Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Characterization of a New Positive Allosteric Modulator of AMPA Receptors - PAM-43: Specific Binding of the Ligand and its Ability to Potentiate AMPAR Currents

Author(s): Tatiana V. Vyunova*, Lioudmila A. Andreeva, Konstantin V. Shevchenko, Vladimir V. Grigoriev, Vladimir A. Palyulin, Mstislav I. Lavrov, Ekaterina V. Bondarenko, Elena E. Kalashnikova and Nikolay F. Myasoedov

Volume 13, Issue 3, 2020

Page: [216 - 223] Pages: 8

DOI: 10.2174/1874467213666200303140834

Price: $65

Abstract

Background: Currently, the most dynamic areas in the glutamate receptor system neurobiology are the identification and development of positive allosteric modulators (PAMs) of glutamate ionotropic receptors. PAM-based drugs are of great interest as promising candidates for the treatment of neurological diseases, such as epilepsy, Alzheimer's disease, schizophrenia, etc. Understanding the molecular mechanisms underlying the biological action of natural and synthetic PAMs is a key point for modifying the original chemical compounds as well as for new drug design.

Objective: We are trying to elaborate a system of molecular functional screening of ionotropic glutamate receptor probable PAMs.

Methods: The system will be based on the radioligand - receptor method of analysis and will allow rapid quantification of new AMPAR probable PAMs molecular activity. We plan to use a tritiumlabeled analogue of recently elaborated ionotropic GluR probable PAM ([3H]PAM-43) as the main radioligand.

Results: Here, we characterized the specific binding of the ligand and its ability to potentiate ionotropic GluR currents. The existence of at least two different sites of [3H]PAM-43 specific binding has been shown. One of the above sites is glutamate-dependent and is characterized by higher affinity. “Patchclamp” technique showed the ability of PAM-43 to potentiate ionotropic GluR currents in rat cerebellar Purkinje neurons in a concentration-dependent manner.

Conclusion: The possibility of using PAM-43 as a model compound to study different allosteric effects of potential regulatory drugs (AMPAR allosteric regulators) was shown. [3H]PAM-43 based screening system will allow rapid selection of new AMPAR probable PAM structures and quantification of their molecular activity.

Keywords: Glutamate receptor, allosteric modulation, positive allosteric modulator (PAM), AMPA, NMDA, radioligand, [3H]PAM, AMPAR currents.

Graphical Abstract
[1]
Skowrońska, K.; Obara-Michlewska, M.; Zielińska, M.; Albrecht, J. NMDA Receptors in Astrocytes: In Search for Roles in Neurotransmission and Astrocytic Homeostasis. Int. J. Mol. Sci., 2019, 20(2)E309
[http://dx.doi.org/10.3390/ijms20020309] [PMID: 30646531]
[2]
Serwach, K.; Gruszczynska-Biegala, J. STIM Proteins and Glutamate Receptors in Neurons: Role in Neuronal Physiology and Neurodegenerative Diseases. Int. J. Mol. Sci., 2019, 20(9)E2289
[http://dx.doi.org/10.3390/ijms20092289] [PMID: 31075835]
[3]
Wu, Z.; Yang, Z.; Zhang, M.; Bao, X.; Han, F.; Li, L. The role of N-methyl-D-aspartate receptors and metabotropic glutamate receptor 5 in the prepulse inhibition paradigms for studying schizophrenia: pharmacology, neurodevelopment, and genetics. Behav. Pharmacol., 2018, 29(1), 13-27.
[http://dx.doi.org/10.1097/FBP.0000000000000352] [PMID: 29176430]
[4]
Huang, X.; Wang, M.; Zhang, Q.; Chen, X.; Wu, J. The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2019, 180(4), 272-286.
[http://dx.doi.org/10.1002/ajmg.b.32726] [PMID: 30953404]
[5]
Rojas, D.C. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J. Neural Transm. (Vienna), 2014, 121(8), 891-905.
[http://dx.doi.org/10.1007/s00702-014-1216-0] [PMID: 24752754]
[6]
Lian, Y.N.; Lu, Q.; Chang, J.L.; Zhang, Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int. J. Neurosci., 2018, 128(3), 283-290.
[http://dx.doi.org/10.1080/00207454.2017.1387112] [PMID: 28969521]
[7]
Reuillon, T.; Ward, S.E.; Beswick, P. AMPA Receptor Positive Allosteric Modulators: Potential for the Treatment of Neuropsychiatric and Neurological Disorders. Curr. Top. Med. Chem., 2016, 16(29), 3536-3565.
[http://dx.doi.org/10.2174/1568026616666160627114507] [PMID: 27363568]
[8]
Hackos, D.H.; Lupardus, P.J.; Grand, T.; Chen, Y.; Wang, T.M.; Reynen, P.; Gustafson, A.; Wallweber, H.J.; Volgraf, M.; Sellers, B.D.; Schwarz, J.B.; Paoletti, P.; Sheng, M.; Zhou, Q.; Hanson, J.E. Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function. Neuron, 2016, 89(5), 983-999.
[http://dx.doi.org/10.1016/j.neuron.2016.01.016] [PMID: 26875626]
[9]
Asztély, F.; Gustafsson, B. Ionotropic glutamate receptors. Their possible role in the expression of hippocampal synaptic plasticity. Mol. Neurobiol., 1996, 12(1), 1-11.
[PMID: 8732537]
[10]
Hadzic, M.; Jack, A.; Wahle, P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J. Comp. Neurol., 2017, 525(4), 976-1033.
[http://dx.doi.org/10.1002/cne.24103] [PMID: 27560295]
[11]
Hansen, KB; Yi, F; Perszyk, RE; Furukawa, H; Wollmuth, LP; Gibb, AJ; Traynelis, SF Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol,, 2018, 6(150(8),), 1081-1105.
[12]
Ulbrich, M.H.; Isacoff, E.Y. Rules of engagement for NMDA receptor subunits. Proc. Natl. Acad. Sci. USA, 2008, 105(37), 14163-14168.
[http://dx.doi.org/10.1073/pnas.0802075105] [PMID: 18779583]
[13]
Chen, P.E.; Wyllie, D.J. Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors. Br. J. Pharmacol., 2006, 147(8), 839-853.
[http://dx.doi.org/10.1038/sj.bjp.0706689] [PMID: 16474411]
[14]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[15]
Wang, D.; Cui, Z.; Zeng, Q.; Kuang, H.; Wang, L.P.; Tsien, J.Z.; Cao, X. Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One, 2009, 4(10)e7486
[http://dx.doi.org/10.1371/journal.pone.0007486] [PMID: 19838302]
[16]
Hanson, J.E.; Weber, M.; Meilandt, W.J.; Wu, T.; Luu, T.; Deng, L.; Shamloo, M.; Sheng, M.; Scearce-Levie, K.; Zhou, Q. GluN2B antagonism affects interneurons and leads to immediate and persistent changes in synaptic plasticity, oscillations, and behavior. Neuropsychopharmacology, 2013, 38(7), 1221-1233.
[http://dx.doi.org/10.1038/npp.2013.19] [PMID: 23340518]
[17]
Gray, J.A.; Shi, Y.; Usui, H.; During, M.J.; Sakimura, K.; Nicoll, R.A. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron, 2011, 71(6), 1085-1101.
[http://dx.doi.org/10.1016/j.neuron.2011.08.007] [PMID: 21943605]
[18]
Di Maio, V.; Ventriglia, F.; Santillo, S. AMPA/NMDA cooperativity and integration during a single synaptic event. J. Comput. Neurosci., 2016, 41(2), 127-142.
[http://dx.doi.org/10.1007/s10827-016-0609-5] [PMID: 27299885]
[19]
Sachser, R.M.; Haubrich, J.; Lunardi, P.S.; de Oliveira Alvares, L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance,and decay. Neuropharmacology,, 2017, 112((Pt A),), 94-103.
[20]
Tang, Y.P.; Shimizu, E.; Dube, G.R.; Rampon, C.; Kerchner, G.A.; Zhuo, M.; Liu, G.; Tsien, J.Z. Genetic enhancement of learning and memory in mice. Nature, 1999, 401(6748), 63-69.
[http://dx.doi.org/10.1038/43432] [PMID: 10485705]
[21]
Lockhart, B.P.; Rodriguez, M.; Mourlevat, S.; Peron, P.; Catesson, S.; Villain, N.; Galizzi, J.P.; Boutin, J.A.; Lestage, P. S18986: a positive modulator of AMPA-receptors enhances (S)-AMPA-mediated BDNF mRNA and protein expression in rat primary cortical neuronal cultures. Eur. J. Pharmacol., 2007, 561(1-3), 23-31.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.030] [PMID: 17331496]
[22]
Gonzalez-Burgos, G.; Lewis, D.A. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr. Bull., 2012, 38(5), 950-957.
[http://dx.doi.org/10.1093/schbul/sbs010] [PMID: 22355184]
[23]
Carvill, G.L.; Regan, B.M.; Yendle, S.C.; O’Roak, B.J.; Lozovaya, N.; Bruneau, N.; Burnashev, N.; Khan, A.; Cook, J.; Geraghty, E.; Sadleir, L.G.; Turner, S.J.; Tsai, M.H.; Webster, R.; Ouvrier, R.; Damiano, J.A.; Berkovic, S.F.; Shendure, J.; Hildebrand, M.S.; Szepetowski, P.; Scheffer, I.E.; Mefford, H.C. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat. Genet., 2013, 45(9), 1073-1076.
[http://dx.doi.org/10.1038/ng.2727] [PMID: 23933818]
[24]
Zádori, D.; Veres, G.; Szalárdy, L.; Klivényi, P.; Toldi, J.; Vécsei, L. Glutamatergic dysfunctioning in Alzheimer’s disease and related therapeutic targets. J. Alzheimers Dis., 2014, 42(Suppl. 3), S177-S187.
[http://dx.doi.org/10.3233/JAD-132621] [PMID: 24670398]
[25]
Levite, M. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren’s syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor’s expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy. J. Neural Transm. (Vienna), 2014, 121(8), 1029-1075.
[http://dx.doi.org/10.1007/s00702-014-1193-3] [PMID: 25081016]
[26]
Ward, S.E.; Pennicott, L.E.; Beswick, P. AMPA receptor-positive allosteric modulators for the treatment of schizophrenia: an overview of recent patent applications. Future Med. Chem., 2015, 7(4), 473-491.
[http://dx.doi.org/10.4155/fmc.15.4] [PMID: 25875874]
[27]
Grigoriev, V.V.; Proshin, A.N.; Kinzirsky, A.S.; Bachurin, S.O. Modern approaches to the design of memory and cognitive enhancers based on AMPA receptor ligands. Russ. Chem. Rev., 2009, 78(5), 485-494.
[http://dx.doi.org/10.1070/RC2009v078n05ABEH004020]
[28]
Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov., 2009, 8(1), 41-54.
[http://dx.doi.org/10.1038/nrd2760] [PMID: 19116626]
[29]
Hackos, DH; Hanson. JE Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology,, 2017, 12(Pt A,), 34-45.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.037]
[30]
Pirotte, B.; Francotte, P.; Goffin, E.; de Tullio, P. AMPA receptor positive allosteric modulators: a patent review. Expert Opin. Ther. Pat., 2013, 23(5), 615-628.
[http://dx.doi.org/10.1517/13543776.2013.770840] [PMID: 23405869]
[31]
Partin, K.M. AMPA receptor potentiators: from drug design to cognitive enhancement. Curr. Opin. Pharmacol., 2015, 20, 46-53.
[http://dx.doi.org/10.1016/j.coph.2014.11.002] [PMID: 25462292]
[32]
Bretin, S.; Louis, C.; Seguin, L.; Wagner, S.; Thomas, J.Y.; Challal, S.; Rogez, N.; Albinet, K.; Iop, F.; Villain, N.; Bertrand, S.; Krazem, A.; Bérachochéa, D.; Billiald, S.; Tordjman, C.; Cordi, A.; Bertrand, D.; Lestage, P.; Danober, L. Pharmacological characterisation of S 47445, a novel positive allosteric modulator of AMPA receptors. PLoS One, 2017, 12(9)e0184429
[http://dx.doi.org/10.1371/journal.pone.0184429] [PMID: 28886144]
[33]
Grove, S.J.; Jamieson, C.; Maclean, J.K.; Morrow, J.A.; Rankovic, Z. Positive allosteric modulators of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. J. Med. Chem., 2010, 53(20), 7271-7279.
[http://dx.doi.org/10.1021/jm1000419] [PMID: 20839777]
[34]
Goffin, E.; Drapier, T.; Larsen, A.P.; Geubelle, P.; Ptak, C.P.; Laulumaa, S.; Rovinskaja, K.; Gilissen, J.; Tullio, P.; Olsen, L.; Frydenvang, K.; Pirotte, B.; Hanson, J.; Oswald, R.E.; Kastrup, J.S.; Francotte, P. 7-Phenoxy-Substituted 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Nanomolar Potency. J. Med. Chem., 2018, 61(1), 251-264.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01323] [PMID: 29256599]
[35]
Zhu, S.; Paoletti, P. Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr. Opin. Pharmacol., 2015, 20, 14-23.
[http://dx.doi.org/10.1016/j.coph.2014.10.009] [PMID: 25462287]
[36]
Conn, P.J.; Lindsley, C.W.; Meiler, J.; Niswender, C.M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov., 2014, 13(9), 692-708.
[http://dx.doi.org/10.1038/nrd4308] [PMID: 25176435]
[37]
Costa, B.M.; Irvine, M.W.; Fang, G.; Eaves, R.J.; Mayo-Martin, M.B.; Skifter, D.A.; Jane, D.E.; Monaghan, D.T. A novel family of negative and positive allosteric modulators of NMDA receptors. J. Pharmacol. Exp. Ther., 2010, 335(3), 614-621.
[http://dx.doi.org/10.1124/jpet.110.174144] [PMID: 20858708]
[38]
O’Neill, M.J.; Dix, S. AMPA receptor potentiators as cognitive enhancers. IDrugs, 2007, 10(3), 185-192.
[PMID: 17351873]
[39]
da Silva, A.P.B.; Souza, D.G.; Souza, D.O.; Machado, D.C.; Sato, D.K. Role of Glutamatergic Excitotoxicity in Neuromyelitis Optica Spectrum Disorders. Front. Cell. Neurosci., 2019, 13, 142.
[http://dx.doi.org/10.3389/fncel.2019.00142] [PMID: 31031597]
[40]
Black, M.D. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology (Berl.), 2005, 179(1), 154-163.
[http://dx.doi.org/10.1007/s00213-004-2065-6] [PMID: 15672275]
[41]
Bachurin, S.O.; Bovina, E.V.; Ustyugov, A.A. Drugs in Clinical Trials for Alzheimer’s Disease: The Major Trends. Med. Res. Rev., 2017, 37(5), 1186-1225.
[http://dx.doi.org/10.1002/med.21434] [PMID: 28084618]
[42]
Vyunova, T.V.; Andreeva, L.A.; Shevchenko, K.V.; Myasoedov, N.F. An integrated approach to study the molecular aspects of regulatory peptides biological mechanism. J. Labelled Comp. Radiopharm., 2019, 62(12), 812-822.
[http://dx.doi.org/10.1002/jlcr.3785] [PMID: 31325343]
[43]
Nagaev, I.Yu.; Shevchenko, K.V.; Shevchenko, V.P.; Myasoedov, N.F.; Grigoriev, V.V.; Lavrov, M.I.; Bondarenko, E.V.; Kalashnikova, E.E. Synthesis of tritium-labeled PAM-43. Mendeleev Commun., 2018, 28, 64-65.
[http://dx.doi.org/10.1016/j.mencom.2018.01.021]
[44]
Kaneda, M.; Nakamura, H.; Akaike, N. Mechanical and enzymatic isolation of mammalian CNS neurons. Neurosci. Res., 1988, 5(4), 299-315.
[http://dx.doi.org/10.1016/0168-0102(88)90032-6] [PMID: 2836764]
[45]
Hamill, O.P.; Marty, A.; Neher, E.; Sakmann, B.; Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch., 1981, 391(2), 85-100.
[http://dx.doi.org/10.1007/BF00656997] [PMID: 6270629]
[46]
Vyunova, T.V.; Andreeva, L.A.; Shevchenko, K.V.; Shevchenko, V.P.; Bobrov, M.Y.; Bezuglov, V.V.; Myasoedov, N.F. Characteristic features of specific binding of pentapeptide HFPGP labeled at the C-terminal proline residue to rat forebrain plasma membranes. Dokl. Biochem. Biophys., 2014, 456(1), 101-103.
[http://dx.doi.org/10.1134/S1607672914030077] [PMID: 24993966]
[47]
Kessler, M.; Arai, A.C. Use of [3H]fluorowillardiine to study properties of AMPA receptor allosteric modulators. Brain Res., 2006, 1076(1), 25-41.
[http://dx.doi.org/10.1016/j.brainres.2005.09.024] [PMID: 16256076]
[48]
Kessler, M.; Arai, A.; Quan, A.; Lynch, G. Effect of cyclothiazide on binding properties of AMPA-type glutamate receptors: lack of competition between cyclothiazide and GYKI 52466. Mol. Pharmacol., 1996, 49(1), 123-131.
[PMID: 8569697]
[49]
Harms, J.E.; Benveniste, M.; Kessler, M.; Stone, L.M.; Arai, A.C.; Partin, K.M. A charge-inverting mutation in the “linker” region of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors alters agonist binding and gating kinetics independently of allosteric modulators. J. Biol. Chem., 2014, 289(15), 10702-10714.
[http://dx.doi.org/10.1074/jbc.M113.526921] [PMID: 24550387]
[50]
Plested, A.J. Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat. Struct. Mol. Biol., 2016, 23(6), 494-502.
[http://dx.doi.org/10.1038/nsmb.3214] [PMID: 27273633]
[51]
Bachurin, S.O.; Grigorev, V.V.; Palyulin, V.A.; Lavrov, M.I.; Zefirov, N.S.; Garibova, T.L.; Voronina, T.A.; Roziev, R.A.N.N, N'-substituted3,7-diazabicyclo[3.3.1]nonanes, pharmaceutical compositions based thereon and use thereof. RU Patent 2613071, March 15. 2017.
[52]
M.I., Lavrov,; D. S., Karlov,; T. A. , Voronina,; V. V., Grigoriev,; A. A., Ustyugov,; S. O., Bachurin and; V. A., Palyulin Mol. Neurobiol, 2020, 57, 191-199.
[53]
Shi, EY; Yuan, CL; Sipple, MT; Srinivasan, J; Ptak, CP; Oswald, RE; Nowak, LM.J Noncompetitive antagonists induce cooperative AMPAreceptor channel gating Gen Physiol.,, 2019, 4(151(2),), 156-173.
[http://dx.doi.org/10.1085/jgp.201812209]
[54]
Ptak, C.P.; Hsieh, C.L.; Weiland, G.A.; Oswald, R.E. Role of stoichiometry in the dimer-stabilizing effect of AMPA receptor allosteric modulators. ACS Chem. Biol., 2014, 9(1), 128-133.
[http://dx.doi.org/10.1021/cb4007166] [PMID: 24152170]
[55]
Clements, J.D.; Feltz, A.; Sahara, Y.; Westbrook, G.L. Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. J. Neurosci., 1998, 18(1), 119-127.
[http://dx.doi.org/10.1523/JNEUROSCI.18-01-00119.1998] [PMID: 9412492]
[56]
Nielsen, E.O.; Johansen, T.H.; Wätjen, F.; Drejer, J. Characterization of the binding of [3H]NS 257, a novel competitive AMPA receptor antagonist, to rat brain membranes and brain sections. J. Neurochem., 1995, 65(3), 1264-1273.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65031264.x] [PMID: 7543932]
[57]
Johansen, T.H.; Drejer, J.; Wätjen, F.; Nielsen, E.O. A novel non-NMDA receptor antagonist shows selective displacement of low-affinity [3H]kainate binding. Eur. J. Pharmacol., 1993, 246(3), 195-204.
[http://dx.doi.org/10.1016/0922-4106(93)90031-4] [PMID: 8223944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy