L.J.; Almeida, J.R.G.D.S. Cyclodextrins improving the physicochemical and pharmacological properties of antidepressant drugs: a patent review. Expert Opin. Ther. Pat., 2018, 28(1), 81-92.
[http://dx.doi.org/10.1080/13543776.2017.1384816] [PMID: 28965471]
[199]
Lima, B.D.S.; Campos, C.A.; da Silva Santos, A.C.R.; Santos, V.C.N.; Trindade, G.D.G.G.; Shanmugam, S.; Pereira, E.W.M.; Marreto, R.N.; Duarte, M.C.; Almeida, J.R.G.D.S.; Quintans, J.S.S.; Quintans, L.J., Jr; Araújo, A.A.S. Development of morin/hydroxypropyl-β-cyclodextrin inclusion complex: Enhancement of bioavailability, antihyperalgesic and anti-inflammatory effects. Food Chem. Toxicol., 2019, 126, 15-24.
[http://dx.doi.org/10.1016/j.fct.2019.01.038] [PMID: 30738132]
[200]
Perez-Moral, N.; Saha, S.; Philo, M.; Hart, D.J.; Winterbone, M.S.; Hollands, W.J.; Spurr, M.; Bows, J.; van der Velpen, V.; Kroon, P.A.; Curtis, P.J. Comparative bio-accessibility, bioavailability and bioequivalence of quercetin, apigenin, glucoraphanin and carotenoids from freeze-dried vegetables incorporated into a baked snack versus minimally processed vegetables: Evidence from in vitro models and a human bioavailability study. J. Funct. Foods, 2018, 48, 410-419.
[http://dx.doi.org/10.1016/j.jff.2018.07.035] [PMID: 30344649]
[201]
Zhao, L.; Wang, J.L.; Liu, R.; Li, X.X.; Li, J.F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules, 2013, 18(8), 9949-9965.
[http://dx.doi.org/10.3390/molecules18089949] [PMID: 23966081]
[202]
Huang, Y.; Zu, Y.; Zhao, X.; Wu, M.; Feng, Z.; Deng, Y.; Zu, C.; Wang, L. Preparation of inclusion complex of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement. Int. J. Pharm., 2016, 511(2), 921-930.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.007] [PMID: 27515291]
[203]
Zhang, J.; Huang, Y.; Liu, D.; Gao, Y.; Qian, S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur. J. Pharm. Sci., 2013, 48(4-5), 740-747.
[http://dx.doi.org/10.1016/j.ejps.2012.12.026] [PMID: 23305994]
[204]
Sa, R.; Zhang, Y.; Deng, Y.; Huang, Y.; Zhang, M.; Lou, B. Novel salt cocrystal of chrysin with berberine: preparation, characterization, and oral bioavailability. Cryst. Growth Des., 2018, 18(8), 4724-4730.
[http://dx.doi.org/10.1021/acs.cgd.8b00696]
[205]
Anari, E.; Akbarzadeh, A.; Zarghami, N. Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1410-1416.
[PMID: 26148177]
[206]
Vedagiri, A.; Thangarajan, S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides, 2016, 58, 111-125.
[http://dx.doi.org/10.1016/j.npep.2016.03.002] [PMID: 27021394]
[207]
Lambert, J.D.; Lee, M.J.; Diamond, L.; Ju, J.; Hong, J.; Bose, M.; Newmark, H.L.; Yang, C.S. Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab. Dispos., 2006, 34(1), 8-11.
[http://dx.doi.org/10.1124/dmd.104.003434] [PMID: 16204466]
[208]
Ramesh, N.; Mandal, A.K.A. Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model. Drug Dev. Ind. Pharm., 2019, 45(9), 1506-1514.
[http://dx.doi.org/10.1080/03639045.2019.1634091] [PMID: 31215261]
[209]
Hu, B.; Ting, Y.; Yang, X.; Tang, W.; Zeng, X.; Huang, Q. Nanochemoprevention by encapsulation of (-)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem. Commun. (Camb.), 2012, 48(18), 2421-2423.
[http://dx.doi.org/10.1039/c2cc17295j] [PMID: 22266839]
[210]
Smith, A.; Giunta, B.; Bickford, P.C.; Fountain, M.; Tan, J.; Shytle, R.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int. J. Pharm., 2010, 389(1-2), 207-212.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.012] [PMID: 20083179]
[211]
Nkurunziza, D.; Pendleton, P.; Chun, B.S. Optimization and kinetics modeling of okara isoflavones extraction using subcritical water. Food Chem., 2019, 295, 613-621.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.129] [PMID: 31174803]
[212]
Wang, S.T.; Chang, H.S.; Hsu, C.; Su, N.W. Osteoprotective effect of genistein 7-o-phosphate, a derivative of genistein with high bioavailability, in ovariectomized rats. J. Funct. Foods, 2019, 58, 171-179.
[http://dx.doi.org/10.1016/j.jff.2019.04.063]
[213]
Kim, J.T.; Barua, S.; Kim, H.; Hong, S.C.; Yoo, S.Y.; Jeon, H.; Cho, Y.; Gil, S.; Oh, K.; Lee, J. Absorption study of genistein using solid lipid microparticles and nanoparticles: control of oral bioavailability by particle sizes. Biomol. Ther. (Seoul), 2017, 25(4), 452-459.
[http://dx.doi.org/10.4062/biomolther.2017.095] [PMID: 28605834]
[214]
Rassu, G.; Porcu, E.P.; Fancello, S.; Obinu, A.; Senes, N.; Galleri, G.; Migheli, R.; Gavini, E.; Giunchedi, P. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics, 2018, 11(1), 8-18.
[http://dx.doi.org/10.3390/pharmaceutics11010008] [PMID: 30597930]
[215]
Van Rymenant, E.; Salden, B.; Voorspoels, S.; Jacobs, G.; Noten, B.; Pitart, J.; Possemiers, S.; Smagghe, G.; Grootaert, C.; Van Camp, J. A critical evaluation of in vitro hesperidin 2s bioavailability in a model combining luminal (microbial) digestion and caco-2 cell absorption in comparison to a randomized controlled human trial. Mol. Nutr. Food Res., 2018, 62(8), e1700881
[http://dx.doi.org/10.1002/mnfr.201700881] [PMID: 29451355]
[216]
Letchmanan, K.; Shen, S.C.; Ng, W.K.; Tan, R.B.H. Application of transglycosylated stevia and hesperidin as drug carriers to enhance biopharmaceutical properties of poorly-soluble artemisinin. Colloids Surf. B Biointerfaces, 2018, 161, 83-93.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.020] [PMID: 29054047]
[217]
Mary Lazer, L.; Sadhasivam, B.; Palaniyandi, K.; Muthuswamy, T.; Ramachandran, I.; Balakrishnan, A.; Pathak, S.; Narayan, S.; Ramalingam, S. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int. J. Biol. Macromol, 2018, 107(Pt B), 1988-1998.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.064] [PMID: 29032208]
[218]
Eritja, R. Natural product communications: Preface. Nat. Prod. Commun., 2014, 9(8), 2-4.
[PMID: 25233572]
[219]
Majumdar, D.; Jung, K.H.; Zhang, H.; Nannapaneni, S.; Wang, X.; Amin, A.R.; Chen, Z.; Chen, Z.G.; Shin, D.M. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev. Res. (Phila.), 2014, 7(1), 65-73.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0230] [PMID: 24403290]
[220]
Dang, H.; Meng, M.H.W.; Zhao, H.; Iqbal, J.; Dai, R.; Deng, Y.; Lv, F. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies. J. Nanopart. Res., 2014, 16, 23-47.
[http://dx.doi.org/10.1007/s11051-014-2347-9]
[221]
Kolot, C.; Rodriguez-Mateos, A.; Feliciano, R.; Bottermann, K.; Stahl, W. Bioavailability of naringenin chalcone in humans after ingestion of cherry tomatoes. Int. J. Vitam. Nutr. Res., 2019, 8, 1-6.
[http://dx.doi.org/10.1024/0300-9831/a000574] [PMID: 30961461]
[222]
Shulman, M.; Cohen, M.; Soto-Gutierrez, A.; Yagi, H.; Wang, H.; Goldwasser, J.; Lee-Parsons, C.W.; Benny-Ratsaby, O.; Yarmush, M.L.; Nahmias, Y. Enhancement of naringenin bioavailability by complexation with hydroxypropyl-β-cyclodextrin. PLoS One, 2011, 6, 180-187.
[http://dx.doi.org/10.1371/journal.pone.0018033]
[223]
Wang, Y.; Wang, S.; Firempong, C.K.; Zhang, H.; Wang, M.; Zhang, Y.; Zhu, Y.; Yu, J.; Xu, X. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech, 2017, 18(3), 586-594.
[http://dx.doi.org/10.1208/s12249-016-0537-8] [PMID: 27151135]
[224]
Fernández, A.F.; Fraga, M.F. The effects of the dietary polyphenol resveratrol on human healthy aging and lifespan. Epigenetics, 2011, 6(7), 870-874.
[http://dx.doi.org/10.4161/epi.6.7.16499] [PMID: 21613817]
[225]
Santos, A.C.; Pereira, I.; Pereira-Silva, M.; Ferreira, L.; Caldas, M.; Collado-González, M.; Magalhães, M.; Figueiras, A.; Ribeiro, A.J.; Veiga, F. Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf. B Biointerfaces, 2019, 180, 127-140.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.030] [PMID: 31035056]
[226]
Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int., 2014, 62, 1165-1174.
[http://dx.doi.org/10.1016/j.foodres.2014.05.059]
[227]
Johnson, J.J.; Nihal, M.; Siddiqui, I.A.; Scarlett, C.O.; Bailey, H.H.; Mukhtar, H.; Ahmad, N. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol. Nutr. Food Res., 2011, 55(8), 1169-1176.
[http://dx.doi.org/10.1002/mnfr.201100117] [PMID: 21714124]
[228]
Deepika, M.S.; Thangam, R.; Sheena, T.S.; Sasirekha, R.; Sivasubramanian, S.; Babu, M.D.; Jeganathan, K.; Thirumurugan, R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed. Pharmacother., 2019, 109, 1181-1195.
[http://dx.doi.org/10.1016/j.biopha.2018.10.178] [PMID: 30551368]
[229]
dos Santos Lima, B.; Shanmugam, S.; de Souza Siqueira Quintans, J.; Quintans-Júnior, L.J.; de Souza Araújo, A.A. Inclusion complex with cyclodextrins enhances the bioavailability of flavonoid compounds: A systematic review. Phytochem. Rev., 2019, 18, 1337-1359.
[http://dx.doi.org/10.1007/s11101-019-09650-y]
[230]
Mauludin, R.; Müller, R.H.; Keck, C.M. Development of an oral rutin nanocrystal formulation. Int. J. Pharm., 2009, 370(1-2), 202-209.
[http://dx.doi.org/10.1016/j.ijpharm.2008.11.029] [PMID: 19114097]
[231]
Faggian, M.; Sut, S.; Perissutti, B.; Baldan, V.; Grabnar, I.; Dall’Acqua, S. Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules, 2016, 21(11), 1-11.
[http://dx.doi.org/10.3390/molecules21111531] [PMID: 27854256]
[232]
Jin, G.; Bai, D.; Yin, S.; Yang, Z.; Zou, D.; Zhang, Z.; Li, X.; Sun, Y.; Zhu, Q. Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMP8 mice. Neurosci. Lett., 2016, 629, 256-261.
[http://dx.doi.org/10.1016/j.neulet.2016.06.008] [PMID: 27276653]
[233]
Nagi, A.; Iqbal, B.; Kumar, S.; Sharma, S.; Ali, J.; Baboota, S. Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability. J. Drug Deliv. Sci. Technol., 2017, 40, 35-44.
[http://dx.doi.org/10.1016/j.jddst.2017.05.019]
[234]
Nasr, S.S.; Nasra, M.M.A.; Hazzah, H.A.; Abdallah, O.Y. Mesoporous silica nanoparticles, a safe option for silymarin delivery: preparation, characterization, and in vivo evaluation. Drug Deliv. Transl. Res., 2019, 9(5), 968-979.
[http://dx.doi.org/10.1007/s13346-019-00640-3] [PMID: 31001719]
[235]
Ashraf, A.; Mahmoud, P.A.; Reda, H.; Mansour, S.; Helal, M.H.; Michel, H.E.; Nasr, M. Silymarin and silymarin nanoparticles guard against chronic unpredictable mild stress induced depressive-like behavior in mice: involvement of neurogenesis and NLRP3 inflammasome. J. Psychopharmacol. (Oxford), 2019, 33(5), 615-631.
[http://dx.doi.org/10.1177/0269881119836221] [PMID: 30896354]
[236]
Singh, B.; Mishra, A.; Goel, R.K. Anticonvulsant activity of Passiflora incarnata: No role of chrysin. J. Pharm. Negat. Results, 2011, 2, 51-54.
[http://dx.doi.org/10.4103/0976-9234.90208]
[237]
Pandey, S.; Mishra, A. Rational approaches for toxicological assessments of nanobiomaterials. J. Biochem. Mol. Toxicol., 2019, 33(7), e22335
[http://dx.doi.org/10.1002/jbt.22335] [PMID: 30939223]
[238]
Singh, A.; Kumar, A.; Verma, R.K.; Shukla, R. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int. J. Biol. Macromol., 2020, 149, 1198-1206.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.041] [PMID: 32044368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy