Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Radioiodination of Pimonidazole as a Novel Theranostic Hypoxia Probe

Author(s): Ilknur Demir Inci, Volkan Tekin, Ayfer Yurt Kilcar, Ozge Kozgus Guldu, Emin Ilker Medine, Kadriye Busra Karatay, Emine Dervis and Fazilet Zumrut Biber Muftuler*

Volume 14, Issue 1, 2021

Published on: 31 March, 2020

Page: [46 - 50] Pages: 5

DOI: 10.2174/1874471013666200331114908

Price: $65

Abstract

Background: Tumors are defined as abnormal tissue masses, and one of the most important factors leading to the growth of these abnormal tissue masses is Vascular Endothelial Growth Factor, which stimulates angiogenesis by releasing cells under hypoxic conditions. Hypoxia has a vital role in cancer therapy, thus it is important to monitor hypoxia. The hypoxia marker Pimonidazole (PIM) is a candidate biomarker of cancer aggressiveness.

Objective: The study aimed to perform radioiodination of PIM with Iodine-131 (131I) to join a theranostic approach. For this purpose, PIM was derived as PIM-TOS to be able to be radioiodinated.

Methods: PIM was derived via a tosylation reaction. Derivatization product (PIM-TOS) was radioiodinated by using iodogen method and was analyzed by High-Performance Liquid Chromatography and Liquid chromatography-mass spectrometry. Thin layer radiochromatography was utilized for its quality control studies.

Results: PIM was derived successfully after the tosylation reaction. The radioiodination yield of PIM-TOS was over 85%.

Conclusion: In the current study, radioiodination potential of PIM with 131I, as a potential theranostic hypoxia agent was investigated. Further experimental studies should be performed for developing a novel hypoxia probe including theranostics approaches.

Keywords: Pimonidazole, tosylation, radioiodination, iodine-131, theranostic, hypoxia.

Graphical Abstract
[1]
Oak, M-H.; El Bedoui, J.; Schini-Kerth, V.B. Antiangiogenic properties of natural polyphenols from red wine and green tea. J. Nutr. Biochem., 2005, 16(1), 1-8.
[http://dx.doi.org/10.1016/j.jnutbio.2004.09.004] [PMID: 15629234]
[2]
Margeli, A.; Kouraklis, G.; Theocharis, S. Peroxisome proliferator activated receptor-gamma (PPAR-gamma) ligands and angiogenesis. Angiogenesis, 2003, 6(3), 165-169.
[http://dx.doi.org/10.1023/B:AGEN.0000021377.13669.c0] [PMID: 15041792]
[3]
Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev., 2004, 25(4), 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[4]
Eun, J-P.; Koh, G.Y. Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem. Biophys. Res. Commun., 2004, 317(2), 618-624.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.077] [PMID: 15063803]
[5]
Celec, P.; Gardlík, R.; Pálffy, R.; Hodosy, J.; Stuchlík, S.; Drahovská, H.; Stuchlíková, M.; Minárik, G.; Lukács, J.; Jurkovicová, I.; Hulín, I.; Turna, J.; Jakubovský, J.; Kopáni, M.; Danisovic, L.; Jandzík, D.; Kúdela, M.; Yonemitsu, Y. The use of transformed Escherichia coli for experimental angiogenesis induced by regulated in situ production of vascular endothelial growth factor--an alternative gene therapy. Med. Hypotheses, 2005, 64(3), 505-511.
[http://dx.doi.org/10.1016/j.mehy.2004.07.039] [PMID: 15617857]
[6]
Demir, R.; Naschberger, L.; Demir, I.; Melling, N.; Dimmler, A.; Papadopoulus, T.; Sturzl, M.; Klein, P.; Hohenberger, W. Hypoxia generates a more invasive phenotype of tumour cells: an in vivo experimental setup based on the chorioallantoic membrane. Pathol. Oncol. Res., 2009, 15(3), 417-422.
[http://dx.doi.org/10.1007/s12253-008-9140-y] [PMID: 19082873]
[7]
Koch, C.J.; Evans, S.M. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv. Exp. Med. Biol., 2003, 510, 285-292.
[http://dx.doi.org/10.1007/978-1-4615-0205-0_47] [PMID: 12580442]
[8]
Kersemans, V.; Cornelissen, B.; Hueting, R.; Tredwell, M.; Hussien, K.; Philip, D. Allen, Falzone, N.; Hill, S. A.; Dilworth, J. R.; Gouverneur, V.; Muschel, R. J.; Smart, S. C.; Hypoxia Imaging Using PET and SPECT: The Effects of Anesthetic and Carrier Gas on [64Cu]-ATSM, [99mTc]-HL91 and [18F]-FMISO Tumor Hypoxia Accumulation. PLoS One, 2011, 6e25911
[http://dx.doi.org/10.1371/journal.pone.0025911] [PMID: 22102855]
[9]
Varia, M.A.; Calkins-Adams, D.P.; Rinker, L.H.; Kennedy, A.S.; Novotny, D.B.; Fowler, W.C., Jr; Raleigh, J.A. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol. Oncol., 1998, 71(2), 270-277.
[http://dx.doi.org/10.1006/gyno.1998.5163] [PMID: 9826471]
[10]
Coer, A.; Legan, M.; Stiblar-Martincic, D.; Cemazar, M.; Sersa, G. Comparison of two hypoxic markers: pimonidazole and glucose transporter 1 (Glut-1). 11th Mediterr. Conf. Med. Biomed. Eng. Comput., 2007, pp. 465-468.
[http://dx.doi.org/10.1007/978-3-540-73044-6_119]
[11]
Ragnum, H.B.; Vlatkovic, L.; Lie, A.K.; Axcrona, K.; Julin, C.H.; Frikstad, K.M.; Hole, K.H.; Seierstad, T.; Lyng, H. The tumour hypoxia marker pimonidazole reflects a transcriptional programme associated with aggressive prostate cancer. Br. J. Cancer, 2015, 112(2), 382-390.
[http://dx.doi.org/10.1038/bjc.2014.604] [PMID: 25461803]
[12]
Challapalli, A.; Carroll, L.; Aboagye, E.O. Molecular mechanisms of hypoxia in cancer. Clin. Transl. Imaging, 2017, 5(3), 225-253.
[http://dx.doi.org/10.1007/s40336-017-0231-1] [PMID: 28596947]
[13]
Gillies, R.J.; Gatenby, R.A. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J. Bioenerg. Biomembr., 2007, 39(3), 251-257.
[http://dx.doi.org/10.1007/s10863-007-9085-y] [PMID: 17624581]
[14]
Saha, G.B. Fundamentals of Nuclear Pharmacy, 1st ed; Springer-Verlag: New York, 2010.
[http://dx.doi.org/10.1007/978-1-4419-5860-0]
[15]
Unak, P.; Cetinkaya, B. Absorbed dose estimates at the cellular level for 131I. Appl. Radiat. Isot., 2005, 62(6), 861-869.
[http://dx.doi.org/10.1016/j.apradiso.2004.07.013] [PMID: 15799863]
[16]
Blankenberg, F.G.; Strauss, H.W. Nuclear medicine applications in molecular imaging. J. Magn. Reson. Imaging, 2002, 16(4), 352-361.
[http://dx.doi.org/10.1002/jmri.10171] [PMID: 12353251]
[17]
Chen, X.; Gambhir, S.S.; Cheon, J. Theranostic nanomedicine. Acc. Chem. Res., 2011, 44(10), 841.
[http://dx.doi.org/10.1021/ar200231d] [PMID: 22004477]
[18]
Sheng, Z.; Hu, D.; Xue, M.; He, M.; Gong, P.; Cai, L. Indocyanine Green Nanoparticles for Theranostic Applications. Nano-Micro Lett., 2013, 5, 145-150.
[http://dx.doi.org/10.1007/BF03353743]
[19]
Liu, Y.; Yu, G.; Tian, M.; Zhang, H. Optical probes and the applications in multimodality imaging. Contrast Media Mol. Imaging, 2011, 6(4), 169-177.
[http://dx.doi.org/10.1002/cmmi.428] [PMID: 21246711]
[20]
Jennings, L.E.; Long, N.J. ‘Two is better than one’--probes for dual-modality molecular imaging. Chem. Commun. (Camb.), 2009, (24), 3511-3524.
[http://dx.doi.org/10.1039/b821903f] [PMID: 19521594]
[21]
Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(11), 1052-1063.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[22]
Kelkar, S.S.; Reineke, T.M. Theranostics: combining imaging and therapy. Bioconjug. Chem., 2011, 22(10), 1879-1903.
[http://dx.doi.org/10.1021/bc200151q] [PMID: 21830812]
[23]
Jia, H.; Li, Q.; Bayaguud, A.; She, S.; Huang, Y.; Chen, K.; Wei, Y. Tosylation of alcohols: an effective strategy for the functional group transformation of organic derivatives of polyoxometalates. Sci. Rep., 2017, 7(1), 12523.
[http://dx.doi.org/10.1038/s41598-017-12633-8] [PMID: 28970590]
[24]
Yildiz, G.; Yurt Kilcar, A.; Medine, E.I.; Tekin, V.; Kozgus Guldu, O.; Biber Muftuler, F.Z. PLGA encapsulation and radioiodination of indole-3-carbinol: investigation of anticancerogenic effects against MCF7, Caco2 and PC3 cells by in vitro assays. J. Radioanal. Nucl. Chem., 2017, 311, 1043-1052.
[http://dx.doi.org/10.1007/s10967-016-4929-8]
[25]
Ozkan, M.; Biber Muftuler, F.Z.; Yurt Kilcar, A.; Medine, E.I.; Unak, P. Isolation of hydroxytyrosol from olive leaves extract, radioiodination and investigation of bioaffinity using in vivo/in vitro methods. Radiochim. Acta, 2013, 585-593.
[26]
Aslan, O.; Biber Muftuler, F.Z.; Yurt Kilcar, A.; İchedef, C.; Unak, P. In vivo biological evaluation of 131 I radiolabeled-paclitaxel glucuronide (131 I-PAC-G). Radiochim. Acta, 2012, 100, 339-345.
[http://dx.doi.org/10.1524/ract.2012.1922]
[27]
Coenen, H.H.; Mertens, J.; Mazieère, B. Radioionidation reactions for radio pharmaceuticals: Compendium for effective synthesis strategies, 1st ed; Springer: Netherlands, 2006.
[http://dx.doi.org/10.1007/1-4020-4561-1]
[28]
Mannhold, R.; van de Waterbeemd, H. Substructure and whole molecule approaches for calculating log P. J. Comput. Aided Mol. Des., 2001, 15(4), 337-354.
[http://dx.doi.org/10.1023/A:1011107422318] [PMID: 11349816]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy