Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Enzymes as a Reservoir of Host Defence Peptides

Author(s): Andrea Bosso, Antimo Di Maro, Valeria Cafaro, Alberto Di Donato, Eugenio Notomista and Elio Pizzo*

Volume 20, Issue 14, 2020

Page: [1310 - 1323] Pages: 14

DOI: 10.2174/1568026620666200327173815

Price: $65

Abstract

Host defence peptides (HDPs) are powerful modulators of cellular responses to various types of insults caused by pathogen agents. To date, a wide range of HDPs, from species of different kingdoms including bacteria, plant and animal with extreme diversity in structure and biological activity, have been described. Apart from a limited number of peptides ribosomally synthesized, a large number of promising and multifunctional HDPs have been identified within protein precursors, with properties not necessarily related to innate immunity, consolidating the fascinating hypothesis that proteins have a second or even multiple biological mission in the form of one or more bio-active peptides. Among these precursors, enzymes constitute certainly an interesting group, because most of them are mainly globular and characterized by a fine specific internal structure closely related to their catalytic properties and also because they are yet little considered as potential HDP releasing proteins. In this regard, the main aim of the present review is to describe a panel of HDPs, identified in all canonical classes of enzymes, and to provide a detailed description on hydrolases and their corresponding HDPs, as there seems to exist a striking link between these structurally sophisticated catalysts and their high content in cationic and amphipathic cryptic peptides.

Keywords: Drug discovery, Mimetic peptides, Immunomodulation, Proteolysis, Structure-activity relationship, Enzymes.

Graphical Abstract
[1]
Wilkins, M.R.; Pasquali, C.; Appel, R.D.; Ou, K.; Golaz, O.; Sanchez, J.C.; Yan, J.X.; Gooley, A.A.; Hughes, G.; Humphery-Smith, I.; Williams, K.L.; Hochstrasser, D.F. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/technology , 1996, 14(1), 61-5.
[http://dx.doi.org/10.1038/nbt0196-61]
[2]
Subramanian, G.; Adams, M.D.; Venter, J.C.; Broder, S. Implications of the human genome for understanding human biology and medicine. JAMA, 2001, 286(18), 2296-2307.
[http://dx.doi.org/10.1001/jama.286.18.2296] [PMID: 11710896]
[3]
Mata, J.; Marguerat, S.; Bähler, J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci., 2005, 30(9), 506-514.
[http://dx.doi.org/10.1016/j.tibs.2005.07.005] [PMID: 16054366]
[4]
Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep., 2011, 1, 1.
[http://dx.doi.org/10.1038/srep00090] [PMID: 22034591]
[5]
Autelitano, D.J.; Rajic, A.; Smith, A.I.; Berndt, M.C.; Ilag, L.L.; Vadas, M. The cryptome: a subset of the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discov. Today, 2006, 11(7-8), 306-314.
[http://dx.doi.org/10.1016/j.drudis.2006.02.003] [PMID: 16580972]
[6]
Smith, A.I.; Funder, J.W. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev., 1988, 9(1), 159-179.
[http://dx.doi.org/10.1210/edrv-9-1-159] [PMID: 3286233]
[7]
Bicknell, A.B. The tissue-specific processing of pro-opiomelanocortin. J. Neuroendocrinol., 2008, 20(6), 692-699.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01709.x] [PMID: 18601691]
[8]
Pizzo, E.; Cafaro, V.; Di Donato, A.; Notomista, E. Cryptic antimicrobial peptides: identification methods and current knowledge of their immunomodulatory properties. Curr. Pharm. Des., 2018, 24(10), 1054-1066.
[http://dx.doi.org/10.2174/1381612824666180327165012] [PMID: 29589536]
[9]
Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: an introduction. Methods Mol. Biol., 2017, 1548, 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1] [PMID: 28013493]
[10]
Zasloff, M. Antimicrobial peptides in health and disease. N. Engl. J. Med., 2002, 347(15), 1199-1200.
[http://dx.doi.org/10.1056/NEJMe020106] [PMID: 12374882]
[11]
Reddy, K.V.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[12]
Lee, H.T.; Lee, C.C.; Yang, J.R.; Lai, J.Z.; Chang, K.Y. A large-scale structural classification of antimicrobial peptides. BioMed Res. Int., 2015.475062
[http://dx.doi.org/10.1155/2015/475062] [PMID: 26000295]
[13]
Takahashi, D.; Shukla, S.K.; Prakash, O.; Zhang, G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 2010, 92(9), 1236-1241.
[http://dx.doi.org/10.1016/j.biochi.2010.02.023] [PMID: 20188791]
[14]
Wang, C.K.; Shih, L.Y.; Chang, K.Y. Large-scale analysis of antimicrobial activities in relation to amphipathicity and charge reveals novel characterization of antimicrobial peptides. Molecules, 2017, 22(11)E2037
[http://dx.doi.org/10.3390/molecules22112037] [PMID: 29165350]
[15]
Epand, R.M.; Epand, R.F. Domains in bacterial membranes and the action of antimicrobial agents. Mol. Biosyst., 2009, 5(6), 580-587.
[http://dx.doi.org/10.1039/b900278m] [PMID: 19462015]
[16]
Hwang, P.M.; Vogel, H.J. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol., 1998, 76(2-3), 235-246.
[http://dx.doi.org/10.1139/o98-026] [PMID: 9923692]
[17]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[18]
Marcos, J.F.; Gandía, M. Antimicrobial peptides: to membranes and beyond. Expert Opin. Drug Discov., 2009, 4(6), 659-671.
[http://dx.doi.org/10.1517/17460440902992888] [PMID: 23489158]
[19]
Mansour, S.C.; Pena, O.M.; Hancock, R.E. Host defense peptides: front-line immunomodulators. Trends Immunol., 2014, 35(9), 443-450.
[http://dx.doi.org/10.1016/j.it.2014.07.004] [PMID: 25113635]
[20]
de la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, 178, 132-140.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.002] [PMID: 28435091]
[21]
Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol., 2016, 16(5), 321-334.
[http://dx.doi.org/10.1038/nri.2016.29] [PMID: 27087664]
[22]
Hilchie, A.L.; Wuerth, K.; Hancock, R.E. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol., 2013, 9(12), 761-768.
[http://dx.doi.org/10.1038/nchembio.1393] [PMID: 24231617]
[23]
Mulder, K.C.; Lima, L.A.; Miranda, V.J.; Dias, S.C.; Franco, O.L. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front. Microbiol., 2013, 4, 321.
[http://dx.doi.org/10.3389/fmicb.2013.00321] [PMID: 24198814]
[24]
Wang, G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel), 2014, 7(5), 545-594.
[http://dx.doi.org/10.3390/ph7050545] [PMID: 24828484]
[25]
Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des., 2009, 15(21), 2377-2392.
[http://dx.doi.org/10.2174/138161209788682325] [PMID: 19601838]
[26]
Park, Y.J.; Lee, S.K.; Jung, Y.S.; Lee, M.; Lee, H.Y.; Kim, S.D.; Park, J.S.; Koo, J.; Hwang, J.S.; Bae, Y.S. Promotion of formyl peptide receptor 1-mediated neutrophil chemotactic migration by antimicrobial peptides isolated from the centipede Scolopendra subspinipes mutilans. BMB Rep., 2016, 49(9), 520-525.
[http://dx.doi.org/10.5483/BMBRep.2016.49.9.098] [PMID: 27502013]
[27]
Oppenheim, J.J.; Biragyn, A.; Kwak, L.W.; Yang, D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann. Rheum. Dis., 2003, 62(Suppl. 2), ii17-ii21.
[http://dx.doi.org/10.1136/ard.62.suppl_2.ii17] [PMID: 14532141]
[28]
Niyonsaba, F.; Ushio, H.; Nakano, N.; Ng, W.; Sayama, K.; Hashimoto, K.; Nagaoka, I.; Okumura, K.; Ogawa, H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol., 2007, 127(3), 594-604.
[http://dx.doi.org/10.1038/sj.jid.5700599] [PMID: 17068477]
[29]
Veldhuizen, E.J.; Schneider, V.A.; Agustiandari, H.; van Dijk, A.; Tjeerdsma-van Bokhoven, J.L.; Bikker, F.J.; Haagsman, H.P. Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One, 2014, 9(4)e95939
[http://dx.doi.org/10.1371/journal.pone.0095939] [PMID: 24755622]
[30]
Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp. Dermatol., 2016, 25(3), 167-173.
[http://dx.doi.org/10.1111/exd.12929] [PMID: 26738772]
[31]
Gaglione, R.; Dell’Olmo, E.; Bosso, A.; Chino, M.; Pane, K.; Ascione, F.; Itri, F.; Caserta, S.; Amoresano, A.; Lombardi, A.; Haagsman, H.P.; Piccoli, R.; Pizzo, E.; Veldhuizen, E.J.A.; Notomista, E.; Arciello, A. Novel human bioactive peptides identified in Apolipoprotein B: Evaluation of their therapeutic potential. Biochem. Pharmacol., 2017, 130, 34-50.
[http://dx.doi.org/10.1016/j.bcp.2017.01.009] [PMID: 28131846]
[32]
Brunetti, J.; Roscia, G.; Lampronti, I.; Gambari, R.; Quercini, L.; Falciani, C.; Bracci, L.; Pini, A. Immunomodulatory and anti-inflammatory activity in vitro and in vivo of a novel antimicrobial candidate. J. Biol. Chem., 2016, 291(49), 25742-25748.
[http://dx.doi.org/10.1074/jbc.M116.750257] [PMID: 27758868]
[33]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[34]
Gaglione, R.; Pirone, L.; Farina, B.; Fusco, S.; Smaldone, G.; Aulitto, M.; Dell’Olmo, E.; Roscetto, E.; Del Gatto, A.; Fattorusso, R.; Notomista, E.; Zaccaro, L.; Arciello, A.; Pedone, E.; Contursi, P. Insights into the anticancer properties of the first antimicrobial peptide from Archaea. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(9), 2155-2164.
[http://dx.doi.org/10.1016/j.bbagen.2017.06.009] [PMID: 28625421]
[35]
Zhang, D.; Wan, L.; Zhang, J.; Liu, C.; Sun, H. Effect of BMAP-28 on human thyroid cancer TT cells is mediated by inducing apoptosis. Oncol. Lett., 2015, 10(4), 2620-2626.
[http://dx.doi.org/10.3892/ol.2015.3612] [PMID: 26622900]
[36]
Torrent, M.; Nogués, V.M.; Boix, E. A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinformatics, 2009, 10, 373.
[http://dx.doi.org/10.1186/1471-2105-10-373] [PMID: 19906288]
[37]
Pane, K.; Durante, L.; Crescenzi, O.; Cafaro, V.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Izzo, V.; Di Donato, A.; Notomista, E. Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides. J. Theor. Biol., 2017, 419, 254-265.
[http://dx.doi.org/10.1016/j.jtbi.2017.02.012] [PMID: 28216428]
[38]
Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res., 2019, 47(D1), D285-D297.
[http://dx.doi.org/10.1093/nar/gky1030] [PMID: 30380085]
[39]
Klinman, J.P.; Kohen, A. Evolutionary aspects of enzyme dynamics. J. Biol. Chem., 2014, 289(44), 30205-30212.
[http://dx.doi.org/10.1074/jbc.R114.565515] [PMID: 25210031]
[40]
Pizzo, E.; Buonanno, P.; Di Maro, A.; Ponticelli, S.; De Falco, S.; Quarto, N.; Cubellis, M.V.; D’Alessio, G. Ribonucleases and angiogenins from fish. J. Biol. Chem., 2006, 281(37), 27454-27460.
[http://dx.doi.org/10.1074/jbc.M605505200] [PMID: 16861230]
[41]
Marshall, G.R.; Feng, J.A.; Kuster, D.J. Back to the future: ribonuclease A. Biopolymers, 2008, 90(3), 259-277.
[http://dx.doi.org/10.1002/bip.20845] [PMID: 17868092]
[42]
Raines, R.T.; Ribonuclease, A.; Ribonuclease, A. Chem. Rev., 1998, 98(3), 1045-1066.
[http://dx.doi.org/10.1021/cr960427h] [PMID: 11848924]
[43]
D’Alessio, G.; Di Donato, A.; Parente, A.; Piccoli, R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem. Sci., 1991, 16(3), 104-106.
[http://dx.doi.org/10.1016/0968-0004(91)90042-T] [PMID: 2057997]
[44]
Gagné, D.; Doucet, N. Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily. FEBS J., 2013, 280(22), 5596-5607.
[http://dx.doi.org/10.1111/febs.12371] [PMID: 23763751]
[45]
Schwartz, L.; Cohen, A.; Thomas, J.; Spencer, J.D. The immunomodulatory and antimicrobial properties of the vertebrate ribonuclease a superfamily. Vaccines (Basel), 2018, 6(4)E76
[http://dx.doi.org/10.3390/vaccines6040076] [PMID: 30463297]
[46]
Ivanov, P.; Emara, M.M.; Villen, J.; Gygi, S.P.; Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell, 2011, 43(4), 613-623.
[http://dx.doi.org/10.1016/j.molcel.2011.06.022] [PMID: 21855800]
[47]
Sorrentino, S. The eight human “canonical” ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett., 2010, 584(11), 2194-2200.
[http://dx.doi.org/10.1016/j.febslet.2010.04.018] [PMID: 20388512]
[48]
Torrent, M.; Badia, M.; Moussaoui, M.; Sanchez, D.; Nogués, M.V.; Boix, E. Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall. FEBS J., 2010, 277(7), 1713-1725.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07595.x] [PMID: 20180804]
[49]
Boix, E.; Salazar, V.A.; Torrent, M.; Pulido, D.; Nogués, M.V.; Moussaoui, M. Structural determinants of the eosinophil cationic protein antimicrobial activity. Biol. Chem., 2012, 393(8), 801-815.
[http://dx.doi.org/10.1515/hsz-2012-0160] [PMID: 22944682]
[50]
Pulido, D.; Torrent, M.; Andreu, D.; Nogués, M.V.; Boix, E. Two human host defense ribonucleases against mycobacteria, the eosinophil cationic protein (RNase 3) and RNase 7. Antimicrob. Agents Chemother., 2013, 57(8), 3797-3805.
[http://dx.doi.org/10.1128/AAC.00428-13] [PMID: 23716047]
[51]
Torrent, M.; Pulido, D.; Valle, J.; Nogués, M.V.; Andreu, D.; Boix, E. Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochem. J., 2013, 456(1), 99-108.
[http://dx.doi.org/10.1042/BJ20130123] [PMID: 23962023]
[52]
Wang, H.; Schwaderer, A.L.; Kline, J.; Spencer, J.D.; Kline, D.; Hains, D.S. Contribution of structural domains to the activity of ribonuclease 7 against uropathogenic bacteria. Antimicrob. Agents Chemother., 2013, 57(2), 766-774.
[http://dx.doi.org/10.1128/AAC.01378-12] [PMID: 23183439]
[53]
Huang, Y.C.; Lin, Y.M.; Chang, T.W.; Wu, S.J.; Lee, Y.S.; Chang, M.D.; Chen, C.; Wu, S.H.; Liao, Y.D. The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J. Biol. Chem., 2007, 282(7), 4626-4633.
[http://dx.doi.org/10.1074/jbc.M607321200] [PMID: 17150966]
[54]
Torrent, M.; Pulido, D.; de la Torre, B.G.; García-Mayoral, M.F.; Nogués, M.V.; Bruix, M.; Andreu, D.; Boix, E. Refining the eosinophil cationic protein antibacterial pharmacophore by rational structure minimization. J. Med. Chem., 2011, 54(14), 5237-5244.
[http://dx.doi.org/10.1021/jm200701g] [PMID: 21696142]
[55]
Bystrom, J.; Amin, K.; Bishop-Bailey, D. Analysing the eosinophil cationic protein--a clue to the function of the eosinophil granulocyte. Respir. Res., 2011, 12, 10.
[http://dx.doi.org/10.1186/1465-9921-12-10] [PMID: 21235798]
[56]
Venge, P.; Byström, J.; Carlson, M.; Hâkansson, L.; Karawacjzyk, M.; Peterson, C.; Sevéus, L.; Trulson, A. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin. Exp. Allergy, 1999, 29(9), 1172-1186.
[http://dx.doi.org/10.1046/j.1365-2222.1999.00542.x] [PMID: 10469025]
[57]
Pulido, D.; Moussaoui, M.; Andreu, D.; Nogués, M.V.; Torrent, M.; Boix, E. Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure. Antimicrob. Agents Chemother., 2012, 56(5), 2378-2385.
[http://dx.doi.org/10.1128/AAC.06107-11] [PMID: 22330910]
[58]
Becknell, B.; Spencer, J.D. A Review of ribonuclease 7's structure, regulation, and contributions to host defense. Int. J. Mol. Sci., 2016, 17(3), 423.
[http://dx.doi.org/10.3390/ijms17030423] [PMID: 27011175]
[59]
Rademacher, F.; Simanski, M.; Harder, J. RNase 7 in cutaneous defense. Int. J. Mol. Sci., 2016, 17(4), 560.
[http://dx.doi.org/10.3390/ijms17040560] [PMID: 27089327]
[60]
Pulido, D.; Arranz-Trullén, J.; Prats-Ejarque, G.; Velázquez, D.; Torrent, M.; Moussaoui, M.; Boix, E. Insights into the antimicrobial mechanism of action of human rnase6: structural determinants for bacterial cell agglutination and membrane permeation. Int. J. Mol. Sci., 2016, 17(4), 552.
[http://dx.doi.org/10.3390/ijms17040552] [PMID: 27089320]
[61]
Becknell, B.; Eichler, T.E.; Beceiro, S.; Li, B.; Easterling, R.S.; Carpenter, A.R.; James, C.L.; McHugh, K.M.; Hains, D.S.; Partida-Sanchez, S.; Spencer, J.D. Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int., 2015, 87(1), 151-161.
[http://dx.doi.org/10.1038/ki.2014.268] [PMID: 25075772]
[62]
Attery, A.; Batra, J. K. Mouse eosinophil associated ribonucleases:Mechanism of cytotoxic, antibacterial and antiparasitic activities. Int J Biol Macromol,, 2017, 94(Pt A), 445-450.
[63]
Rugeles, M.T.; Trubey, C.M.; Bedoya, V.I.; Pinto, L.A.; Oppenheim, J.J.; Rybak, S.M.; Shearer, G.M. Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS, 2003, 17(4), 481-486.
[http://dx.doi.org/10.1097/00002030-200303070-00002] [PMID: 12598767]
[64]
Rudolph, B.; Podschun, R.; Sahly, H.; Schubert, S.; Schröder, J.M.; Harder, J. Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob. Agents Chemother., 2006, 50(9), 3194-3196.
[http://dx.doi.org/10.1128/AAC.00246-06] [PMID: 16940129]
[65]
Sheng, J.; Xu, Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(5), 399-410.
[http://dx.doi.org/10.1093/abbs/gmv131] [PMID: 26705141]
[66]
Ardelt, W.; Shogen, K.; Darzynkiewicz, Z. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr. Pharm. Biotechnol., 2008, 9(3), 215-225.
[http://dx.doi.org/10.2174/138920108784567245] [PMID: 18673287]
[67]
Rosenberg, H.F. RNase A ribonucleases and host defense: an evolving story. J. Leukoc. Biol., 2008, 83(5), 1079-1087.
[http://dx.doi.org/10.1189/jlb.1107725] [PMID: 18211964]
[68]
Tao, F.; Fan, M.; Zhao, W.; Lin, Q.; Ma, R. A novel cationic ribonuclease with antimicrobial activity from Rana dybowskii. Biochem. Genet., 2011, 49(5-6), 369-384.
[http://dx.doi.org/10.1007/s10528-010-9414-4] [PMID: 21259045]
[69]
Pizzo, E.; Varcamonti, M.; Di Maro, A.; Zanfardino, A.; Giancola, C.; D’Alessio, G. Ribonucleases with angiogenic and bactericidal activities from the Atlantic salmon. FEBS J., 2008, 275(6), 1283-1295.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06289.x] [PMID: 18279393]
[70]
Pizzo, E.; Merlino, A.; Turano, M.; Russo Krauss, I.; Coscia, F.; Zanfardino, A.; Varcamonti, M.; Furia, A.; Giancola, C.; Mazzarella, L.; Sica, F.; D’Alessio, G. A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish. Biochem. J., 2011, 433(2), 345-355.
[http://dx.doi.org/10.1042/BJ20100892] [PMID: 21050179]
[71]
Nitto, T.; Dyer, K.D.; Czapiga, M.; Rosenberg, H.F. Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus. J. Biol. Chem., 2006, 281(35), 25622-25634.
[http://dx.doi.org/10.1074/jbc.M604313200] [PMID: 16803891]
[72]
Zanfardino, A.; Pizzo, E.; Di Maro, A.; Varcamonti, M.; D’Alessio, G. The bactericidal action on Escherichia coli of ZF-RNase-3 is triggered by the suicidal action of the bacterium OmpT protease. FEBS J., 2010, 277(8), 1921-1928.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07614.x] [PMID: 20214681]
[73]
Di Cera, E. Serine proteases. IUBMB Life, 2009, 61(5), 510-515.
[http://dx.doi.org/10.1002/iub.186] [PMID: 19180666]
[74]
Papareddy, P.; Rydengård, V.; Pasupuleti, M.; Walse, B.; Mörgelin, M.; Chalupka, A.; Malmsten, M.; Schmidtchen, A. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog., 2010, 6(4)e1000857
[http://dx.doi.org/10.1371/journal.ppat.1000857] [PMID: 20421939]
[75]
Singh, S.; Kalle, M.; Papareddy, P.; Schmidtchen, A.; Malmsten, M. Lipopolysaccharide interactions of C-terminal peptides from human thrombin. Biomacromolecules, 2013, 14(5), 1482-1492.
[http://dx.doi.org/10.1021/bm400150c] [PMID: 23537377]
[76]
Hansen, F.C.; Kalle-Brune, M.; van der Plas, M.J.; Strömdahl, A.C.; Malmsten, M.; Mörgelin, M.; Schmidtchen, A. The thrombin-derived host defense peptide gky25 inhibits endotoxin-induced responses through interactions with lipopolysaccharide and macrophages/monocytes. J. Immunol., 2015, 194(11), 5397-5406.
[http://dx.doi.org/10.4049/jimmunol.1403009] [PMID: 25911750]
[77]
Kalle, M.; Papareddy, P.; Kasetty, G.; Mörgelin, M.; van der Plas, M.J.; Rydengård, V.; Malmsten, M.; Albiger, B.; Schmidtchen, A. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis. PLoS One, 2012, 7(12)e51313
[http://dx.doi.org/10.1371/journal.pone.0051313] [PMID: 23272096]
[78]
Kasetty, G.; Papareddy, P.; Kalle, M.; Rydengård, V.; Mörgelin, M.; Albiger, B.; Malmsten, M.; Schmidtchen, A. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrob. Agents Chemother., 2011, 55(6), 2880-2890.
[http://dx.doi.org/10.1128/AAC.01515-10] [PMID: 21402837]
[79]
Pane, K.; Durante, L.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Sgambati, V.; Di Maro, A.; Carpentieri, A.; Izzo, V.; Di Donato, A.; Cafaro, V.; Notomista, E. Rational design of a carrier protein for the production of recombinant toxic peptides in Escherichia coli. PLoS One, 2016, 11(1)e0146552
[http://dx.doi.org/10.1371/journal.pone.0146552] [PMID: 26808536]
[80]
Pane, K.; Verrillo, M.; Avitabile, A.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Di Maro, A.; Rega, C.; Amoresano, A.; Izzo, V.; Di Donato, A.; Cafaro, V.; Notomista, E. Chemical cleavage of an asp-cys sequence allows efficient production of recombinant peptides with an n-terminal cysteine residue. Bioconjug. Chem., 2018, 29(4), 1373-1383.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00083] [PMID: 29528625]
[81]
Kasetty, G.; Papareddy, P.; Kalle, M.; Rydengård, V.; Walse, B.; Svensson, B.; Mörgelin, M.; Malmsten, M.; Schmidtchen, A. The C-terminal sequence of several human serine proteases encodes host defense functions. J. Innate Immun., 2011, 3(5), 471-482.
[http://dx.doi.org/10.1159/000327016] [PMID: 21576923]
[82]
Shafer, W.M.; Shepherd, M.E.; Boltin, B.; Wells, L.; Pohl, J. Synthetic peptides of human lysosomal cathepsin G with potent antipseudomonal activity. Infect. Immun., 1993, 61(5), 1900-1908.
[http://dx.doi.org/10.1128/IAI.61.5.1900-1908.1993] [PMID: 8478079]
[83]
Pane, K.; Cafaro, V.; Avitabile, A.; Torres, M.T.; Vollaro, A.; De Gregorio, E.; Catania, M.R.; Di Maro, A.; Bosso, A.; Gallo, G.; Zanfardino, A.; Varcamonti, M.; Pizzo, E.; Di Donato, A.; Lu, T.K.; de la Fuente-Nunez, C.; Notomista, E. Identification of novel cryptic multifunctional antimicrobial peptides from the human stomach enabled by a computational-experimental platform. ACS Synth. Biol., 2018, 7(9), 2105-2115.
[http://dx.doi.org/10.1021/acssynbio.8b00084] [PMID: 30124040]
[84]
Minn, I.; Kim, H.S.; Kim, S.C. Antimicrobial peptides derived from pepsinogens in the stomach of the bullfrog, Rana catesbeiana. Biochim. Biophys. Acta, 1998, 1407(1), 31-39.
[http://dx.doi.org/10.1016/S0925-4439(98)00023-4] [PMID: 9639668]
[85]
Kitagawa, M.; Shiraishi, T.; Yamamoto, S.; Kutomi, R.; Ohkoshi, Y.; Sato, T.; Wakui, H.; Itoh, H.; Miyamoto, A.; Yokota, S.I. Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains. AMB Express, 2017, 7(1), 127.
[http://dx.doi.org/10.1186/s13568-017-0430-1] [PMID: 28641406]
[86]
Legrand, D.; Mazurier, J. A critical review of the roles of host lactoferrin in immunity. Biometals, 2010, 23(3), 365-376.
[http://dx.doi.org/10.1007/s10534-010-9297-1] [PMID: 20143251]
[87]
Legrand,, D. Overview of Lactoferrin as a natural immune modulator. Curr. Pharm. Des., 2009, 15(17), 1956-1973.
[88]
Kanyshkova, T.G.; Babina, S.E.; Semenov, D.V.; Isaeva, N.; Vlassov, A.V.; Neustroev, K.N.; Kul’minskaya, A.A.; Buneva, V.N.; Nevinsky, G.A. Multiple enzymic activities of human milk lactoferrin. Eur. J. Biochem., 2003, 270(16), 3353-3361.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03715.x] [PMID: 12899692]
[89]
Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K.; Tomita, M. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta, 1992, 1121(1-2), 130-136.
[http://dx.doi.org/10.1016/0167-4838(92)90346-F] [PMID: 1599934]
[90]
Liu, Y.; Han, F.; Xie, Y.; Wang, Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals, 2011, 24(6), 1069-1078.
[http://dx.doi.org/10.1007/s10534-011-9465-y] [PMID: 21607695]
[91]
Ulvatne, H.; Haukland, H.H.; Olsvik, O.; Vorland, L.H. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett., 2001, 492(1-2), 62-65.
[http://dx.doi.org/10.1016/S0014-5793(01)02233-5] [PMID: 11248238]
[92]
Gifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci., 2005, 62(22), 2588-2598.
[http://dx.doi.org/10.1007/s00018-005-5373-z] [PMID: 16261252]
[93]
Brouwer, C.P.; Rahman, M.; Welling, M.M. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides, 2011, 32(9), 1953-1963.
[http://dx.doi.org/10.1016/j.peptides.2011.07.017] [PMID: 21827807]
[94]
Brouwer, C.P.; Welling, M.M. Various routes of administration of (99m)Tc-labeled synthetic lactoferrin antimicrobial peptide hLF 1-11 enables monitoring and effective killing of multidrug-resistant Staphylococcus aureus infections in mice. Peptides, 2008, 29(7), 1109-1117.
[http://dx.doi.org/10.1016/j.peptides.2008.03.003] [PMID: 18423795]
[95]
Velden, W.J.; van Iersel, T.M.; Blijlevens, N.M.; Donnelly, J.P. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med., 2009, 7, 44.
[http://dx.doi.org/10.1186/1741-7015-7-44] [PMID: 19735580]
[96]
Zhang, G.H.; Mann, D.M.; Tsai, C.M. Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect. Immun., 1999, 67(3), 1353-1358.
[http://dx.doi.org/10.1128/IAI.67.3.1353-1358.1999] [PMID: 10024582]
[97]
Japelj, B.; Pristovsek, P.; Majerle, A.; Jerala, R. Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. J. Biol. Chem., 2005, 280(17), 16955-16961.
[http://dx.doi.org/10.1074/jbc.M500266200] [PMID: 15687491]
[98]
Samuelsen, Ø.; Haukland, H.H.; Ulvatne, H.; Vorland, L.H. Anti-complement effects of lactoferrin-derived peptides. FEMS Immunol. Med. Microbiol., 2004, 41(2), 141-148.
[http://dx.doi.org/10.1016/j.femsim.2004.02.006] [PMID: 15145458]
[99]
Zweytick, D.; Pabst, G.; Abuja, P.M.; Jilek, A.; Blondelle, S.E.; Andrä, J.; Jerala, R.; Monreal, D.; Martinez de Tejada, G.; Lohner, K. Influence of N-acylation of a peptide derived from human lactoferricin on membrane selectivity. Biochim. Biophys. Acta, 2006, 1758(9), 1426-1435.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.032] [PMID: 16616888]
[100]
Kamysz, E.; Sikorska, E.; Dawgul, M.; Tyszkowski, R.; Kamysz, W. Influence of dimerization of lipopeptide laur-orn-orn-cys-nh2 and an n-terminal peptide of human lactoferricin on biological activity. Int. J. Pept. Res. Ther., 2015, 21, 39-46.
[http://dx.doi.org/10.1007/s10989-014-9423-y] [PMID: 25642159]
[101]
Silva, T.; Magalhães, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob. Agents Chemother., 2014, 58(6), 3461-3467.
[http://dx.doi.org/10.1128/AAC.02728-13] [PMID: 24709266]
[102]
Han, F.F.; Gao, Y.H.; Luan, C.; Xie, Y.G.; Liu, Y.F.; Wang, Y.Z. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. J. Dairy Sci., 2013, 96(6), 3471-3487.
[http://dx.doi.org/10.3168/jds.2012-6104] [PMID: 23567049]
[103]
Sinha, M.; Kaushik, S.; Kaur, P.; Sharma, S.; Singh, T.P. Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int. J. Pept., 2013, 2013390230
[http://dx.doi.org/10.1155/2013/390230] [PMID: 23554820]
[104]
Bruni, N.; Capucchio, M.T.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 2016, 21(6)E752
[http://dx.doi.org/10.3390/molecules21060752] [PMID: 27294909]
[105]
Stirpe, F. Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon, 2013, 67, 12-16.
[http://dx.doi.org/10.1016/j.toxicon.2013.02.005] [PMID: 23462379]
[106]
Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem., 1987, 262(17), 8128-8130.
[PMID: 3036799]
[107]
Montanaro, L.; Sperti, S.; Mattioli, A.; Testoni, G.; Stirpe, F. Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes. Biochem. J., 1975, 146(1), 127-131.
[http://dx.doi.org/10.1042/bj1460127] [PMID: 167711]
[108]
Di Maro, A.; Citores, L.; Russo, R.; Iglesias, R.; Ferreras, J.M. Sequence comparison and phylogenetic analysis by the Maximum Likelihood method of ribosome-inactivating proteins from angiosperms. Plant Mol. Biol., 2014, 85(6), 575-588.
[http://dx.doi.org/10.1007/s11103-014-0204-y] [PMID: 24880476]
[109]
Girbés, T.; Ferreras, J.M.; Arias, F.J.; Stirpe, F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev. Med. Chem., 2004, 4(5), 461-476.
[http://dx.doi.org/10.2174/1389557043403891] [PMID: 15180503]
[110]
Kavaliauskiene, S.; Dyve Lingelem, A.B.; Skotland, T.; Sandvig, K. Protection against Shiga Toxins. Toxins (Basel), 2017, 9(2)E44
[http://dx.doi.org/10.3390/toxins9020044] [PMID: 28165371]
[111]
Barbieri, L.; Battelli, M.G.; Stirpe, F. Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta, 1993, 1154(3-4), 237-282.
[http://dx.doi.org/10.1016/0304-4157(93)90002-6] [PMID: 8280743]
[112]
Nielsen, K.; Boston, R.S. RIBOSOME-INACTIVATING PROTEINS: A Plant Perspective. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52, 785-816.
[http://dx.doi.org/10.1146/annurev.arplant.52.1.785] [PMID: 11337416]
[113]
Barbier, J.; Gillet, D. Ribosome inactivating proteins: from plant defense to treatments against human misuse or diseases. Toxins (Basel), 2018, 10(4)E160
[http://dx.doi.org/10.3390/toxins10040160] [PMID: 29669991]
[114]
Pizzo, E.; Di Maro, A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J. Biomed. Sci., 2016, 23(1), 54.
[http://dx.doi.org/10.1186/s12929-016-0272-1] [PMID: 27439918]
[115]
Pizzo, E.; Pane, K.; Bosso, A.; Landi, N.; Ragucci, S.; Russo, R.; Gaglione, R.; Torres, M.D.T.; de la Fuente-Nunez, C.; Arciello, A.; Di Donato, A.; Notomista, E.; Di Maro, A. Novel bioactive peptides from PD-L1/2, a type 1 ribosome inactivating protein from Phytolacca dioica L. Evaluation of their antimicrobial properties and anti-biofilm activities. Biochim. Biophys. Acta Biomembr., 2018, 1860(7), 1425-1435.
[http://dx.doi.org/10.1016/j.bbamem.2018.04.010] [PMID: 29684330]
[116]
Pizzo, E.; Zanfardino, A.; Di Giuseppe, A.M.; Bosso, A.; Landi, N.; Ragucci, S.; Varcamonti, M.; Notomista, E.; Di Maro, A. A new active antimicrobial peptide from PD-L4, a type 1 ribosome inactivating protein of Phytolacca dioica L.: A new function of RIPs for plant defence? FEBS Lett., 2015, 589(19 Pt B), 2812-2818.
[http://dx.doi.org/10.1016/j.febslet.2015.08.018] [PMID: 26297825]
[117]
González, R.; Mendive-Tapia, L.; Pastrian, M.B.; Albericio, F.; Lavilla, R.; Cascone, O.; Iannucci, N.B. Enhanced antimicrobial activity of a peptide derived from human lysozyme by arylation of its tryptophan residues. J. Pept. Sci., 2016, 22(2), 123-128.
[http://dx.doi.org/10.1002/psc.2850] [PMID: 26785822]
[118]
González, R.; Albericio, F.; Cascone, O.; Iannucci, N.B. Improved antimicrobial activity of h-lysozyme (107-115) by rational Ala substitution. J. Pept. Sci., 2010, 16(8), 424-429.
[http://dx.doi.org/10.1002/psc.1258] [PMID: 20582913]
[119]
Pearce, G.; Yamaguchi, Y.; Barona, G.; Ryan, C.A. A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14921-14925.
[http://dx.doi.org/10.1073/pnas.1007568107] [PMID: 20679205]
[120]
Fesenko, I.; Azarkina, R.; Kirov, I.; Kniazev, A.; Filippova, A.; Grafskaia, E.; Lazarev, V.; Zgoda, V.; Butenko, I.; Bukato, O.; Lyapina, I.; Nazarenko, D.; Elansky, S.; Mamaeva, A.; Ivanov, V.; Govorun, V. Phytohormone treatment induces generation of cryptic peptides with antimicrobial activity in the Moss Physcomitrella patens. BMC Plant Biol., 2019, 19(1), 9.
[http://dx.doi.org/10.1186/s12870-018-1611-z] [PMID: 30616513]
[121]
Hwang, N.R.; Yim, S.H.; Kim, Y.M.; Jeong, J.; Song, E.J.; Lee, Y.; Lee, J.H.; Choi, S.; Lee, K.J. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem. J., 2009, 423(2), 253-264.
[http://dx.doi.org/10.1042/BJ20090854] [PMID: 19650766]
[122]
Wagener, J.; Schneider, J.J.; Baxmann, S.; Kalbacher, H.; Borelli, C.; Nuding, S.; Küchler, R.; Wehkamp, J.; Kaeser, M.D.; Mailänder-Sanchez, D.; Braunsdorf, C.; Hube, B.; Schild, L.; Forssmann, W.G.; Korting, H.C.; Liepke, C.; Schaller, M. A peptide derived from the highly conserved protein GAPDH is involved in tissue protection by different antifungal strategies and epithelial immunomodulation. J. Invest. Dermatol., 2013, 133(1), 144-153.
[http://dx.doi.org/10.1038/jid.2012.254] [PMID: 22832495]
[123]
Branco, P.; Francisco, D.; Monteiro, M.; Almeida, M.G.; Caldeira, J.; Arneborg, N.; Prista, C.; Albergaria, H. Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2017, 101(1), 159-171.
[http://dx.doi.org/10.1007/s00253-016-7755-6] [PMID: 27502415]
[124]
Xin, H.; Ji, S.; Peng, J.; Han, P.; An, X.; Wang, S.; Cao, B. Isolation and characterisation of a novel antibacterial peptide from a native swine intestinal tract-derived bacterium. Int. J. Antimicrob. Agents, 2017, 49(4), 427-436.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.12.012] [PMID: 28254375]
[125]
Brand, G.D.; Magalhães, M.T.; Tinoco, M.L.; Aragão, F.J.; Nicoli, J.; Kelly, S.M.; Cooper, A.; Bloch, C., Jr Probing protein sequences as sources for encrypted antimicrobial peptides. PLoS One, 2012, 7(9)e45848
[http://dx.doi.org/10.1371/journal.pone.0045848] [PMID: 23029273]
[126]
Bosso, A.; Pirone, L.; Gaglione, R.; Pane, K.; Del Gatto, A.; Zaccaro, L.; Di Gaetano, S.; Diana, D.; Fattorusso, R.; Pedone, E.; Cafaro, V.; Haagsman, H.P.; van Dijk, A.; Scheenstra, M.R.; Zanfardino, A.; Crescenzi, O.; Arciello, A.; Varcamonti, M.; Veldhuizen, E.J.A.; Di Donato, A.; Notomista, E.; Pizzo, E. A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(9), 2342-2353.
[http://dx.doi.org/10.1016/j.bbagen.2017.04.009] [PMID: 28454736]
[127]
Wang, M. The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutr. Metab. (Lond.), 2005, 2(1), 3.
[http://dx.doi.org/10.1186/1743-7075-2-3] [PMID: 15689240]
[128]
Metzger, M.B.; Pruneda, J.N.; Klevit, R.E.; Weissman, A.M. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta, 2014, 1843(1), 47-60.
[http://dx.doi.org/10.1016/j.bbamcr.2013.05.026] [PMID: 23747565]
[129]
Ramada, M.H.S.; Brand, G.D.; Abrão, F.Y.; Oliveira, M.; Filho, J.L.C.; Galbieri, R.; Gramacho, K.P.; Prates, M.V.; Bloch, C., Jr Encrypted antimicrobial peptides from plant proteins. Sci. Rep., 2017, 7(1), 13263.
[http://dx.doi.org/10.1038/s41598-017-13685-6] [PMID: 29038449]
[130]
Díaz-Roa, A.; Espinoza-Culupú, A.; Torres-García, O.; Borges, M.M.; Avino, I.N.; Alves, F.L.; Miranda, A.; Patarroyo, M.A.; da Silva, P.I., Jr; Bello, F.J. Sarconesin II, a new antimicrobial peptide isolated from Sarconesiopsis magellanica excretions and secretions. Molecules, 2019, 24(11)E2077
[http://dx.doi.org/10.3390/molecules24112077] [PMID: 31159162]
[131]
Marneros, A.G.; Olsen, B.R. The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol., 2001, 20(5-6), 337-345.
[http://dx.doi.org/10.1016/S0945-053X(01)00151-2] [PMID: 11566268]
[132]
Meisel, H. Multifunctional peptides encrypted in milk proteins. Biofactors, 2004, 21(1-4), 55-61.
[http://dx.doi.org/10.1002/biof.552210111] [PMID: 15630170]
[133]
Raffin-Sanson, M.L.; de Keyzer, Y.; Bertagna, X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur. J. Endocrinol., 2003, 149(2), 79-90.
[http://dx.doi.org/10.1530/eje.0.1490079] [PMID: 12887283]
[134]
Ueki, N.; Someya, K.; Matsuo, Y.; Wakamatsu, K.; Mukai, H. Cryptides: functional cryptic peptides hidden in protein structures. Biopolymers, 2007, 88(2), 190-198.
[http://dx.doi.org/10.1002/bip.20687] [PMID: 17245751]
[135]
Drucker, D.J. Minireview: the glucagon-like peptides. Endocrinology, 2001, 142(2), 521-527.
[http://dx.doi.org/10.1210/endo.142.2.7983] [PMID: 11159819]
[136]
Ivanov, V.T.; Karelin, A.A.; Philippova, M.M.; Nazimov, I.V.; Pletnev, V.Z. Hemoglobin as a source of endogenous bioactive peptides: the concept of tissue-specific peptide pool. Biopolymers, 1997, 43(2), 171-188.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1997)43:2<171:AID-BIP10>3.0.CO;2-O] [PMID: 9216253]
[137]
Nomizu, M.; Kuratomi, Y.; Ponce, M.L.; Song, S.Y.; Miyoshi, K.; Otaka, A.; Powell, S.K.; Hoffman, M.P.; Kleinman, H.K.; Yamada, Y. Cell adhesive sequences in mouse laminin beta1 chain. Arch. Biochem. Biophys., 2000, 378(2), 311-320.
[http://dx.doi.org/10.1006/abbi.2000.1828] [PMID: 10860548]
[138]
Zhao, Q.; Garreau, I.; Sannier, F.; Piot, J.M. Opioid peptides derived from hemoglobin: hemorphins. Biopolymers, 1997, 43(2), 75-98.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1997)43:2<75:AID-BIP2>3.0.CO;2-X] [PMID: 9216245]
[139]
Tsuruki, T.; Kishi, K.; Takahashi, M.; Tanaka, M.; Matsukawa, T.; Yoshikawa, M. Soymetide, an immunostimulating peptide derived from soybean beta-conglycinin, is an fMLP agonist. FEBS Lett., 2003, 540(1-3), 206-210.
[http://dx.doi.org/10.1016/S0014-5793(03)00265-5] [PMID: 12681509]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy