Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

A Study on the Reactivity of Monosubstituted Benzenes in the MW-Assisted Pd(OAc)2-catalyzed Hirao Reaction with Ph2P(O)H and (EtO)2P(O)H Reagents

Author(s): Réka Henyecz, Bianka Huszár, Viktória Grenitzer and György Keglevich*

Volume 24, Issue 9, 2020

Page: [1048 - 1054] Pages: 7

DOI: 10.2174/1385272824999200403170827

Open Access Journals Promotions 2
Abstract

The reactivity order of “iodobenzene > bromobenzene > phenyl trifluoromethanesulfonate” was established in microwave (MW)-assisted Pd(OAc)2-catalyzed P–C coupling reactions with diphenylphosphine oxide and diethyl phosphite, where the excess of the these >P(O)H reagents served as the reducing agent, and, via its tautomeric >P-OH form, also as the P-ligand. The P–C coupling of Ph2P(O)H with PhBr at 120 °C took place via an induction period, during which the active “P-Pd-P” catalyst was formed from the Pd(II) salt and the >P(O)H species. The lower reactivity of PhBr towards Ph2P(O)H could be promoted by the addition of 20% of KI to the reaction mixture at 120 °C, or utilizing 1 equivalent of KI after a pre-reaction with PhBr at 120-150 °C followed by the P–C coupling at 100 °C. The reactivity of PhOTf and a bromo analogue was compared in competitive couplings with Ph2P(O)H. Beyond this, the reactivity of Ph2P(O)H and (EtO)2P(O)H towards PhOTf was evaluated in another competitive experiment. Increasing the scale of the P–C coupling reaction of (EtO)2P(O)H with PhBr, the quantity for the components of the catalyst could be decreased.

Keywords: Hirao reaction, P–C coupling, palladium, phosphonates, phosphine oxides, microwave, P-ligand.

« Previous
Graphical Abstract
[1]
Jablonkai, E.; Keglevich, G. Advances and new variations of the Hirao reaction. Org. Prep. Proced. Int., 2014, 46, 281-316.
[http://dx.doi.org/10.1080/00304948.2014.922376]
[2]
Jablonkai, E.; Keglevich, G. P–C bond formation by coupling reaction utilizing >P(O)H species as the reagents. Curr. Org. Synth., 2014, 11, 429-453.
[http://dx.doi.org/10.2174/15701794113109990066]
[3]
Henyecz, R.; Keglevich, G. New developments on the Hirao reactions, especially from “green” point of view. Curr. Org. Synth., 2019, 16(4), 523-545.
[http://dx.doi.org/10.2174/1570179416666190415110834] [PMID: 31984929]
[4]
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Stereoselective synthesis of vinylphosphonate. Tetrahedron Lett., 1980, 21, 3595-3598.
[http://dx.doi.org/10.1016/0040-4039(80)80245-0]
[5]
Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Palladium-catalyzed new carbon-phosphorus bond formation. Bull. Chem. Soc. Jpn., 1982, 55, 909-913.
[http://dx.doi.org/10.1246/bcsj.55.909]
[6]
Tappe, F.M.J.; Trepohl, V.T.; Oestreich, M. Transition-metal-catalyzed C–P cross-coupling reactions. Synthesis, 2010, 3037-3062.
[7]
Belabassi, Y.; Alzghari, S.; Montchamp, J-L. Revisiting the Hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. J. Organomet. Chem., 2008, 693(19), 3171-3178.
[http://dx.doi.org/10.1016/j.jorganchem.2008.07.020] [PMID: 19156189]
[8]
Kalek, M.; Jezowska, M.; Stawinski, J. Preparation of arylphosphonates by palladium(0)-catalyzed cross-coupling in the presence of acetate additives: synthetic and mechanistic studies. Adv. Synth. Catal., 2009, 351, 3207-3216.
[http://dx.doi.org/10.1002/adsc.200900590]
[9]
Berger, O.; Petit, C.; Deal, E.L.; Montchamp, J-L. Phosphorus-carbon bond formation: Palladium-catalyzed cross-coupling of H-phosphinates and other P(O)H-containing compounds. Adv. Synth. Catal., 2013, 355, 1361-1373.
[http://dx.doi.org/10.1002/adsc.201300069]
[10]
Bloomfield, A.J.; Herzon, S.B. Room temperature, palladium-mediated P-arylation of secondary phosphine oxides. Org. Lett., 2012, 14(17), 4370-4373.
[http://dx.doi.org/10.1021/ol301831k] [PMID: 22905711]
[11]
Fu, W.C.; So, C.M.; Kwong, F.Y. Palladium-catalyzed phosphorylation of aryl mesylates and tosylates. Org. Lett., 2015, 17(23), 5906-5909.
[http://dx.doi.org/10.1021/acs.orglett.5b03104] [PMID: 26574778]
[12]
Geng, Z.; Zhang, Y.; Zheng, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Pd-catalyzed C-P coupling of heteroaryl boronic acid with H-phosphonate diester. Tetrahedron Lett., 2016, 57, 3063-3066.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.038]
[13]
Chrzanowski, J.; Krasowska, D.; Urbaniak, M.; Sieroń, L.; Pokora-Sobczak, P.; Demchuk, O.M.; Drabowicz, J. Synthesis of enantioenriched aryl-tert-butylphenylphosphine oxides via cross-coupling reactions of tert-butylphenylphosphine oxide with aryl halides. Eur. J. Org. Chem., 2018, 33, 4614-4627.
[http://dx.doi.org/10.1002/ejoc.201800698]
[14]
Jablonkai, E.; Keglevich, G. A survey of the palladium–catalyzed Hirao reaction with emphasis on green chemical aspects. Curr. Green Chem., 2015, 2, 379-391.
[http://dx.doi.org/10.2174/2213346102999150630114117]
[15]
Kabachnik, M.M.; Solntseva, M.D.; Izmer, V.V.; Novikova, Z.S.; Beletskaya, I.P. Palladium-catalyzed phase-transfer arylation of dialkyl phosphonates. Russ. J. Org. Chem., 1998, 34, 93-97.
[16]
Beletskaya, I.P.; Kazankova, M.A. Catalytic methods for building up phosphorus-carbon bond. Russ. J. Org. Chem., 2002, 38, 1391-1430.
[http://dx.doi.org/10.1023/A:1022685801622]
[17]
Beletskaya, I.P.; Karlstedt, N.B.; Nifant’ev, E.E.; Khodarev, D.V.; Kukhareva, T.S.; Nikolaev, A.V.; Ross, A.J. Palladium-catalyzed P-arylation of hydrophosphoryl derivatives of protected monosaccharides. Russ. J. Org. Chem., 2006, 42, 1780-1785.
[http://dx.doi.org/10.1134/S1070428006120049]
[18]
Kalek, M.; Ziadi, A.; Stawinski, J. Microwave-assisted palladium-catalyzed cross-coupling of aryl and vinyl halides with H-phosphonate diesters. Org. Lett., 2008, 10(20), 4637-4640.
[http://dx.doi.org/10.1021/ol801935r] [PMID: 18808138]
[19]
Andaloussi, M.; Lindh, J.; Sävmarker, J.; Sjöberg, P.J.R.; Larhed, M. Microwave-promoted palladium(II)-catalyzed C-P bond formation by using arylboronic acids or aryltrifluoroborates. Chemistry, 2009, 15(47), 13069-13074.
[http://dx.doi.org/10.1002/chem.200901473] [PMID: 19856344]
[20]
Rummelt, S.M.; Ranocchiari, M.; van Bokhoven, J.A. Synthesis of water-soluble phosphine oxides by Pd/C-catalyzed P-C coupling in water. Org. Lett., 2012, 14(8), 2188-2190.
[http://dx.doi.org/10.1021/ol300582y] [PMID: 22463685]
[21]
Jablonkai, E.; Keglevich, G. Catalyst-free P-C coupling reaction of halobenzoic acids and secondary phosphine oxides under microwave irradiation in water. Tetrahedron Lett., 2015, 56, 1638-1640.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.015]
[22]
Brahmachari, G. Microwave-assisted Hirao reaction: recent developments. Chem. Texts, 2015, 1(15)
[http://dx.doi.org/10.1007/s40828-015-0017-x]
[23]
Kalek, M.; Stawinski, J. Pd(0)-catalyzed phosphorus-carbon bond formation. Mechanistic and synthetic studies on the role of the palladium sources and anionic additives. Organometallics, 2007, 26, 5840-5847.
[http://dx.doi.org/10.1021/om700797k]
[24]
Kalek, M.; Stawinski, J. Palladium-catalyzed C-P bond formation: Mechanistic studies on the ligand substitution and the reductive elimination. An intramolecular catalysis by the Acetate group in PdII complexes. Organometallics, 2008, 27, 5876-5888.
[http://dx.doi.org/10.1021/om800641n]
[25]
Deal, E.L.; Petit, C.; Montchamp, J-L. Palladium-catalyzed cross-coupling of H-phosphinate esters with chloroarenes. Org. Lett., 2011, 13(12), 3270-3273.
[http://dx.doi.org/10.1021/ol201222n] [PMID: 21612265]
[26]
Jablonkai, E.; Keglevich, G. P-Ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P–C coupling reaction of >P(O)H species and bromoarenes. Tetrahedron Lett., 2013, 54, 4185-4188.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.111]
[27]
Keglevich, G.; Jablonkai, E.; Balázs, L.B.A. “green” variation of the Hirao reaction: the P–C coupling of diethyl phosphite, alkyl phenyl-H-phosphinates and secondary phosphine oxides with bromoarenes using P-ligand-free Pd(OAc)2 catalyst under microwave and solvent-free conditions. RSC Advances, 2014, 4, 22808-22816.
[http://dx.doi.org/10.1039/C4RA03292F]
[28]
Henyecz, R.; Oroszy, R.; Keglevich, G. Microwave-assisted Hirao reaction of heteroaryl bromides and >P(O)H reagents using Pd(OAc)2 as the catalyst precursor in the absence of added P-ligands. Curr. Org. Chem., 2019, 23, 1151-1157.
[http://dx.doi.org/10.2174/1385272823666190621114915]
[29]
Keglevich, G.; Henyecz, R.; Mucsi, Z.; Kiss, N.Z. The palladium acetate-catalyzed microwave-assisted Hirao reaction without an added phosphorus ligand as a “green” protocol: a quantum chemical study on the mechanism. Adv. Synth. Catal., 2017, 359(24), 4322-4331.
[http://dx.doi.org/10.1002/adsc.201700895] [PMID: 29399016]
[30]
Henyecz, R.; Mucsi, Z.; Keglevich, G. Palladium-catalyzed microwave assisted Hirao reaction utilizing the excess of the diarylphosphine oxide reagent as the P-ligand; a study on the activity and formation of the “PdP2” catalyst. Pure Appl. Chem., 2019, 91, 121-134.
[http://dx.doi.org/10.1515/pac-2018-1004]
[31]
Jablonkai, E.; Balázs, L.B.; Keglevich, G. A P-ligand-free nickel-catalyzed variation of the Hirao reaction under microwave conditions. Curr. Org. Chem., 2015, 19, 197-202.
[http://dx.doi.org/10.2174/1385272819666150114235413]
[32]
Henyecz, R.; Mucsi, Z.; Keglevich, G. A surprising mechanism lacking the Ni(0) state during the Ni(II)-catalyzed P–C cross-coupling reaction performed in the absence of a reducing agent – An experimental and a theoretical study. Pure Appl. Chem., 2020, 92, 493-503.
[http://dx.doi.org/10.1515/pac-2019-1004]
[33]
Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Ni(II)/Zn catalyzed reductive coupling of aryl halides with diphenylphosphine oxide in water. Org. Lett., 2011, 13(13), 3478-3481.
[http://dx.doi.org/10.1021/ol201141m] [PMID: 21619044]
[34]
Kinbara, A.; Ito, M.; Abe, T.; Yamagishi, T. Nickel-catalyzed C-P cross-coupling reactions of aryl iodides with H-phosphinates. Tetrahedron, 2015, 71, 7614-7619.
[http://dx.doi.org/10.1016/j.tet.2015.07.073]
[35]
Zeng, H.; Dou, Q.; Li, C-J. Photoinduced transition-metal-free cross-coupling of aryl halides with H-phosphonates. Org. Lett., 2019, 21(5), 1301-1305.
[http://dx.doi.org/10.1021/acs.orglett.8b04081] [PMID: 30735397]

© 2024 Bentham Science Publishers | Privacy Policy