Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Microbiome: A Reservoir to Discover New Antimicrobials Agents

Author(s): Sébastien Boutin* and Alexander H. Dalpke

Volume 20, Issue 14, 2020

Page: [1291 - 1299] Pages: 9

DOI: 10.2174/1568026620666200320112731

Price: $65

Abstract

Nature offered mankind the first golden era of discovery of novel antimicrobials based on the ability of eukaryotes or micro-organisms to produce such compounds. The microbial world proved to be a huge reservoir of such antimicrobial compounds which play important functional roles in every environment. However, most of those organisms are still uncultivable in a classical way, and therefore, the use of extended culture or DNA based methods (metagenomics) to discover novel compounds promises usefulness. In the past decades, the advances in next-generation sequencing and bioinformatics revealed the enormous diversity of the microbial worlds and the functional repertoire available for studies. Thus, data-mining becomes of particular interest in the context of the increased need for new antibiotics due to antimicrobial resistance and the rush in antimicrobial discovery. In this review, an overview of principles will be presented to discover new natural compounds from the microbiome. We describe culture-based and culture-independent (metagenomic) approaches that have been developed to identify new antimicrobials and the input of those methods in the field as well as their limitations.

Keywords: Antimicrobial peptides, Metagenomics, Data mining, Bioinformatics, Microbiome, Antimicrobials agents.

Graphical Abstract
[1]
Walsh, C.T.; Wencewicz, T.A. Prospects for new antibiotics: a molecule-centered perspective. J. Antibiot. (Tokyo), 2014, 67(1), 7-22.
[http://dx.doi.org/10.1038/ja.2013.49] [PMID: 23756684]
[2]
Adu-Oppong, B.; Gasparrini, A.J.; Dantas, G. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Ann. N. Y. Acad. Sci., 2017, 1388(1), 42-58.
[http://dx.doi.org/10.1111/nyas.13257] [PMID: 27768825]
[3]
Kinch, M.S.; Patridge, E.; Plummer, M.; Hoyer, D. An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov. Today, 2014, 19(9), 1283-1287.
[http://dx.doi.org/10.1016/j.drudis.2014.07.005] [PMID: 25043770]
[4]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[5]
Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[6]
Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[7]
Clardy, J.; Fischbach, M.A.; Currie, C.R. The natural history of antibiotics. Curr. Biol., 2009, 19(11), R437-R441.
[http://dx.doi.org/10.1016/j.cub.2009.04.001] [PMID: 19515346]
[8]
Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; de Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; Cruz-Morales, P.; Duddela, S.; Düsterhus, S.; Edwards, D.J.; Fewer, D.P.; Garg, N.; Geiger, C.; Gomez-Escribano, J.P.; Greule, A.; Hadjithomas, M.; Haines, A.S.; Helfrich, E.J.N.; Hillwig, M.L.; Ishida, K.; Jones, A.C.; Jones, C.S.; Jungmann, K.; Kegler, C.; Kim, H.U.; Kötter, P.; Krug, D.; Masschelein, J.; Melnik, A.V.; Mantovani, S.M.; Monroe, E.A.; Moore, M.; Moss, N.; Nützmann, H-W.; Pan, G.; Pati, A.; Petras, D.; Reen, F.J.; Rosconi, F.; Rui, Z.; Tian, Z.; Tobias, N.J.; Tsunematsu, Y.; Wiemann, P.; Wyckoff, E.; Yan, X.; Yim, G.; Yu, F.; Xie, Y.; Aigle, B.; Apel, A.K.; Balibar, C.J.; Balskus, E.P.; Barona-Gómez, F.; Bechthold, A.; Bode, H.B.; Borriss, R.; Brady, S.F.; Brakhage, A.A.; Caffrey, P.; Cheng, Y-Q.; Clardy, J.; Cox, R.J.; De Mot, R.; Donadio, S.; Donia, M.S.; van der Donk, W.A.; Dorrestein, P.C.; Doyle, S.; Driessen, A.J.M.; Ehling-Schulz, M.; Entian, K-D.; Fischbach, M.A.; Gerwick, L.; Gerwick, W.H.; Gross, H.; Gust, B.; Hertweck, C.; Höfte, M.; Jensen, S.E.; Ju, J.; Katz, L.; Kaysser, L.; Klassen, J.L.; Keller, N.P.; Kormanec, J.; Kuipers, O.P.; Kuzuyama, T.; Kyrpides, N.C.; Kwon, H-J.; Lautru, S.; Lavigne, R.; Lee, C.Y.; Linquan, B.; Liu, X.; Liu, W.; Luzhetskyy, A.; Mahmud, T.; Mast, Y.; Méndez, C.; Metsä-Ketelä, M.; Micklefield, J.; Mitchell, D.A.; Moore, B.S.; Moreira, L.M.; Müller, R.; Neilan, B.A.; Nett, M.; Nielsen, J.; O’Gara, F.; Oikawa, H.; Osbourn, A.; Osburne, M.S.; Ostash, B.; Payne, S.M.; Pernodet, J-L.; Petricek, M.; Piel, J.; Ploux, O.; Raaijmakers, J.M.; Salas, J.A.; Schmitt, E.K.; Scott, B.; Seipke, R.F.; Shen, B.; Sherman, D.H.; Sivonen, K.; Smanski, M.J.; Sosio, M.; Stegmann, E.; Süssmuth, R.D.; Tahlan, K.; Thomas, C.M.; Tang, Y.; Truman, A.W.; Viaud, M.; Walton, J.D.; Walsh, C.T.; Weber, T.; van Wezel, G.P.; Wilkinson, B.; Willey, J.M.; Wohlleben, W.; Wright, G.D.; Ziemert, N.; Zhang, C.; Zotchev, S.B.; Breitling, R.; Takano, E.; Glöckner, F.O. Minimum Information about a Biosynthetic Gene cluster. Nat. Chem. Biol., 2015, 11(9), 625-631.
[http://dx.doi.org/10.1038/nchembio.1890] [PMID: 26284661]
[9]
Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol., 2005, 3(12), 937-947.
[http://dx.doi.org/10.1038/nrmicro1286] [PMID: 16322742]
[10]
Rappé, M.S.; Giovannoni, S.J. The uncultured microbial majority. Annu. Rev. Microbiol., 2003, 57, 369-394.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090759] [PMID: 14527284]
[11]
Lagier, J-C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J-M.; Fournier, P-E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol., 2018, 16, 540-550.
[http://dx.doi.org/10.1038/s41579-018-0041-0] [PMID: 29937540]
[12]
Bilen, M.; Dufour, J-C.; Lagier, J-C.; Cadoret, F.; Daoud, Z.; Dubourg, G.; Raoult, D. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome, 2018, 6(1), 94.
[http://dx.doi.org/10.1186/s40168-018-0485-5] [PMID: 29793532]
[13]
Browne, H.P.; Forster, S.C.; Anonye, B.O.; Kumar, N.; Neville, B.A.; Stares, M.D.; Goulding, D.; Lawley, T.D. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature, 2016, 533(7604), 543-546.
[http://dx.doi.org/10.1038/nature17645] [PMID: 27144353]
[14]
Hugenholtz, P.; Goebel, B.M.; Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol., 1998, 180(18), 4765-4774.
[http://dx.doi.org/10.1128/JB.180.18.4765-4774.1998] [PMID: 9733676]
[15]
Charlop-Powers, Z.; Owen, J.G.; Reddy, B.V.B.; Ternei, M.A.; Brady, S.F. Chemical-biogeographic survey of secondary metabolism in soil. Proc. Natl. Acad. Sci. USA, 2014, 111(10), 3757-3762.
[http://dx.doi.org/10.1073/pnas.1318021111] [PMID: 24550451]
[16]
Morlon, H.; O’Connor, T.K.; Bryant, J.A.; Charkoudian, L.K.; Docherty, K.M.; Jones, E.; Kembel, S.W.; Green, J.L.; Bohannan, B.J.M. The Biogeography of Putative Microbial Antibiotic Production. PLoS One, 2015, 10(6)e0130659
[http://dx.doi.org/10.1371/journal.pone.0130659] [PMID: 26102275]
[17]
Edlund, A.; Loesgen, S.; Fenical, W.; Jensen, P.R. Geographic distribution of secondary metabolite genes in the marine actinomycete Salinispora arenicola. Appl. Environ. Microbiol., 2011, 77(17), 5916-5925.
[http://dx.doi.org/10.1128/AEM.00611-11] [PMID: 21724881]
[18]
Reddy, B.V.B.; Milshteyn, A.; Charlop-Powers, Z.; Brady, S.F. eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chem. Biol., 2014, 21(8), 1023-1033.
[http://dx.doi.org/10.1016/j.chembiol.2014.06.007] [PMID: 25065533]
[19]
Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; Navas-Molina, J.A.; Janssen, S.; Kopylova, E.; Vázquez-Baeza, Y.; González, A.; Morton, J.T.; Mirarab, S.; Zech Xu, Z.; Jiang, L.; Haroon, M.F.; Kanbar, J.; Zhu, Q.; Jin Song, S.; Kosciolek, T.; Bokulich, N.A.; Lefler, J.; Brislawn, C.J.; Humphrey, G.; Owens, S.M.; Hampton-Marcell, J.; Berg-Lyons, D.; McKenzie, V.; Fierer, N.; Fuhrman, J.A.; Clauset, A.; Stevens, R.L.; Shade, A.; Pollard, K.S.; Goodwin, K.D.; Jansson, J.K.; Gilbert, J.A.; Knight, R. Earth Microbiome Project Consortium. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 2017, 551(7681), 457-463.
[http://dx.doi.org/10.1038/nature24621] [PMID: 29088705]
[20]
Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature, 2007, 449(7164), 804-810.
[http://dx.doi.org/10.1038/nature06244] [PMID: 17943116]
[21]
Daniel, R. The soil metagenome--a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol., 2004, 15(3), 199-204.
[http://dx.doi.org/10.1016/j.copbio.2004.04.005] [PMID: 15193327]
[22]
Adnan, M.; Alshammari, E.; Patel, M.; Amir Ashraf, S.; Khan, S.; Hadi, S. Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry. PeerJ, 2018, 6e5049
[http://dx.doi.org/10.7717/peerj.5049] [PMID: 29967730]
[23]
Donia, M.S.; Cimermancic, P.; Schulze, C.J.; Wieland Brown, L.C.; Martin, J.; Mitreva, M.; Clardy, J.; Linington, R.G.; Fischbach, M.A. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, 2014, 158(6), 1402-1414.
[http://dx.doi.org/10.1016/j.cell.2014.08.032] [PMID: 25215495]
[24]
Borchert, E.; Jackson, S.A.; O’Gara, F.; Dobson, A.D.W. Diversity of natural product biosynthetic genes in the microbiome of the deep sea sponges inflatella pellicula, poecillastra compressa, and Stelletta normani. Front. Microbiol., 2016, 7, 1027.
[http://dx.doi.org/10.3389/fmicb.2016.01027] [PMID: 27446062]
[25]
Radjasa, O.; Wiese, J.; Sabdono, A.; Imhoff, J.F. Corals as source of bacteria with antimicrobial activity. J. Coast. Develop., 2008, 11, 121-130.
[26]
Kelman, D. Antimicrobial Activity of Sponges and Corals.Coral Health and Disease; Rosenberg, E.; Loya, Y; Springer,: Berlin, 2004, pp. 243-258.
[http://dx.doi.org/10.1007/978-3-662-06414-6_12]
[27]
Wilson, M.C.; Mori, T.; Rückert, C.; Uria, A.R.; Helf, M.J.; Takada, K.; Gernert, C.; Steffens, U.A.E.; Heycke, N.; Schmitt, S.; Rinke, C.; Helfrich, E.J.N.; Brachmann, A.O.; Gurgui, C.; Wakimoto, T.; Kracht, M.; Crüsemann, M.; Hentschel, U.; Abe, I.; Matsunaga, S.; Kalinowski, J.; Takeyama, H.; Piel, J. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature, 2014, 506(7486), 58-62.
[http://dx.doi.org/10.1038/nature12959] [PMID: 24476823]
[28]
Charusanti, P.; Fong, N.L.; Nagarajan, H.; Pereira, A.R.; Li, H.J.; Abate, E.A.; Su, Y.; Gerwick, W.H.; Palsson, B.O. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One, 2012, 7(3)e33727
[http://dx.doi.org/10.1371/journal.pone.0033727] [PMID: 22470465]
[29]
Laskaris, P.; Tolba, S.; Calvo-Bado, L.; Wellington, E.M. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ. Microbiol., 2010, 12(3), 783-796.
[http://dx.doi.org/10.1111/j.1462-2920.2009.02125.x] [PMID: 20067498]
[30]
Berdy, B.; Spoering, A.L.; Ling, L.L.; Epstein, S.S. In situ cultivation of previously uncultivable microorganisms using the ichip. Nat. Protoc., 2017, 12(10), 2232-2242.
[http://dx.doi.org/10.1038/nprot.2017.074] [PMID: 29532802]
[31]
Jung, D.; Seo, E-Y.; Epstein, S.S.; Joung, Y.; Han, J.; Parfenova, V.V.; Belykh, O.I.; Gladkikh, A.S.; Ahn, T.S. Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiol. Ecol., 2014, 90(2), 417-423.
[http://dx.doi.org/10.1111/1574-6941.12399] [PMID: 25078251]
[32]
Stevenson, B.S.; Eichorst, S.A.; Wertz, J.T.; Schmidt, T.M.; Breznak, J.A. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol., 2004, 70(8), 4748-4755.
[http://dx.doi.org/10.1128/AEM.70.8.4748-4755.2004] [PMID: 15294811]
[33]
Kaeberlein, T.; Lewis, K.; Epstein, S.S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 2002, 296(5570), 1127-1129.
[http://dx.doi.org/10.1126/science.1070633] [PMID: 12004133]
[34]
Bollmann, A.; Lewis, K.; Epstein, S.S. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol., 2007, 73(20), 6386-6390.
[http://dx.doi.org/10.1128/AEM.01309-07] [PMID: 17720826]
[35]
Steinert, G.; Whitfield, S.; Taylor, M.W.; Thoms, C.; Schupp, P.J. Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Mar. Biotechnol. (NY), 2014, 16(5), 594-603.
[http://dx.doi.org/10.1007/s10126-014-9575-y] [PMID: 24838766]
[36]
Nichols, D.; Cahoon, N.; Trakhtenberg, E.M.; Pham, L.; Mehta, A.; Belanger, A.; Kanigan, T.; Lewis, K.; Epstein, S.S. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol., 2010, 76(8), 2445-2450.
[http://dx.doi.org/10.1128/AEM.01754-09] [PMID: 20173072]
[37]
Piddock, L.J.V. Teixobactin, the first of a new class of antibiotics discovered by iChip technology? J. Antimicrob. Chemother., 2015, 70(10), 2679-2680.
[http://dx.doi.org/10.1093/jac/dkv175] [PMID: 26089440]
[38]
Momeni, B.; Chen, C-C.; Hillesland, K.L.; Waite, A.; Shou, W. Using artificial systems to explore the ecology and evolution of symbioses. Cell. Mol. Life Sci., 2011, 68(8), 1353-1368.
[http://dx.doi.org/10.1007/s00018-011-0649-y] [PMID: 21424911]
[39]
Tanouchi, Y.; Smith, R.P.; You, L. Engineering microbial systems to explore ecological and evolutionary dynamics. Curr. Opin. Biotechnol., 2012, 23(5), 791-797.
[http://dx.doi.org/10.1016/j.copbio.2012.01.006] [PMID: 22310174]
[40]
Lodhi, A.F.; Zhang, Y.; Adil, M.; Deng, Y. Antibiotic discovery: combining isolation chip (iChip) technology and co-culture technique. Appl. Microbiol. Biotechnol., 2018, 102(17), 7333-7341.
[http://dx.doi.org/10.1007/s00253-018-9193-0] [PMID: 29974183]
[41]
Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 2018, 8(1), 10.
[http://dx.doi.org/10.1186/s13568-018-0536-0] [PMID: 29368243]
[42]
Wiedmann, M.; Carroll, L.M. Next-generation sequencing; Encyclo. Food Chem, 2018, p. 376.
[43]
Héry-Arnaud, G.; Boutin, S.; Cuthbertson, L.; Elborn, S.J.; Tunney, M.M. The lung and gut microbiome: what has to be taken into consideration for cystic fibrosis? J. Cyst. Fibros., 2019, 18(1), 13-21.
[http://dx.doi.org/10.1016/j.jcf.2018.11.003] [PMID: 30487080]
[44]
Blin, K.; Kim, H.U.; Medema, M.H.; Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform., 2019, 20(4), 1103-1113.
[PMID: 29112695]
[45]
Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W.; Breitling, R.; Takano, E.; Medema, M.H. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res., 2015, 43(W1)W237-43
[http://dx.doi.org/10.1093/nar/gkv437] [PMID: 25948579]
[46]
Cimermancic, P.; Medema, M.H.; Claesen, J.; Kurita, K.; Wieland Brown, L.C.; Mavrommatis, K.; Pati, A.; Godfrey, P.A.; Koehrsen, M.; Clardy, J.; Birren, B.W.; Takano, E.; Sali, A.; Linington, R.G.; Fischbach, M.A. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 2014, 158(2), 412-421.
[http://dx.doi.org/10.1016/j.cell.2014.06.034] [PMID: 25036635]
[47]
Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol., 2017, 35(9), 833-844.
[http://dx.doi.org/10.1038/nbt.3935] [PMID: 28898207]
[48]
Sczyrba, A.; Hofmann, P.; Belmann, P.; Koslicki, D.; Janssen, S.; Dröge, J.; Gregor, I.; Majda, S.; Fiedler, J.; Dahms, E.; Bremges, A.; Fritz, A.; Garrido-Oter, R.; Jørgensen, T.S.; Shapiro, N.; Blood, P.D.; Gurevich, A.; Bai, Y.; Turaev, D.; DeMaere, M.Z.; Chikhi, R.; Nagarajan, N.; Quince, C.; Meyer, F.; Balvočiūtė, M.; Hansen, L.H.; Sørensen, S.J.; Chia, B.K.H.; Denis, B.; Froula, J.L.; Wang, Z.; Egan, R.; Don Kang, D.; Cook, J.J.; Deltel, C.; Beckstette, M.; Lemaitre, C.; Peterlongo, P.; Rizk, G.; Lavenier, D.; Wu, Y-W.; Singer, S.W.; Jain, C.; Strous, M.; Klingenberg, H.; Meinicke, P.; Barton, M.D.; Lingner, T.; Lin, H-H.; Liao, Y-C.; Silva, G.G.Z.; Cuevas, D.A.; Edwards, R.A.; Saha, S.; Piro, V.C.; Renard, B.Y.; Pop, M.; Klenk, H-P.; Göker, M.; Kyrpides, N.C.; Woyke, T.; Vorholt, J.A.; Schulze-Lefert, P.; Rubin, E.M.; Darling, A.E.; Rattei, T.; McHardy, A.C. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat. Methods, 2017, 14(11), 1063-1071.
[http://dx.doi.org/10.1038/nmeth.4458] [PMID: 28967888]
[49]
Ji, P.; Zhang, Y.; Wang, J.; Zhao, F. MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat. Commun., 2017, 8, 14306.
[http://dx.doi.org/10.1038/ncomms14306] [PMID: 28112173]
[50]
Uritskiy, G.V.; DiRuggiero, J.; Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 2018, 6(1), 158.
[http://dx.doi.org/10.1186/s40168-018-0541-1] [PMID: 30219103]
[51]
Ziemert, N.; Podell, S.; Penn, K.; Badger, J.H.; Allen, E.; Jensen, P.R. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One, 2012, 7(3)e34064
[http://dx.doi.org/10.1371/journal.pone.0034064] [PMID: 22479523]
[52]
Woodhouse, J.N.; Fan, L.; Brown, M.V.; Thomas, T.; Neilan, B.A. Deep sequencing of non-ribosomal peptide synthetases and polyketide synthases from the microbiomes of Australian marine sponges. ISME J., 2013, 7(9), 1842-1851.
[http://dx.doi.org/10.1038/ismej.2013.65] [PMID: 23598791]
[53]
Hover, B.M.; Kim, S-H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.; Perlin, D.S.; Brady, S.F. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol., 2018, 3(4), 415-422.
[http://dx.doi.org/10.1038/s41564-018-0110-1] [PMID: 29434326]
[54]
Sélem-Mojica, N.; Aguilar, C.; Gutiérrez-García, K.; Martínez-Guerrero, C.E.; Barona-Gómez, F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Microb. Genom., 2019, 5(12)e000260
[http://dx.doi.org/10.1099/mgen.0.000260]
[55]
Cruz-Morales, P.; Kopp, J.F.; Martínez-Guerrero, C.; Yáñez-Guerra, L.A.; Selem-Mojica, N.; Ramos-Aboites, H.; Feldmann, J.; Barona-Gómez, F. Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arseno-organic metabolites in model streptomycetes. Genome Biol. Evol., 2016, 8(6), 1906-1916.
[http://dx.doi.org/10.1093/gbe/evw125] [PMID: 27289100]
[56]
Banik, J.J.; Brady, S.F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol., 2010, 13(5), 603-609.
[http://dx.doi.org/10.1016/j.mib.2010.08.012] [PMID: 20884282]
[57]
Katz, M.; Hover, B.M.; Brady, S.F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 129-141.
[http://dx.doi.org/10.1007/s10295-015-1706-6] [PMID: 26586404]
[58]
Yuan, S.; Cohen, D.B.; Ravel, J.; Abdo, Z.; Forney, L.J. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One, 2012, 7(3)e33865
[http://dx.doi.org/10.1371/journal.pone.0033865] [PMID: 22457796]
[59]
Schloss, P.D.; Handelsman, J. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol., 2003, 14(3), 303-310.
[http://dx.doi.org/10.1016/S0958-1669(03)00067-3] [PMID: 12849784]
[60]
Zhou, J.; Bruns, M.A.; Tiedje, J.M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol., 1996, 62(2), 316-322.
[http://dx.doi.org/10.1128/AEM.62.2.316-322.1996] [PMID: 8593035]
[61]
Brady, S.F. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat. Protoc., 2007, 2(5), 1297-1305.
[http://dx.doi.org/10.1038/nprot.2007.195] [PMID: 17546026]
[62]
Shizuya, H.; Birren, B.; Kim, U.J.; Mancino, V.; Slepak, T.; Tachiiri, Y.; Simon, M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA, 1992, 89(18), 8794-8797.
[http://dx.doi.org/10.1073/pnas.89.18.8794] [PMID: 1528894]
[63]
Kim, J.H.; Feng, Z.; Bauer, J.D.; Kallifidas, D.; Calle, P.Y.; Brady, S.F. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers, 2010, 93(9), 833-844.
[http://dx.doi.org/10.1002/bip.21450] [PMID: 20577994]
[64]
Lambalot, R.H.; Gehring, A.M.; Flugel, R.S.; Zuber, P.; LaCelle, M.; Marahiel, M.A.; Reid, R.; Khosla, C.; Walsh, C.T. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem. Biol., 1996, 3(11), 923-936.
[http://dx.doi.org/10.1016/S1074-5521(96)90181-7] [PMID: 8939709]
[65]
Charlop-Powers, Z.; Banik, J.J.; Owen, J.G.; Craig, J.W.; Brady, S.F. Selective enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis. ACS Chem. Biol., 2013, 8(1), 138-143.
[http://dx.doi.org/10.1021/cb3004918] [PMID: 23072412]
[66]
National Research Council. Committee on metagenomics: challenges and functional applications In: New science of metagenomics: Revealing the secrets of our microbial planet; ; National Academies Press (US):: Washington, 2007.
[67]
Warren, R.L.; Freeman, J.D.; Levesque, R.C.; Smailus, D.E.; Flibotte, S.; Holt, R.A. Transcription of foreign DNA in Escherichia coli. Genome Res., 2008, 18(11), 1798-1805.
[http://dx.doi.org/10.1101/gr.080358.108] [PMID: 18701636]
[68]
Gaida, S.M.; Sandoval, N.R.; Nicolaou, S.A.; Chen, Y.; Venkataramanan, K.P.; Papoutsakis, E.T. Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries. Nat. Commun., 2015, 6, 7045.
[http://dx.doi.org/10.1038/ncomms8045] [PMID: 25944046]
[69]
Stevens, D.C.; Conway, K.R.; Pearce, N.; Villegas-Peñaranda, L.R.; Garza, A.G.; Boddy, C.N. Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli. PLoS One, 2013, 8(5)e64858
[http://dx.doi.org/10.1371/journal.pone.0064858] [PMID: 23724102]
[70]
Baltz, R.H. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J. Ind. Microbiol. Biotechnol., 2010, 37(8), 759-772.
[http://dx.doi.org/10.1007/s10295-010-0730-9] [PMID: 20467781]
[71]
McMahon, M.D.; Guan, C.; Handelsman, J.; Thomas, M.G. Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl. Environ. Microbiol., 2012, 78(10), 3622-3629.
[http://dx.doi.org/10.1128/AEM.00044-12] [PMID: 22427497]
[72]
Stevens, D.C.; Henry, M.R.; Murphy, K.A.; Boddy, C.N. Heterologous expression of the oxytetracycline biosynthetic pathway in Myxococcus xanthus. Appl. Environ. Microbiol., 2010, 76(8), 2681-2683.
[http://dx.doi.org/10.1128/AEM.02841-09] [PMID: 20208031]
[73]
Luo, Y.; Enghiad, B.; Zhao, H. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Nat. Prod. Rep., 2016, 33(2), 174-182.
[http://dx.doi.org/10.1039/C5NP00085H] [PMID: 26647833]
[74]
Komatsu, M.; Uchiyama, T.; Ōmura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2646-2651.
[http://dx.doi.org/10.1073/pnas.0914833107] [PMID: 20133795]
[75]
Zhou, K.; Qiao, K.; Edgar, S.; Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol., 2015, 33(4), 377-383.
[http://dx.doi.org/10.1038/nbt.3095] [PMID: 25558867]
[76]
Rondon, M.R.; August, P.R.; Bettermann, A.D.; Brady, S.F.; Grossman, T.H.; Liles, M.R.; Loiacono, K.A.; Lynch, B.A.; MacNeil, I.A.; Minor, C.; Tiong, C.L.; Gilman, M.; Osburne, M.S.; Clardy, J.; Handelsman, J.; Goodman, R.M. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol., 2000, 66(6), 2541-2547.
[http://dx.doi.org/10.1128/AEM.66.6.2541-2547.2000] [PMID: 10831436]
[77]
Lim, H.K.; Chung, E.J.; Kim, J-C.; Choi, G.J.; Jang, K.S.; Chung, Y.R.; Cho, K.Y.; Lee, S-W. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol., 2005, 71(12), 7768-7777.
[http://dx.doi.org/10.1128/AEM.71.12.7768-7777.2005] [PMID: 16332749]
[78]
Brady, S.F.; Clardy, J. Long-chain n-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J. Am. Chem. Soc., 2000, 122, 12903-12904.
[http://dx.doi.org/10.1021/ja002990u]
[79]
Brahami, A.; Castonguay, A.; Déziel, É. Novel ‘bacteriospray’ method facilitates the functional screening of metagenomic libraries for antimicrobial activity. Methods Protoc, 2019, 2(1), 4.
[http://dx.doi.org/10.3390/mps2010004] [PMID: 31164589]
[80]
Levene, M.J.; Korlach, J.; Turner, S.W.; Foquet, M.; Craighead, H.G.; Webb, W.W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science, 2003, 299(5607), 682-686.
[http://dx.doi.org/10.1126/science.1079700] [PMID: 12560545]
[81]
Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; Jovanovich, S.B.; Krstic, P.S.; Lindsay, S.; Ling, X.S.; Mastrangelo, C.H.; Meller, A.; Oliver, J.S.; Pershin, Y.V.; Ramsey, J.M.; Riehn, R.; Soni, G.V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; Schloss, J.A. The potential and challenges of nanopore sequencing. Nat. Biotechnol., 2008, 26(10), 1146-1153.
[http://dx.doi.org/10.1038/nbt.1495] [PMID: 18846088]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy