Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Cryptic Host Defense Peptides: Multifaceted Activity and Prospects for Medicinal Chemistry

Author(s): Bruna de Oliveira Costa and Octávio Luiz Franco*

Volume 20, Issue 14, 2020

Page: [1274 - 1290] Pages: 17

DOI: 10.2174/1568026620666200325112425

Price: $65

Abstract

Host defense peptides (HDPs) comprise a heterogeneous group of evolutionarily conserved and biologically active small molecules that are produced by different organisms. HDPs are widely researched because they often have multiple biological activities, for example antimicrobial, immunomodulatory and anticancer activity. In this context, in this review we focus on cryptic HDPs, molecules derived specifically from proteolytic processing of endogenous precursor proteins. Here, we explore the biological activity of such molecules and we further discuss the development of optimized sequences based on these natural cryptic HDPs. In addition, we present clinical-phase studies of cryptic HDPs (natural or optimized), and point out the possible applicability of these molecules in medicinal chemistry.

Keywords: Cryptic peptides, Bioactive peptides, HDPs, Precursor protein, Optimized HDPs, Cryptic HDPs.

Graphical Abstract
[1]
Gupta, S.; Bhatia, G.; Sharma, A.; Saxena, S. Host defense peptides: An insight into the antimicrobial world. J. Oral Maxillofac. Pathol., 2018, 22(2), 239-244.
[http://dx.doi.org/10.4103/jomfp.JOMFP_113_16] [PMID: 30158778]
[2]
Mookherjee, N.; Hancock, R.E.W. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci., 2007, 64(7-8), 922-933.
[http://dx.doi.org/10.1007/s00018-007-6475-6] [PMID: 17310278]
[3]
Moreno, M.G.; Lombardi, L.; Di Luca, M. Antimicrobial peptides for the control of biofilm formation. Curr. Top. Med. Chem., 2017, 17(17), 1965-1986.
[http://dx.doi.org/10.2174/1568026617666170105144830] [PMID: 28056743]
[4]
Bowdish, D.M.E.; Davidson, D.J.; Scott, M.G.; Hancock, R.E.W. Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Chemother., 2005, 49(5), 1727-1732.
[http://dx.doi.org/10.1128/AAC.49.5.1727-1732.2005] [PMID: 15855488]
[5]
Dutta, P.; Das, S. Mammalian antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation. Curr. Top. Med. Chem., 2016, 16(1), 99-129.
[http://dx.doi.org/10.2174/1568026615666150703121819] [PMID: 26139111]
[6]
Wang, G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel), 2014, 7(5), 545-594.
[http://dx.doi.org/10.3390/ph7050545] [PMID: 24828484]
[7]
Binétruy-Tournaire, R.; Demangel, C.; Malavaud, B.; Vassy, R.; Rouyre, S.; Kraemer, M.; Plouët, J.; Derbin, C.; Perret, G.; Mazié, J.C. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J., 2000, 19(7), 1525-1533.
[http://dx.doi.org/10.1093/emboj/19.7.1525] [PMID: 10747021]
[8]
Gupta, K.; Subramanian, H.; Ali, H. Modulation of host defense peptide-mediated human mast cell activation by LPS. Innate Immun., 2016, 22(1), 21-30.
[http://dx.doi.org/10.1177/1753425915610643] [PMID: 26511058]
[9]
Zhang, C.; Yang, M.; Ericsson, A.C. Antimicrobial peptides: potential application in liver cancer. Front. Microbiol., 2019, 10(1257), 1257.
[http://dx.doi.org/10.3389/fmicb.2019.01257] [PMID: 31231341]
[10]
Hancock, R.E.W.; Sahl, H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[11]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[12]
Notomista, E.; Falanga, A.; Fusco, S.; Pirone, L.; Zanfardino, A.; Galdiero, S.; Varcamonti, M.; Pedone, E.; Contursi, P. The identification of a novel Sulfolobus islandicus CAMP-like peptide points to archaeal microorganisms as cell factories for the production of antimicrobial molecules. Microb. Cell Fact., 2015, 14(126), 126.
[http://dx.doi.org/10.1186/s12934-015-0302-9] [PMID: 26338197]
[13]
Pizzo, E.; Cafaro, V.; Di Donato, A.; Notomista, E. Cryptic antimicrobial peptides: identification methods and current knowledge of their immunomodulatory properties. Curr. Pharm. Des., 2018, 24(10), 1054-1066.
[http://dx.doi.org/10.2174/1381612824666180327165012] [PMID: 29589536]
[14]
Pimenta, D.C.; Lebrun, I. Cryptides: buried secrets in proteins. Peptides, 2007, 28(12), 2403-2410.
[http://dx.doi.org/10.1016/j.peptides.2007.10.005] [PMID: 18023928]
[15]
Mains, R.E.; Eipper, B.A.; Ling, N. Common precursor to corticotropins and endorphins. Proc. Natl. Acad. Sci. USA, 1977, 74(7), 3014-3018.
[http://dx.doi.org/10.1073/pnas.74.7.3014] [PMID: 197529]
[16]
Herbert, E. Discovery of pro-opiomelanocortin-a cellular polyprotein. Trends Biochem. Sci., 1981, 6, 184-188.
[http://dx.doi.org/10.1016/0968-0004(81)90068-2]
[17]
Nakanishi, S.; Inoue, A.; Kita, T.; Nakamura, M.; Chang, A.C.; Cohen, S.N.; Numa, S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature, 1979, 278(5703), 423-427.
[http://dx.doi.org/10.1038/278423a0] [PMID: 221818]
[18]
Roberts, J.L.; Herbert, E. Characterization of a common precursor to corticotropin and beta-lipotropin: identification of beta-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system. Proc. Natl. Acad. Sci. USA, 1977, 74(12), 5300-5304.
[http://dx.doi.org/10.1073/pnas.74.12.5300] [PMID: 202948]
[19]
Samir, P.; Link, A.J. Analyzing the cryptome: uncovering secret sequences. AAPS J., 2011, 13(2), 152-158.
[http://dx.doi.org/10.1208/s12248-011-9252-2] [PMID: 21327597]
[20]
Autelitano, D.J.; Rajic, A.; Smith, A.I.; Berndt, M.C.; Ilag, L.L.; Vadas, M. The cryptome: a subset of the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discov. Today, 2006, 11(7-8), 306-314.
[http://dx.doi.org/10.1016/j.drudis.2006.02.003] [PMID: 16580972]
[21]
Ng, J.H.; Ilag, L.L. Cryptic protein fragments as an emerging source of peptide drugs. IDrugs, 2006, 9(5), 343-346.
[PMID: 16676270]
[22]
Agyei, D.; Danquah, M.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv., 2011, 29(3), 272-277.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.001] [PMID: 21238564]
[23]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[24]
Ivanov, V.T.; Karelin, A.A.; Philippova, M.M.; Nazimov, I.V.; Pletnev, V.Z. Hemoglobin as a source of endogenous bioactive peptides: the concept of tissue-specific peptide pool. Biopolymers, 1997, 43(2), 171-188.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1997)43:2<171:AID-BIP10>3.0.CO;2-O] [PMID: 9216253]
[25]
Banerjee, P.; Shanthi, C. Cryptic peptides from collagen: a critical review. Protein Pept. Lett., 2016, 23(7), 664-672.
[http://dx.doi.org/10.2174/0929866522666160512151313] [PMID: 27173646]
[26]
Ueki, N.; Someya, K.; Matsuo, Y.; Wakamatsu, K.; Mukai, H. Cryptides: functional cryptic peptides hidden in protein structures. Biopolymers, 2007, 88(2), 190-198.
[http://dx.doi.org/10.1002/bip.20687] [PMID: 17245751]
[27]
Papareddy, P.; Rydengård, V.; Pasupuleti, M.; Walse, B.; Mörgelin, M.; Chalupka, A.; Malmsten, M.; Schmidtchen, A. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog., 2010, 6(4)e1000857
[http://dx.doi.org/10.1371/journal.ppat.1000857] [PMID: 20421939]
[28]
Gubbiotti, M.A.; Neill, T.; Iozzo, R.V. A current view of perlecan in physiology and pathology: A mosaic of functions. Matrix Biol., 2017, 57-58, 285-298.
[http://dx.doi.org/10.1016/j.matbio.2016.09.003] [PMID: 27613501]
[29]
Gonzalez, E.M.; Reed, C.C.; Bix, G.; Fu, J.; Zhang, Y.; Gopalakrishnan, B.; Greenspan, D.S.; Iozzo, R.V. BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J. Biol. Chem., 2005, 280(8), 7080-7087.
[http://dx.doi.org/10.1074/jbc.M409841200] [PMID: 15591058]
[30]
Mongiat, M.; Sweeney, S.M.; San Antonio, J.D.; Fu, J.; Iozzo, R.V. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem., 2003, 278(6), 4238-4249.
[http://dx.doi.org/10.1074/jbc.M210445200] [PMID: 12435733]
[31]
Poluzzi, C.; Casulli, J.; Goyal, A.; Mercer, T.J.; Neill, T.; Iozzo, R.V. Endorepellin evokes autophagy in endothelial cells. J. Biol. Chem., 2014, 289(23), 16114-16128.
[http://dx.doi.org/10.1074/jbc.M114.556530] [PMID: 24737315]
[32]
Maeshima, Y.; Colorado, P.C.; Torre, A.; Holthaus, K.A.; Grunkemeyer, J.A.; Ericksen, M.B.; Hopfer, H.; Xiao, Y.; Stillman, I.E.; Kalluri, R. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J. Biol. Chem., 2000, 275(28), 21340-21348.
[http://dx.doi.org/10.1074/jbc.M001956200] [PMID: 10766752]
[33]
Yamamoto, Y.; Maeshima, Y.; Kitayama, H.; Kitamura, S.; Takazawa, Y.; Sugiyama, H.; Yamasaki, Y.; Makino, H. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes, 2004, 53(7), 1831-1840.
[http://dx.doi.org/10.2337/diabetes.53.7.1831] [PMID: 15220208]
[34]
He, G-A.; Luo, J-X.; Zhang, T-Y.; Wang, F-Y.; Li, R-F. Canstatin-N fragment inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth. Biochem. Biophys. Res. Commun., 2003, 312(3), 801-805.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.003] [PMID: 14680836]
[35]
Kamphaus, G.D.; Colorado, P.C.; Panka, D.J.; Hopfer, H.; Ramchandran, R.; Torre, A.; Maeshima, Y.; Mier, J.W.; Sukhatme, V.P.; Kalluri, R. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J. Biol. Chem., 2000, 275(2), 1209-1215.
[http://dx.doi.org/10.1074/jbc.275.2.1209] [PMID: 10625665]
[36]
Guan, J.; Waldvogel, H.J.; Faull, R.L.; Gluckman, P.D.; Williams, C.E. The effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate in different regions following hypoxic-ischemic brain injury in adult rats. Neuroscience, 1999, 89(3), 649-659.
[http://dx.doi.org/10.1016/S0306-4522(98)00338-8] [PMID: 10199602]
[37]
Sizonenko, S.V.; Sirimanne, E.S.; Williams, C.E.; Gluckman, P.D. Neuroprotective effects of the N-terminal tripeptide of IGF-1, glycine-proline-glutamate, in the immature rat brain after hypoxic-ischemic injury. Brain Res., 2001, 922(1), 42-50.
[http://dx.doi.org/10.1016/S0006-8993(01)03148-1] [PMID: 11730700]
[38]
Marengo-Rowe, A.J. Structure-function relations of human hemoglobins. Proc. Bayl. Univ. Med. Cent., 2006, 19(3), 239-245.
[http://dx.doi.org/10.1080/08998280.2006.11928171] [PMID: 17252042]
[39]
Liepke, C.; Baxmann, S.; Heine, C.; Breithaupt, N.; Ständker, L.; Forssmann, W-G. Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 791(1-2), 345-356.
[http://dx.doi.org/10.1016/S1570-0232(03)00245-9] [PMID: 12798194]
[40]
Deng, L.; Pan, X.; Wang, Y.; Wang, L.; Zhou, X.E.; Li, M.; Feng, Y.; Wu, Q.; Wang, B.; Huang, N. Hemoglobin and its derived peptides may play a role in the antibacterial mechanism of the vagina. Hum. Reprod., 2009, 24(1), 211-218.
[http://dx.doi.org/10.1093/humrep/den318] [PMID: 18786935]
[41]
Gomes, I.; Dale, C.S.; Casten, K.; Geigner, M.A.; Gozzo, F.C.; Ferro, E.S.; Heimann, A.S.; Devi, L.A. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS J., 2010, 12(4), 658-669.
[http://dx.doi.org/10.1208/s12248-010-9217-x] [PMID: 20811967]
[42]
Papareddy, P.; Kalle, M.; Kasetty, G.; Mörgelin, M.; Rydengård, V.; Albiger, B.; Lundqvist, K.; Malmsten, M.; Schmidtchen, A. C-terminal peptides of tissue factor pathway inhibitor are novel host defense molecules. J. Biol. Chem., 2010, 285(36), 28387-28398.
[http://dx.doi.org/10.1074/jbc.M110.127019] [PMID: 20592020]
[43]
Singh, S.; Kalle, M.; Papareddy, P.; Schmidtchen, A.; Malmsten, M. Lipopolysaccharide interactions of C-terminal peptides from human thrombin. Biomacromolecules, 2013, 14(5), 1482-1492.
[http://dx.doi.org/10.1021/bm400150c] [PMID: 23537377]
[44]
Kasetty, G.; Papareddy, P.; Kalle, M.; Rydengård, V.; Mörgelin, M.; Albiger, B.; Malmsten, M.; Schmidtchen, A. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrob. Agents Chemother., 2011, 55(6), 2880-2890.
[http://dx.doi.org/10.1128/AAC.01515-10] [PMID: 21402837]
[45]
Hansen, A.M.; Bonke, G.; Larsen, C.J.; Yavari, N.; Nielsen, P.E.; Franzyk, H. Antibacterial peptide nucleic acid-antimicrobial peptide (PNA-AMP) conjugates: antisense targeting of fatty acid biosynthesis. Bioconjug. Chem., 2016, 27(4), 863-867.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00013] [PMID: 26938833]
[46]
Kalle, M.; Papareddy, P.; Kasetty, G.; Mörgelin, M.; van der Plas, M.J.A.; Rydengård, V.; Malmsten, M.; Albiger, B.; Schmidtchen, A. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis. PLoS One, 2012, 7(12)e51313
[http://dx.doi.org/10.1371/journal.pone.0051313] [PMID: 23272096]
[47]
Lim, C.H.; Puthia, M.; Butrym, M.; Tay, H.M.; Lee, M.Z.Y.; Hou, H.W.; Schmidtchen, A. Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo. Sci. Rep., 2017, 7(1), 11201.
[http://dx.doi.org/10.1038/s41598-017-11464-x] [PMID: 28894159]
[48]
Merza, M.; Rahman, M.; Zhang, S.; Hwaiz, R.; Regner, S.; Schmidtchen, A.; Thorlacius, H. Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(9), G914-G921.
[http://dx.doi.org/10.1152/ajpgi.00237.2014] [PMID: 25214403]
[49]
Tudorache, I.F.; Trusca, V.G.; Gafencu, A.V.; Apolipoprotein, E.; Apolipoprotein, E. A multifunctional protein with implications in various pathologies as a result of its structural features. Comput. Struct. Biotechnol. J., 2017, 15, 359-365.
[http://dx.doi.org/10.1016/j.csbj.2017.05.003] [PMID: 28660014]
[50]
Azuma, M.; Kojimab, T.; Yokoyama, I.; Tajiri, H.; Yoshikawa, K.; Saga, S.; Del Carpio, C.A. A synthetic peptide of human apoprotein E with antibacterial activity. Peptides, 2000, 21(3), 327-330.
[http://dx.doi.org/10.1016/S0196-9781(00)00165-0] [PMID: 10793212]
[51]
Kojima, T.; Fujimitsu, Y.; Kojima, H. Anti-tumor activity of an antibiotic peptide derived from apoprotein E. In Vivo, 2005, 19(1), 261-264.
[PMID: 15796184]
[52]
Laskowitz, D.T.; Thekdi, A.D.; Thekdi, S.D.; Han, S.K.; Myers, J.K.; Pizzo, S.V.; Bennett, E.R. Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp. Neurol., 2001, 167(1), 74-85.
[http://dx.doi.org/10.1006/exnr.2001.7541] [PMID: 11161595]
[53]
Sarantseva, S.; Timoshenko, S.; Bolshakova, O.; Karaseva, E.; Rodin, D.; Schwarzman, A.L.; Vitek, M.P. Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer’s disease. PLoS One, 2009, 4(12)e8191
[http://dx.doi.org/10.1371/journal.pone.0008191] [PMID: 19997607]
[54]
Pane, K.; Sgambati, V.; Zanfardino, A.; Smaldone, G.; Cafaro, V.; Angrisano, T.; Pedone, E.; Di Gaetano, S.; Capasso, D.; Haney, E.F.; Izzo, V.; Varcamonti, M.; Notomista, E.; Hancock, R.E.; Di Donato, A.; Pizzo, E. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J., 2016, 283(11), 2115-2131.
[http://dx.doi.org/10.1111/febs.13725] [PMID: 27028511]
[55]
Zanfardino, A.; Bosso, A.; Gallo, G.; Pistorio, V.; Di Napoli, M.; Gaglione, R.; Dell’Olmo, E.; Varcamonti, M.; Notomista, E.; Arciello, A.; Pizzo, E. Human apolipoprotein E as a reservoir of cryptic bioactive peptides: The case of ApoE 133-167. J. Pept. Sci., 2018, 24(7)e3095
[http://dx.doi.org/10.1002/psc.3095] [PMID: 29900637]
[56]
Pane, K.; Cafaro, V.; Avitabile, A.; Torres, M.T.; Vollaro, A.; De Gregorio, E.; Catania, M.R.; Di Maro, A.; Bosso, A.; Gallo, G.; Zanfardino, A.; Varcamonti, M.; Pizzo, E.; Di Donato, A.; Lu, T.K.; de la Fuente-Nunez, C.; Notomista, E. Identification of novel cryptic multifunctional antimicrobial peptides from the human stomach enabled by a computational-experimental platform. ACS Synth. Biol., 2018, 7(9), 2105-2115.
[http://dx.doi.org/10.1021/acssynbio.8b00084] [PMID: 30124040]
[57]
Bosso, A.; Pirone, L.; Gaglione, R.; Pane, K.; Del Gatto, A.; Zaccaro, L.; Di Gaetano, S.; Diana, D.; Fattorusso, R.; Pedone, E.; Cafaro, V.; Haagsman, H.P.; van Dijk, A.; Scheenstra, M.R.; Zanfardino, A.; Crescenzi, O.; Arciello, A.; Varcamonti, M.; Veldhuizen, E.J.A.; Di Donato, A.; Notomista, E.; Pizzo, E. A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(9), 2342-2353.
[http://dx.doi.org/10.1016/j.bbagen.2017.04.009] [PMID: 28454736]
[58]
Ibrahim, H.R.; Imazato, K.; Ono, H. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration. J. Agric. Food Chem., 2011, 59(18), 10336-10345.
[http://dx.doi.org/10.1021/jf2020396] [PMID: 21851100]
[59]
Ibrahim, H.R.; Hamasaki, K.; Miyata, T. Novel peptide motifs from lysozyme suppress pro-inflammatory cytokines in macrophages by antagonizing toll-like receptor and LPS-scavenging action. Eur. J. Pharm. Sci., 2017, 107, 240-248.
[http://dx.doi.org/10.1016/j.ejps.2017.07.005] [PMID: 28711715]
[60]
Kasetty, G.; Papareddy, P.; Kalle, M.; Rydengård, V.; Walse, B.; Svensson, B.; Mörgelin, M.; Malmsten, M.; Schmidtchen, A. The C-terminal sequence of several human serine proteases encodes host defense functions. J. Innate Immun., 2011, 3(5), 471-482.
[http://dx.doi.org/10.1159/000327016] [PMID: 21576923]
[61]
Zhang, G.H.; Mann, D.M.; Tsai, C.M. Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect. Immun., 1999, 67(3), 1353-1358.
[http://dx.doi.org/10.1128/IAI.67.3.1353-1358.1999] [PMID: 10024582]
[62]
Japelj, B.; Pristovsek, P.; Majerle, A.; Jerala, R. Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. J. Biol. Chem., 2005, 280(17), 16955-16961.
[http://dx.doi.org/10.1074/jbc.M500266200] [PMID: 15687491]
[63]
Majerle, A.; Kidric, J.; Jerala, R. Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J. Antimicrob. Chemother., 2003, 51(5), 1159-1165.
[http://dx.doi.org/10.1093/jac/dkg219] [PMID: 12697647]
[64]
Samuelsen, Ø.; Haukland, H.H.; Ulvatne, H.; Vorland, L.H. Anti-complement effects of lactoferrin-derived peptides. FEMS Immunol. Med. Microbiol., 2004, 41(2), 141-148.
[http://dx.doi.org/10.1016/j.femsim.2004.02.006] [PMID: 15145458]
[65]
Nibbering, P.H.; Ravensbergen, E.; Welling, M.M.; van Berkel, L.A.; van Berkel, P.H.; Pauwels, E.K.; Nuijens, J.H. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun., 2001, 69(3), 1469-1476.
[http://dx.doi.org/10.1128/IAI.69.3.1469-1476.2001] [PMID: 11179314]
[66]
Dijkshoorn, L.; Brouwer, C.P.J.M.; Bogaards, S.J.P.; Nemec, A.; van den Broek, P.J.; Nibbering, P.H. The synthetic N-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother., 2004, 48(12), 4919-4921.
[http://dx.doi.org/10.1128/AAC.48.12.4919-4921.2004] [PMID: 15561882]
[67]
Lupetti, A.; Brouwer, C.P.J.M.; Bogaards, S.J.P.; Welling, M.M.; de Heer, E.; Campa, M.; van Dissel, J.T.; Friesen, R.H.E.; Nibbering, P.H. Human lactoferrin-derived peptide’s antifungal activities against disseminated Candida albicans infection. J. Infect. Dis., 2007, 196(9), 1416-1424.
[http://dx.doi.org/10.1086/522427] [PMID: 17922408]
[68]
van der Does, A.M.; Bogaards, S.J.P.; Ravensbergen, B.; Beekhuizen, H.; van Dissel, J.T.; Nibbering, P.H. Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob. Agents Chemother., 2010, 54(2), 811-816.
[http://dx.doi.org/10.1128/AAC.00652-09] [PMID: 19933796]
[69]
van der Does, A.M.; Bogaards, S.J.P.; Jonk, L.; Wulferink, M.; Velders, M.P.; Nibbering, P.H. The human lactoferrin-derived peptide hLF1-11 primes monocytes for an enhanced TLR-mediated immune response. Biometals, 2010, 23(3), 493-505.
[http://dx.doi.org/10.1007/s10534-010-9322-4] [PMID: 20238236]
[70]
Papareddy, P.; Kalle, M.; Sørensen, O.E.; Lundqvist, K.; Mörgelin, M.; Malmsten, M.; Schmidtchen, A. Tissue factor pathway inhibitor 2 is found in skin and its C-terminal region encodes for antibacterial activity. PLoS One, 2012, 7(12)e52772
[http://dx.doi.org/10.1371/journal.pone.0052772] [PMID: 23300768]
[71]
Kasetty, G.; Smeds, E.; Holmberg, E.; Wrange, L.; Adikesavan, S.; Papareddy, P. Vertebrate TFPI-2 C-terminal peptides exert therapeutic applications against Gram-negative infections. BMC Microbiol., 2016, 16(1), 129.
[http://dx.doi.org/10.1186/s12866-016-0750-3] [PMID: 27349742]
[72]
Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K.; Tomita, M. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta, 1992, 1121(1-2), 130-136.
[http://dx.doi.org/10.1016/0167-4838(92)90346-F] [PMID: 1599934]
[73]
Gifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci., 2005, 62(22), 2588-2598.
[http://dx.doi.org/10.1007/s00018-005-5373-z] [PMID: 16261252]
[74]
Ikeda, M.; Nozaki, A.; Sugiyama, K.; Tanaka, T.; Naganuma, A.; Tanaka, K.; Sekihara, H.; Shimotohno, K.; Saito, M.; Kato, N. Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res., 2000, 66(1), 51-63.
[http://dx.doi.org/10.1016/S0168-1702(99)00121-5] [PMID: 10653917]
[75]
Jenssen, H. Anti herpes simplex virus activity of lactoferrin/lactoferricin -- an example of antiviral activity of antimicrobial protein/peptide. Cell. Mol. Life Sci., 2005, 62(24), 3002-3013.
[http://dx.doi.org/10.1007/s00018-005-5228-7] [PMID: 16261265]
[76]
van der Kraan, M.I.; van Marle, J.; Nazmi, K.; Groenink, J.; van ’t Hof, W.; Veerman, E.C.I.; Bolscher, J.G.M.; Nieuw Amerongen, A.V. Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides, 2005, 26(9), 1537-1542.
[http://dx.doi.org/10.1016/j.peptides.2005.02.011] [PMID: 16112390]
[77]
León-Sicairos, N.; Reyes-López, M.; Ordaz-Pichardo, C.; de la Garza, M. Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronidazole in Entamoeba histolytica. Biochem. Cell Biol., 2006, 84(3), 327-336.
[PMID: 16936803]
[78]
Omata, Y.; Satake, M.; Maeda, R.; Saito, A.; Shimazaki, K.; Yamauchi, K.; Uzuka, Y.; Tanabe, S.; Sarashina, T.; Mikami, T. Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin. J. Vet. Med. Sci., 2001, 63(2), 187-190.
[http://dx.doi.org/10.1292/jvms.63.187] [PMID: 11258458]
[79]
Liu, Y.; Han, F.; Xie, Y.; Wang, Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals, 2011, 24(6), 1069-1078.
[http://dx.doi.org/10.1007/s10534-011-9465-y] [PMID: 21607695]
[80]
Ulvatne, H.; Haukland, H.H.; Olsvik, O.; Vorland, L.H.; Lactoferricin, B. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett., 2001, 492(1-2), 62-65.
[http://dx.doi.org/10.1016/S0014-5793(01)02233-5] [PMID: 11248238]
[81]
Tu, Y-H.; Ho, Y-H.; Chuang, Y-C.; Chen, P-C.; Chen, C-S. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS One, 2011, 6(12)e28197
[http://dx.doi.org/10.1371/journal.pone.0028197] [PMID: 22164243]
[82]
Ho, Y.-H.; Sung, T.-C.; Chen, C.-S. Lactoferricin B Inhibits the Phosphorylation of the Two-Component System Response Regulators BasR and CreB Mol. Cell Proteomics,, 2012, 11(4)M111.014720
[83]
Shinoda, I.; Takase, M.; Fukuwatari, Y.; Shimamura, S.; Köller, M.; König, W. Effects of lactoferrin and lactoferricin on the release of interleukin 8 from human polymorphonuclear leukocytes. Biosci. Biotechnol. Biochem., 1996, 60(3), 521-523.
[http://dx.doi.org/10.1271/bbb.60.521] [PMID: 8901116]
[84]
Miyauchi, H.; Hashimoto, S.; Nakajima, M.; Shinoda, I.; Fukuwatari, Y.; Hayasawa, H. Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: identification of its active domain. Cell. Immunol., 1998, 187(1), 34-37.
[http://dx.doi.org/10.1006/cimm.1997.1246] [PMID: 9682001]
[85]
Yan, D.; Chen, D.; Shen, J.; Xiao, G.; van Wijnen, A.J.; Im, H.J. Bovine lactoferricin is anti-inflammatory and anti-catabolic in human articular cartilage and synovium. J. Cell. Physiol., 2013, 228(2), 447-456.
[http://dx.doi.org/10.1002/jcp.24151] [PMID: 22740381]
[86]
Bruni, N.; Capucchio, M.T.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 2016, 21(6)E752
[http://dx.doi.org/10.3390/molecules21060752] [PMID: 27294909]
[87]
Sinha, M.; Kaushik, S.; Kaur, P.; Sharma, S.; Singh, T.P. Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int. J. Pept., 2013, 2013390230
[http://dx.doi.org/10.1155/2013/390230] [PMID: 23554820]
[88]
van der Kraan, M.I.; Nazmi, K.; Teeken, A.; Groenink, J.; van ’t Hof, W.; Veerman, E.C.I.; Bolscher, J.G.M.; Nieuw Amerongen, A.V. Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol. Chem., 2005, 386(2), 137-142.
[http://dx.doi.org/10.1515/BC.2005.017] [PMID: 15843157]
[89]
van der Kraan, M.I.; van der Made, C.; Nazmi, K.; van’t Hof, W.; Groenink, J.; Veerman, E.C.I.; Bolscher, J.G.M.; Nieuw Amerongen, A.V. Effect of amino acid substitutions on the candidacidal activity of LFampin 265-284. Peptides, 2005, 26(11), 2093-2097.
[http://dx.doi.org/10.1016/j.peptides.2005.03.056] [PMID: 15946771]
[90]
López-Soto, F.; León-Sicairos, N.; Nazmi, K.; Bolscher, J.G.; de la Garza, M. Microbicidal effect of the lactoferrin peptides lactoferricin17-30, lactoferrampin265-284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals, 2010, 23(3), 563-568.
[http://dx.doi.org/10.1007/s10534-010-9295-3] [PMID: 20140481]
[91]
Wang, W.Y.; Wong, J.H.; Ip, D.T.M.; Wan, D.C.C.; Cheung, R.C.; Ng, T.B. Bovine Lactoferrampin, human lactoferricin, and lactoferrin 1-11 inhibit nuclear translocation of hiv integrase. Appl. Biochem. Biotechnol., 2016, 179(7), 1202-1212.
[http://dx.doi.org/10.1007/s12010-016-2059-y] [PMID: 27022750]
[92]
Flores-Villaseñor, H.; Canizalez-Román, A.; Reyes-Lopez, M.; Nazmi, K.; de la Garza, M.; Zazueta-Beltrán, J.; León-Sicairos, N.; Bolscher, J.G.M. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals, 2010, 23(3), 569-578.
[http://dx.doi.org/10.1007/s10534-010-9306-4] [PMID: 20195887]
[93]
Jang, A.; Jo, C.; Kang, K-S.; Lee, M. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ace) inhibitory peptides. Food Chem., 2008, 107(1), 327-336.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.036]
[94]
Lafarga, T.; O’Connor, P.; Hayes, M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 2014, 59, 53-62.
[http://dx.doi.org/10.1016/j.peptides.2014.07.005] [PMID: 25020248]
[95]
Katayama, K.; Mori, T.; Kawahara, S.; Miake, K.; Kodama, Y.; Sugiyama, M.; Kawamura, Y.; Nakayama, T.; Maruyama, M.; Muguruma, M. Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats. J. Food Sci., 2007, 72(9), S702-S706.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00571.x] [PMID: 18034756]
[96]
Katayama, K.; Anggraeni, H.E.; Mori, T.; Ahhmed, A.M.; Kawahara, S.; Sugiyama, M.; Nakayama, T.; Maruyama, M.; Muguruma, M. Porcine skeletal muscle troponin is a good source of peptides with Angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. J. Agric. Food Chem., 2008, 56(2), 355-360.
[http://dx.doi.org/10.1021/jf071408j] [PMID: 18163567]
[97]
Mukai, H.; Hokari, Y.; Seki, T.; Takao, T.; Kubota, M.; Matsuo, Y.; Tsukagoshi, H.; Kato, M.; Kimura, H.; Shimonishi, Y.; Kiso, Y.; Nishi, Y.; Wakamatsu, K.; Munekata, E. Discovery of mitocryptide-1, a neutrophil-activating cryptide from healthy porcine heart. J. Biol. Chem., 2008, 283(45), 30596-30605.
[http://dx.doi.org/10.1074/jbc.M803913200] [PMID: 18768476]
[98]
Je, J-Y.; Park, P-J.; Kim, S-K. Antioxidant activity of a peptide isolated from alaska pollack (theragra chalcogramma) frame protein hydrolysate. Food Res. Int., 2005, 38(1), 45-50.
[http://dx.doi.org/10.1016/j.foodres.2004.07.005]
[99]
Sampath Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 2011, 32(7), 1496-1501.
[http://dx.doi.org/10.1016/j.peptides.2011.05.020] [PMID: 21640151]
[100]
Jang, H.L.; Liceaga, A.M.; Yoon, K.Y. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (arctoscopus japonicus). protein hydrolysates. J. Funct. Foods, 2016, 20, 433-442.
[http://dx.doi.org/10.1016/j.jff.2015.11.020]
[101]
Ennaas, N.; Hammami, R.; Beaulieu, L.; Fliss, I. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochem. Biophys. Res. Commun., 2015, 462(3), 195-200.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.091] [PMID: 25934151]
[102]
Magalhães, B.S.; Melo, J.A.T.; Leite, J.R.S.A.; Silva, L.P.; Prates, M.V.; Vinecky, F.; Barbosa, E.A.; Verly, R.M.; Mehta, A.; Nicoli, J.R.; Bemquerer, M.P.; Andrade, A.C.; Bloch, C., Jr Post-secretory events alter the peptide content of the skin secretion of Hypsiboas raniceps. Biochem. Biophys. Res. Commun., 2008, 377(4), 1057-1061.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.102] [PMID: 18976634]
[103]
Park, C.B.; Kim, M.S.; Kim, S.C. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun., 1996, 218(1), 408-413.
[http://dx.doi.org/10.1006/bbrc.1996.0071] [PMID: 8573171]
[104]
Elmore, D.E. Insights into buforin II membrane translocation from molecular dynamics simulations. Peptides, 2012, 38(2), 357-362.
[http://dx.doi.org/10.1016/j.peptides.2012.09.022] [PMID: 23022591]
[105]
Park, C.B.; Kim, H.S.; Kim, S.C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun., 1998, 244(1), 253-257.
[http://dx.doi.org/10.1006/bbrc.1998.8159] [PMID: 9514864]
[106]
Pavia, K.E.; Spinella, S.A.; Elmore, D.E. Novel histone-derived antimicrobial peptides use different antimicrobial mechanisms. Biochim. Biophys. Acta, 2012, 1818(3), 869-876.
[http://dx.doi.org/10.1016/j.bbamem.2011.12.023] [PMID: 22230351]
[107]
Fleming, E.; Maharaj, N.P.; Chen, J.L.; Nelson, R.B.; Elmore, D.E. Effect of lipid composition on buforin II structure and membrane entry. Proteins, 2008, 73(2), 480-491.
[http://dx.doi.org/10.1002/prot.22074] [PMID: 18452210]
[108]
Jang, S.A.; Kim, H.; Lee, J.Y.; Shin, J.R.; Kim, D.J.; Cho, J.H.; Kim, S.C. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides, 2012, 34(2), 283-289.
[http://dx.doi.org/10.1016/j.peptides.2012.01.015] [PMID: 22306477]
[109]
Kobayashi, S.; Takeshima, K.; Park, C.B.; Kim, S.C.; Matsuzaki, K. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry, 2000, 39(29), 8648-8654.
[http://dx.doi.org/10.1021/bi0004549] [PMID: 10913273]
[110]
Park, C.B.; Yi, K.S.; Matsuzaki, K.; Kim, M.S.; Kim, S.C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8245-8250.
[http://dx.doi.org/10.1073/pnas.150518097] [PMID: 10890923]
[111]
Zhou, Y.; Peng, Y. Synergistic effect of clinically used antibiotics and peptide antibiotics against Gram-positive and Gram-negative bacteria. Exp. Ther. Med., 2013, 6(4), 1000-1004.
[http://dx.doi.org/10.3892/etm.2013.1231] [PMID: 24137305]
[112]
Iwai, K.; Saiga-Egusa, A.; Hayakawa, T.; Shimizu, M.; Takahata, Y.; Morimatsu, F. An angiotensin i-converting enzyme (ace)-inhibitory peptide derived from chicken collagen hydrolysate lowers blood pressure in spontaneously hypertensive rats. Nippon Shokuhin Kagaku Kogaku Kaishi, 2008, 55(12), 602-605.
[http://dx.doi.org/10.3136/nskkk.55.602]
[113]
Saiga, A.; Iwai, K.; Hayakawa, T.; Takahata, Y.; Kitamura, S.; Nishimura, T.; Morimatsu, F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J. Agric. Food Chem., 2008, 56(20), 9586-9591.
[http://dx.doi.org/10.1021/jf072669w] [PMID: 18808143]
[114]
Shimizu, K.; Sato, M.; Zhang, Y.; Kouguchi, T.; Takahata, Y.; Morimatsu, F.; Shimizu, M. The bioavailable octapeptide Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro stimulates nitric oxide synthesis in vascular endothelial cells. J. Agric. Food Chem., 2010, 58(11), 6960-6965.
[http://dx.doi.org/10.1021/jf100388w] [PMID: 20459131]
[115]
Offengenden, M.; Chakrabarti, S.; Wu, J. Chicken collagen hydrolysates differentially mediate anti-inflammatory activity and type i collagen synthesis on human dermal fibroblasts. J. Food Scienc. Hum. Wellness, 2018, 7(2), 138-147.
[http://dx.doi.org/10.1016/j.fshw.2018.02.002]
[116]
Mares-Mares, E.; Gutiérrez-Vargas, S.; Pérez-Moreno, L.; Ordoñez-Acevedo, L.G.; Barboza-Corona, J.E.; León-Galván, Ma.F. Characterization and identification of cryptic biopeptides in carya illinoinensis (wangenh k. koch) storage proteins. Biomed Res. Int., 2017, 2017,8
[117]
Motoi, H.; Kodama, T. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Nahrung, 2003, 47(5), 354-358.
[http://dx.doi.org/10.1002/food.200390081] [PMID: 14609094]
[118]
Lee, J-E.; Bae, I.Y.; Lee, H.G.; Yang, C-B. Tyr-pro-lys, an angiotensin i-converting enzyme inhibitory peptide derived from broccoli (brassica oleracea italica). Food Chem., 2006, 99(1), 143-148.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.050]
[119]
Kodera, T.; Nio, N. Identification of an angiotensin I-converting enzyme inhibitory peptides from protein hydrolysates by a soybean protease and the antihypertensive effects of hydrolysates in 4 spontaneously hypertensive model rats. J. Food Sci., 2006, 71(3), C164-C173.
[http://dx.doi.org/10.1111/j.1365-2621.2006.tb15612.x]
[120]
Yoshikawa, M.; Fujita, H.; Matoba, N.; Takenaka, Y.; Yamamoto, T.; Yamauchi, R.; Tsuruki, H.; Takahata, K. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors, 2000, 12(1-4), 143-146.
[http://dx.doi.org/10.1002/biof.5520120122] [PMID: 11216476]
[121]
Kim, S.E.; Kim, H.H.; Kim, J.Y.; Kang, Y.I.; Woo, H.J.; Lee, H.J. Anticancer activity of hydrophobic peptides from soy proteins. Biofactors, 2000, 12(1-4), 151-155.
[http://dx.doi.org/10.1002/biof.5520120124] [PMID: 11216478]
[122]
Pizzo, E.; Zanfardino, A.; Di Giuseppe, A.M.A.; Bosso, A.; Landi, N.; Ragucci, S.; Varcamonti, M.; Notomista, E.; Di Maro, A. A new active antimicrobial peptide from PD-L4, a type 1 ribosome inactivating protein of Phytolacca dioica L.: A new function of RIPs for plant defence? FEBS Lett., 2015, 589(19 Pt B), 2812-2818.
[http://dx.doi.org/10.1016/j.febslet.2015.08.018] [PMID: 26297825]
[123]
Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol., 2017, 8(24), 24.
[http://dx.doi.org/10.1186/s40104-017-0153-9] [PMID: 28286649]
[124]
Yoshikawa, M.; Takahashi, M.; Yang, S. Delta opioid peptides derived from plant proteins. Curr. Pharm. Des., 2003, 9(16), 1325-1330.
[http://dx.doi.org/10.2174/1381612033454838] [PMID: 12769740]
[125]
van der Kraan, M.I.; Nazmi, K.; van ’t Hof, W.; Amerongen, A.V.N.; Veerman, E.C.I.; Bolscher, J.G.M. Distinct bactericidal activities of bovine lactoferrin peptides LFampin 268-284 and LFampin 265-284: Asp-Leu-Ile makes a difference. Biochem. Cell Biol., 2006, 84(3), 358-362.
[http://dx.doi.org/10.1139/o06-042] [PMID: 16936807]
[126]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[127]
Bascones-Martinez, A.; Mattila, R.; Gomez-Font, R.; Meurman, J.H. Immunomodulatory drugs: oral and systemic adverse effects. Med. Oral Patol. Oral Cir. Bucal, 2014, 19(1), e24-e31.
[http://dx.doi.org/10.4317/medoral.19087] [PMID: 23986016]
[128]
Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on antibiotic resistance: alarm bells are ringing. Cureus, 2017, 9(6)e1403
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[129]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6(194), 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[130]
Robinson, J.A. Protein epitope mimetics as anti-infectives. Curr. Opin. Chem. Biol., 2011, 15(3), 379-386.
[http://dx.doi.org/10.1016/j.cbpa.2011.02.015] [PMID: 21419690]
[131]
Fredrikson, G.N.; Hedblad, B.; Berglund, G.; Alm, R.; Ares, M.; Cercek, B.; Chyu, K-Y.; Shah, P.K.; Nilsson, J. Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler. Thromb. Vasc. Biol., 2003, 23(5), 872-878.
[http://dx.doi.org/10.1161/01.ATV.0000067935.02679.B0] [PMID: 12649091]
[132]
Fisher, E.; Lake, E.; McLeod, R.S. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J. Biomed. Res., 2014, 28(3), 178-193.
[PMID: 25013401]
[133]
Stoll, G.; Bendszus, M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke, 2006, 37(7), 1923-1932.
[http://dx.doi.org/10.1161/01.STR.0000226901.34927.10] [PMID: 16741184]
[134]
Fredrikson, G.N.; Söderberg, I.; Lindholm, M.; Dimayuga, P.; Chyu, K-Y.; Shah, P.K.; Nilsson, J. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol., 2003, 23(5), 879-884.
[http://dx.doi.org/10.1161/01.ATV.0000067937.93716.DB] [PMID: 12649092]
[135]
Fredrikson, G.N.; Björkbacka, H.; Söderberg, I.; Ljungcrantz, I.; Nilsson, J. Treatment with apo B peptide vaccines inhibits atherosclerosis in human apo B-100 transgenic mice without inducing an increase in peptide-specific antibodies. J. Intern. Med., 2008, 264(6), 563-570.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01995.x] [PMID: 18783480]
[136]
Pierides, C.; Bermudez-Fajardo, A.; Fredrikson, G.N.; Nilsson, J.; Oviedo-Orta, E. Immune responses elicited by apoB-100-derived peptides in mice. Immunol. Res., 2013, 56(1), 96-108.
[http://dx.doi.org/10.1007/s12026-013-8383-1] [PMID: 23345063]
[137]
Klingenberg, R.; Lebens, M.; Hermansson, A.; Fredrikson, G.N.; Strodthoff, D.; Rudling, M.; Ketelhuth, D.F.J.; Gerdes, N.; Holmgren, J.; Nilsson, J.; Hansson, G.K. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2010, 30(5), 946-952.
[http://dx.doi.org/10.1161/ATVBAHA.109.202671] [PMID: 20167655]
[138]
Pane, K.; Durante, L.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Sgambati, V.; Di Maro, A.; Carpentieri, A.; Izzo, V.; Di Donato, A.; Cafaro, V.; Notomista, E. Rational design of a carrier protein for the production of recombinant toxic peptides in escherichia coli. PLoS One, 2016, 11(1)e0146552
[http://dx.doi.org/10.1371/journal.pone.0146552] [PMID: 26808536]
[139]
Ulvatne, H.; Vorland, L.H. Bactericidal kinetics of 3 lactoferricins against Staphylococcus aureus and Escherichia coli. Scand. J. Infect. Dis., 2001, 33(7), 507-511.
[http://dx.doi.org/10.1080/00365540110026692] [PMID: 11515760]
[140]
Ueta, E.; Tanida, T.; Osaki, T. A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J. Pept. Res., 2001, 57(3), 240-249.
[http://dx.doi.org/10.1111/j.1399-3011.2001.00821.x] [PMID: 11298926]
[141]
Deacon, R.M.J.; Glass, L.; Snape, M.; Hurley, M.J.; Altimiras, F.J.; Biekofsky, R.R.; Cogram, P. NNZ-2566, a novel analog of (1-3) IGF-1, as a potential therapeutic agent for fragile X syndrome. Neuromolecular Med., 2015, 17(1), 71-82.
[http://dx.doi.org/10.1007/s12017-015-8341-2] [PMID: 25613838]
[142]
Kaufmann, W.E.; Stallworth, J.L.; Everman, D.B.; Skinner, S.A. Neurobiologically-based treatments in Rett syndrome: opportunities and challenges. Expert Opin. Orphan Drugs, 2016, 4(10), 1043-1055.
[http://dx.doi.org/10.1080/21678707.2016.1229181] [PMID: 28163986]
[143]
A Safety Study of NNZ-2566 in Patients With Rett Syndrome, Available from https://clinicaltrials.gov/ct2/show/NCT01703533
[144]
Neuren completes enrolment in Phase 2 trial of NNZ-2566 in Rett Syndrome, Available from:’ http://www.neurenpharma.com/irm/ PDF/1407_0/NeurencompletesenrolmentinPhase2trialinRettSyndrome
[145]
Neuren’s NNZ-2566 successful in demonstrating clinical benefit in Rett syndrome Phase 2 trial,. Available from http://www. neurenpharma.com/IRM/Company/ShowPage.aspx/PDFs/1448-10000000/NeurensuccessfulinRettsyndromePhase2trial
[146]
Neuren’s trofinetide successful in proof of concept Phase 2 clinical trial in Fragile X syndrome. Available from: http://www. neurenpharma.com/IRM/PDF/1557/TrofinetidesuccessfulinPhase2trialinFragileX
[147]
A Safety Study of NNZ-2566 in Pediatric Rett Syndrome - Full Text View - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT02715115
[148]
Glaze, D.G.; Neul, J.L.; Kaufmann, W.E.; Berry-Kravis, E.; Condon, S.; Stoms, G.; Oosterholt, S.; Della Pasqua, O.; Glass, L.; Jones, N.E.; Percy, A.K. Rett 002 Study Group. Double-blind, randomized, placebo-controlled study of trofinetide in pediatric Rett syndrome. Neurology, 2019, 92(16), e1912-e1925.
[http://dx.doi.org/10.1212/WNL.0000000000007316] [PMID: 30918097]
[149]
[150]
Li, K.; Shi, M.; Qin, S. Current status and study progress of recombinant human endostatin in cancer treatment. Oncol. Ther., 2018, 6(1), 21-43.
[http://dx.doi.org/10.1007/s40487-017-0055-1]
[151]
Sun, E.; Belanger, C.R.; Haney, E.F.; Hancock, R.E.W. Host Defense (Antimicrobial) Peptides. Peptide App. Biomed. Biotech. Bioengg., 2017, Vol 1, 253-285.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy