Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Respiratory Gating and the Performance of PET/CT in Pulmonary Lesions

Author(s): Cinzia Crivellaro and Luca Guerra*

Volume 13, Issue 3, 2020

Page: [218 - 227] Pages: 10

DOI: 10.2174/1874471013666200317144629

Abstract

Background: Motion artifacts related to the patient’s breathing can be the cause of underestimation of the lesion uptake and can lead to missing of small lung lesions. The respiratory gating (RG) technology has demonstrated a significant increase in image quality.

Objective: The aim of this paper was to evaluate the advantages of RG technique on PET/CT performance in lung lesions. The impact of 4D-PET/CT on diagnosis (metabolic characterization), staging and re-staging lung cancer was also assessed, including its application for radiotherapy planning. Finally, new technologies for respiratory motion management were also discussed.

Methods: A comprehensive electronic search of the literature was performed by using Medline database (PubMed) searching “PET/CT”, “gated” and “lung”. Original articles, review articles, and editorials published in the last 10 years were selected, included and critically reviewed in order to select relevant articles.

Results: Many papers compared Standardized Uptake Value (SUV) in gated and ungated PET studies showing an increase in SUV of gated images, particularly for the small lesions located in medium and lower lung. In addition, other features as Metabolic Tumor Volume (MTV), Total Lesion Glycolysis (TLG) and textural-features presented differences when obtained from gated and ungated PET acquisitions. Besides the increase in quantification, gating techniques can determine an increase in the diagnostic accuracy of PET/CT. Gated PET/CT was evaluated for lung cancer staging, therapy response assessment and for radiation therapy planning.

Conclusion: New technologies able to track the motion of organs lesion directly from raw PET data, can reduce or definitively solve problems (i.e.: extended acquisition time, radiation exposure) currently limiting the use of gated PET/CT in clinical routine.

Keywords: PET/CT, respiratory gating, 4D-PET/TC, pulmonary lesions, lung cancer, radiomics.

Graphical Abstract
[1]
Guerra, L.; Ponti, E.; Morzenti, S.; Spadavecchia, C.; Crivellaro, C. Respiratory motion management in PET/CT: applications and clinical usefulness. Curr. Radiopharm., 2017, 10(2), 85-92.
[http://dx.doi.org/10.2174/1874471010666170519165918] [PMID: 28530533]
[2]
Osman, M.M.; Cohade, C.; Nakamoto, Y.; Wahl, R.L. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(4), 603-606.
[http://dx.doi.org/10.1007/s00259-002-1024-x] [PMID: 12536242]
[3]
Nehmeh, S.A.; Erdi, Y.E.; Ling, C.C.; Rosenzweig, K.E.; Schoder, H.; Larson, S.M.; Macapinlac, H.A.; Squire, O.D.; Humm, J.L. Effect of respiratory gating on quantifying PET images of lung cancer. J. Nucl. Med., 2002, 43(7), 876-881.
[PMID: 12097456]
[4]
Nehmeh, S.A.; Erdi, Y.E. Respiratory motion in positron emission tomography/computed tomography: a review. Semin. Nucl. Med., 2008, 38(3), 167-176.
[http://dx.doi.org/10.1053/j.semnuclmed.2008.01.002] [PMID: 18396177]
[5]
Guerra, L.; De Ponti, E.; Elisei, F.; Bettinardi, V.; Landoni, C.; Picchio, M.; Gilardi, M.C.; Versari, A.; Fioroni, F.; Dziuk, M.; Koza, M.; Ahond-Vionnet, R.; Collin, B.; Messa, C. Respiratory gated PET/CT in a European multicentre retrospective study: added diagnostic value in detection and characterization of lung lesions. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(9), 1381-1390.
[http://dx.doi.org/10.1007/s00259-012-2148-2] [PMID: 22588628]
[6]
De Ponti, E.; Morzenti, S.; Crivellaro, C.; Elisei, F.; Crespi, A.; Guerra, L. Motion Management in PET/CT: Technological Solutions. Curr. Radiopharm., 2018, 11(2), 79-85.
[http://dx.doi.org/10.2174/1874471011666180419150440] [PMID: 29676240]
[7]
Pépin, A.; Daouk, J.; Bailly, P.; Hapdey, S.; Meyer, M.E. Management of respiratory motion in PET/computed tomography: the state of the art. Nucl. Med. Commun., 2014, 35(2), 113-122.
[http://dx.doi.org/10.1097/MNM.0000000000000048] [PMID: 24352107]
[8]
Frood, R.; McDermott, G.; Scarsbrook, A. Respiratory-gated PET/CT for pulmonary lesion characterisation-promises and problems. Br. J. Radiol., 2018, 91(1086)20170640
[http://dx.doi.org/10.1259/bjr.20170640] [PMID: 29338327]
[9]
García Vicente, A.M.; Soriano Castrejón, A.M.; Talavera Rubio, M.P.; León Martín, A.A.; Palomar Muñoz, A.M.; Pilkington Woll, J.P. Pob-lete García, V.M. (18)F-FDG PET-CT respiratory gating in characterization of pulmonary lesions: approximation towards clinical indications. Ann. Nucl. Med., 2010, 24(3), 207-214.
[http://dx.doi.org/10.1007/s12149-010-0345-2] [PMID: 20177834]
[10]
Osman, M.M.; Cohade, C.; Nakamoto, Y.; Marshall, L.T.; Leal, J.P.; Wahl, R.L. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J. Nucl. Med., 2003, 44(2), 240-243.
[PMID: 12571215]
[11]
Chang, G.; Chang, T.; Pan, T.; Clark, J.W., Jr; Mawlawi, O.R. Implementation of an automated respiratory amplitude gating technique for PET/CT: clinical evaluation. J. Nucl. Med., 2010, 51(1), 16-24.
[http://dx.doi.org/10.2967/jnumed.109.068759] [PMID: 20008993]
[12]
Farid, K.; Poullias, X.; Alifano, M.; Regnard, J.F.; Servois, V.; Caillat-Vigneron, N.; Petras, S. Respiratory-gated imaging in metabolic eval-uation of small solitary pulmonary nodules: 18F-FDG PET/CT and correlation with histology. Nucl. Med. Commun., 2015, 36(7), 722-727.
[http://dx.doi.org/10.1097/MNM.0000000000000311] [PMID: 25793929]
[13]
Grootjans, W.; de Geus-Oei, L.F.; Meeuwis, A.P.; van der Vos, C.S.; Gotthardt, M.; Oyen, W.J.; Visser, E.P. Amplitude-based optimal res-piratory gating in positron emission tomography in patients with primary lung cancer. Eur. Radiol., 2014, 24(12), 3242-3250.
[http://dx.doi.org/10.1007/s00330-014-3362-z] [PMID: 25097133]
[14]
Lupi, A.; Zaroccolo, M.; Salgarello, M.; Malfatti, V.; Zanco, P. The effect of 18F-FDG-PET/CT respiratory gating on detected metabolic activity in lung lesions. Ann. Nucl. Med., 2009, 23(2), 191-196.
[http://dx.doi.org/10.1007/s12149-008-0225-1] [PMID: 19225943]
[15]
Robin, P.; Bourhis, D.; Bernard, B.; Abgral, R.; Querellou, S.; Le Duc-Pennec, A.; Le Roux, P.Y.; Salaün, P.Y. Feasibility of Systematic Respiratory-Gated Acquisition in Unselected Patients Referred for 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography. Front. Med. (Lausanne), 2018, 5, 36.
[http://dx.doi.org/10.3389/fmed.2018.00036] [PMID: 29516001]
[16]
Suzawa, N.; Ichikawa, Y.; Ishida, M.; Tomita, Y.; Nakayama, R.; Sakuma, H. Respiratory-gated time-of-flight PET/CT during whole-body scan for lung lesions: feasibility in a routine clinical setting and quantitative analysis. Ann. Nucl. Med., 2016, 30(10), 722-730.
[http://dx.doi.org/10.1007/s12149-016-1118-3] [PMID: 27566685]
[17]
van Elmpt, W.; Hamill, J.; Jones, J.; De Ruysscher, D.; Lambin, P.; Ollers, M. Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(5), 843-855.
[http://dx.doi.org/10.1007/s00259-010-1716-6] [PMID: 21222120]
[18]
Werner, M.K.; Parker, J.A.; Kolodny, G.M.; English, J.R.; Palmer, M.R. Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. AJR Am. J. Roentgenol., 2009, 193(6), 1640-1645.
[http://dx.doi.org/10.2214/AJR.09.2516] [PMID: 19933659]
[19]
Park, S.J.; Ionascu, D.; Killoran, J.; Mamede, M.; Gerbaudo, V.H.; Chin, L.; Berbeco, R. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys. Med. Biol., 2008, 53(13), 3661-3679.
[http://dx.doi.org/10.1088/0031-9155/53/13/018] [PMID: 18562782]
[20]
Knybel, L.; Cvek, J.; Molenda, L.; Stieberova, N.; Feltl, D. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influenc-ing Precise Delineation of Internal Target Volume. Int. J. Radiat. Oncol. Biol. Phys., 2016, 96(4), 751-758.
[http://dx.doi.org/10.1016/j.ijrobp.2016.08.008] [PMID: 27788948]
[21]
Callahan, J.; Kron, T.; Schneider, M.E.; Hicks, R.J. A prospective investigation into the clinical impact of 4D-PET/CT in the characterisation of solitary pulmonary nodules. Cancer Imaging, 2014, 14, 24.
[http://dx.doi.org/10.1186/1470-7330-14-24] [PMID: 25608679]
[22]
Liu, J.; Dong, M.; Sun, X.; Li, W.; Xing, L.; Yu, J. Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS One, 2016, 11(1)e0146195
[http://dx.doi.org/10.1371/journal.pone.0146195] [PMID: 26727114]
[23]
Cui, Y.; Bowsher, J.; Cai, J.; Yin, F.F. Impact of moving target on measurement accuracy in 3D and 4D PET imaging-a phantom study. Adv. Radiat. Oncol., 2016, 2(1), 94-100.
[http://dx.doi.org/10.1016/j.adro.2016.12.002] [PMID: 28740918]
[24]
Aristophanous, M.; Yong, Y.; Yap, J.T.; Killoran, J.H.; Allen, A.M.; Berbeco, R.I.; Chen, A.B. Evaluating FDG uptake changes between pre and post therapy respiratory gated PET scans. Radiother. Oncol., 2012, 102(3), 377-382.
[http://dx.doi.org/10.1016/j.radonc.2011.12.015] [PMID: 22265731]
[25]
Frood, R.; Prestwich, R.; Tsoumpas, C.; Murray, P.; Franks, K.; Scarsbrook, A. Effectiveness of Respiratory-gated Positron Emission Tomography/Computed Tomography for Radiotherapy Planning in Patients with Lung Carcinoma - A Systematic Review. Clin. Oncol. (R. Coll. Radiol.), 2018, 30(4), 225-232.
[http://dx.doi.org/10.1016/j.clon.2018.01.005] [PMID: 29397271]
[26]
De Ruysscher, D.; Faivre-Finn, C.; Nestle, U.; Hurkmans, C.W.; Le Péchoux, C.; Price, A.; Senan, S. European Organisation for Research and Treatment of Cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J. Clin. Oncol., 2010, 28(36), 5301-5310.
[http://dx.doi.org/10.1200/JCO.2010.30.3271] [PMID: 21079134]
[27]
Hof, H.; Rhein, B.; Haering, P.; Kopp-Schneider, A.; Debus, J.; Herfarth, K. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: comparison with a conventional technique using individual margins. Radiother. Oncol., 2009, 93(3), 419-423.
[http://dx.doi.org/10.1016/j.radonc.2009.08.040] [PMID: 19782418]
[28]
Rietzel, E.; Liu, A.K.; Doppke, K.P.; Wolfgang, J.A.; Chen, A.B.; Chen, G.T.; Choi, N.C. Design of 4D treatment planning target volumes. Int. J. Radiat. Oncol. Biol. Phys., 2006, 66(1), 287-295.
[http://dx.doi.org/10.1016/j.ijrobp.2006.05.024] [PMID: 16904528]
[29]
Wijsman, R.; Grootjans, W.; Troost, E.G.; van der Heijden, E.H.; Visser, E.P.; de Geus-Oei, L.F.; Bussink, J. Evaluating the use of optimally respiratory gated 18F-FDG-PET in target volume delineation and its influence on radiation doses to the organs at risk in non-small-cell lung cancer patients. Nucl. Med. Commun., 2016, 37(1), 66-73.
[PMID: 26440570]
[30]
Aristophanous, M.; Berbeco, R.I.; Killoran, J.H.; Yap, J.T.; Sher, D.J.; Allen, A.M.; Larson, E.; Chen, A.B. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. Int. J. Radiat. Oncol. Biol. Phys., 2012, 82(1), e99-e105.
[http://dx.doi.org/10.1016/j.ijrobp.2010.12.060] [PMID: 21377285]
[31]
Büther, F.; Vehren, T.; Schäfers, K.P.; Schäfers, M. Impact of Data-driven Respiratory Gating in Clinical PET. Impact of Data-driven Respiratory Gating in Clinical PET. Radiology, 2016, 281(1), 229-238.
[http://dx.doi.org/10.1148/radiol.2016152067] [PMID: 27092660]
[32]
Callahan, J.; Kron, T.; Schneider-Kolsky, M.; Dunn, L.; Thompson, M.; Siva, S.; Aarons, Y.; Binns, D.; Hicks, R.J. Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int. J. Radiat. Oncol. Biol. Phys., 2013, 86(4), 749-754.
[http://dx.doi.org/10.1016/j.ijrobp.2013.02.030] [PMID: 23601897]
[33]
Chirindel, A.; Adebahr, S.; Schuster, D.; Schimek-Jasch, T.; Schanne, D.H.; Nemer, U.; Mix, M.; Meyer, P.; Grosu, A.L.; Brunner, T.; Nestle, U. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study. Radiother. Oncol., 2015, 115(3), 335-341.
[http://dx.doi.org/10.1016/j.radonc.2015.05.019] [PMID: 26116339]
[34]
Huang, T.C.; Chou, K.T.; Wang, Y.C.; Zhang, G. Motion freeze for respiration motion correction in PET/CT: a preliminary investigation with lung cancer patient data. BioMed Res. Int., 2014, 2014167491
[http://dx.doi.org/10.1155/2014/167491] [PMID: 25250313]
[35]
Jani, S.S.; Robinson, C.G.; Dahlbom, M.; White, B.M.; Thomas, D.H.; Gaudio, S.; Low, D.A.; Lamb, J.M. A comparison of amplitude-based and phase-based positron emission tomography gating algorithms for segmentation of internal target volumes of tumors subject to respiratory motion. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(3), 562-569.
[http://dx.doi.org/10.1016/j.ijrobp.2013.06.2042] [PMID: 24074930]
[36]
Salavati, A.; Borofsky, S.; Boon-Keng, T.K.; Houshmand, S.; Khiewvan, B.; Saboury, B.; Codreanu, I.; Torigian, D.A.; Zaidi, H.; Alavi, A. Application of partial volume effect correction and 4D PET in the quantification of FDG avid lung lesions. Mol. Imaging Biol., 2015, 17(1), 140-148.
[http://dx.doi.org/10.1007/s11307-014-0776-6] [PMID: 25080325]
[37]
Callahan, J.; Kron, T.; Siva, S.; Simoens, N.; Edgar, A.; Everitt, S.; Schneider, M.E.; Hicks, R.J. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes. Radiat. Oncol., 2014, 9, 291.
[http://dx.doi.org/10.1186/s13014-014-0291-6] [PMID: 25511904]
[38]
Guerra, L.; Meregalli, S.; Zorz, A.; Niespolo, R.; De Ponti, E.; Elisei, F.; Morzenti, S.; Brenna, S.; Crespi, A.; Gardani, G.; Messa, C. Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(4), 702-710.
[http://dx.doi.org/10.1007/s00259-013-2594-5] [PMID: 24177810]
[39]
Siva, S.; Chesson, B.; Callahan, J.W.; Hardcastle, N.; Crawford, L.; Antippa, P.; Wright, G.; MacManus, M.P.; Hicks, R.J.; Kron, T.; Ball, D.L. Dosimetric Consequences of 3D Versus 4D PET/CT for Target Delineation of Lung Stereotactic Radiotherapy. J. Thorac. Oncol., 2015, 10(7), 1112-1115.
[http://dx.doi.org/10.1097/JTO.0000000000000555] [PMID: 26134229]
[40]
Sollini, M.; Cozzi, L.; Antunovic, L.; Chiti, A.; Kirienko, M. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci. Rep., 2017, 7(1), 358.
[http://dx.doi.org/10.1038/s41598-017-00426-y] [PMID: 28336974]
[41]
Grootjans, W.; Tixier, F.; van der Vos, C.S.; Vriens, D.; Le Rest, C.C.; Bussink, J.; Oyen, W.J.; de Geus-Oei, L.F.; Visvikis, D.; Visser, E.P. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer. J. Nucl. Med., 2016, 57(11), 1692-1698.
[http://dx.doi.org/10.2967/jnumed.116.173112] [PMID: 27283931]
[42]
Yip, S.; McCall, K.; Aristophanous, M.; Chen, A.B.; Aerts, H.J.; Berbeco, R. Comparison of texture features derived from static and respir-atory-gated PET images in non-small cell lung cancer. PLoS One, 2014, 9(12)e115510
[http://dx.doi.org/10.1371/journal.pone.0115510] [PMID: 25517987]
[43]
Oliver, J.A.; Budzevich, M.; Zhang, G.G.; Dilling, T.J.; Latifi, K.; Moros, E.G. Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer. Transl. Oncol., 2015, 8(6), 524-534.
[http://dx.doi.org/10.1016/j.tranon.2015.11.013] [PMID: 26692535]
[44]
Hatt, M.; Tixier, F.; Visvikis, D.; Cheze Le Rest, C. Radiomics in PET/CT: More Than Meets the Eye? J. Nucl. Med., 2017, 58(3), 365-366.
[http://dx.doi.org/10.2967/jnumed.116.184655]] [PMID: 27811126]
[45]
Hatt, M.; Cheze-le Rest, C.; van Baardwijk, A.; Lambin, P.; Pradier, O.; Visvikis, D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J. Nucl. Med., 2011, 52(11), 1690-1697.
[http://dx.doi.org/10.2967/jnumed.111.092767] [PMID: 21990577]
[46]
Orlhac, F.; Soussan, M.; Maisonobe, J.A.; Garcia, C.A.; Vanderlinden, B.; Buvat, I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J. Nucl. Med., 2014, 55(3), 414-422.
[http://dx.doi.org/10.2967/jnumed.113.129858] [PMID: 24549286]
[47]
Kawano, T.; Ohtake, E.; Inoue, T. Deep-inspiration breath-hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J. Nucl. Med., 2008, 49(8), 1223-1231.
[http://dx.doi.org/10.2967/jnumed.107.049296] [PMID: 18632812]
[48]
Kesner, A.L.; Chung, J.H.; Lind, K.E.; Kwak, J.J.; Lynch, D.; Burckhardt, D.; Koo, P.J. Validation of Software Gating: A Practical Technology for Respiratory Motion Correction in PET. Radiology, 2016, 281(1), 239-248.
[http://dx.doi.org/10.1148/radiol.2016152105] [PMID: 27027335]
[49]
Kesner, A.L.; Schleyer, P.J.; Büther, F.; Walter, M.A.; Schäfers, K.P.; Koo, P.J. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework. EJNMMI Phys., 2014, 1(1), 1-8.
[http://dx.doi.org/10.1186/2197-7364-1-8] [PMID: 26501450]
[50]
Bundschuh, R.A.; Andratschke, N.; Dinges, J.; Duma, M.N.; Astner, S.T.; Brügel, M.; Ziegler, S.I.; Molls, M.; Schwaiger, M.; Essler, M. Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther. Onkol., 2012, 188(7), 592-598.
[http://dx.doi.org/10.1007/s00066-012-0094-3] [PMID: 22441441]
[51]
Kesner, A.L.; Kuntner, C. A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods. Med. Phys., 2010, 37(10), 5550-5559.
[http://dx.doi.org/10.1118/1.3483784] [PMID: 21089790]

© 2024 Bentham Science Publishers | Privacy Policy