Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Anti-Amyloid Aggregating Gold Nanoparticles: Can they Really be Translated from Bench to Bedside for Alzheimer's Disease Treatment?

Author(s): Sibhghatulla Shaikh, Nazia Nazam, Syed Mohd Danish Rizvi*, Talib Hussain, Aisha Farhana and Inho Choi*

Volume 21, Issue 12, 2020

Page: [1184 - 1192] Pages: 9

DOI: 10.2174/1389203721666200226101930

Price: $65

Abstract

Alzheimer’s disease (AD) is characterized by deposition of amyloid-β protein aggregates and an appropriate treatment strategy is urgently needed, as the number of diagnosed cases continues to increase. The management of AD and other brain-associated diseases is limited by the blood brain barrier and its selective control of drug passage. In fact, most of the promising drugs have restricted curative effects on AD owing to their lower bioavailability. Gold nanoparticles (AuNPs) have emerged as attractive therapeutic agents and have distinctive properties that could contribute to the development of a novel treatment strategy for neurodegenerative disorders. In this review article, we attempt to identify promising ways of developing competent AD therapeutic agents from anti-amyloid aggregating AuNPs. Initially, we discuss the current status of anti-amyloid inhibitors, the abilities of AuNPs to inhibit amyloid aggregation, and mechanistic aspects, and then describe plausible modifications that could aid the translation of AuNP-based therapeutics into neuromedicines. The review highlights some interesting characteristics that might effectively bridge the gap between laboratory and bedside treatments.

Keywords: Alzheimer`s disease, amyloid-β, blood-brain barrier, nanoparticles, neurodegenerative disorders, gold.

Graphical Abstract
[1]
McDade, E.; Bateman, R.J. Stop Alzheimer’s before it starts. Nature, 2017, 547(7662), 153-155.
[http://dx.doi.org/10.1038/547153a] [PMID: 28703214]
[2]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[3]
Estrada, L.D.; Soto, C. Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr. Top. Med. Chem., 2007, 7(1), 115-126.
[http://dx.doi.org/10.2174/156802607779318262] [PMID: 17266599]
[4]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[5]
Pimplikar, S.W. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int. J. Biochem. Cell Biol., 2009, 41(6), 1261-1268.
[http://dx.doi.org/10.1016/j.biocel.2008.12.015] [PMID: 19124085]
[6]
Gandy, S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Invest., 2005, 115(5), 1121-1129.
[PMID: 15864339]
[7]
Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci., 1999, 24(9), 329-332.
[http://dx.doi.org/10.1016/S0968-0004(99)01445-0] [PMID: 10470028]
[8]
Soto, C. Protein misfolding and disease; protein refolding and therapy. FEBS Lett., 2001, 498(2-3), 204-207.
[http://dx.doi.org/10.1016/S0014-5793(01)02486-3] [PMID: 11412858]
[9]
Wang, E.C.; Wang, A.Z. Nanoparticles and their applications in cell and molecular biology. Integr. Biol., 2014, 6(1), 9-26. (Camb)
[10]
Teixido, M.; Giralt, E. The role of peptides in blood-brain barrier nanotechnology. J. Pept. Sci., 2008, 14(2), 163-173.
[11]
Lockman, P.R.; Mumper, R.J.; Khan, M.A.; Allen, D.D. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm., 2002, 28(1), 1-13.
[http://dx.doi.org/10.1081/DDC-120001481] [PMID: 11858519]
[12]
Giorgetti, S.; Greco, C.; Tortora, P.; Aprile, F.A. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. Int. J. Mol. Sci., 2018, 19(9)E2677
[http://dx.doi.org/10.3390/ijms19092677] [PMID: 30205618]
[13]
Yang, J.E.; Rhoo, K.Y.; Lee, S.; Lee, J.T.; Park, J.H.; Bhak, G.; Paik, S.R. EGCG-mediated Protection of the Membrane Disruption and Cytotoxicity Caused by the ‘Active Oligomer’ of α-Synuclein. Sci. Rep., 2017, 7(1), 17945.
[http://dx.doi.org/10.1038/s41598-017-18349-z] [PMID: 29263416]
[14]
Young, L.M.; Cao, P.; Raleigh, D.P.; Ashcroft, A.E.; Radford, S.E. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J. Am. Chem. Soc., 2014, 136(2), 660-670.
[http://dx.doi.org/10.1021/ja406831n] [PMID: 24372466]
[15]
Rigacci, S.; Guidotti, V.; Bucciantini, M.; Nichino, D.; Relini, A.; Berti, A.; Stefani, M. Aβ(1-42) aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr. Alzheimer Res., 2011, 8(8), 841-852.
[http://dx.doi.org/10.2174/156720511798192682] [PMID: 21592051]
[16]
Palazzi, L.; Bruzzone, E.; Bisello, G.; Leri, M.; Stefani, M.; Bucciantini, M.; Polverino de Laureto, P. Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates. Sci. Rep., 2018, 8(1), 8337.
[http://dx.doi.org/10.1038/s41598-018-26645-5] [PMID: 29844450]
[17]
Feng, Y.; Wang, X.P.; Yang, S.G.; Wang, Y.J.; Zhang, X.; Du, X.T.; Sun, X.X.; Zhao, M.; Huang, L.; Liu, R.T. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology, 2009, 30(6), 986-995.
[http://dx.doi.org/10.1016/j.neuro.2009.08.013] [PMID: 19744518]
[18]
Endo, H.; Nikaido, Y.; Nakadate, M.; Ise, S.; Konno, H. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor. Bioorg. Med. Chem. Lett., 2014, 24(24), 5621-5626.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.076] [PMID: 25467149]
[19]
Ahsan, N.; Mishra, S.; Jain, M.K.; Surolia, A.; Gupta, S. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein. Sci. Rep., 2015, 5, 9862.
[http://dx.doi.org/10.1038/srep09862] [PMID: 25985292]
[20]
Okuda, M.; Fujita, Y.; Hijikuro, I.; Wada, M.; Uemura, T.; Kobayashi, Y.; Waku, T.; Tanaka, N.; Nishimoto, T.; Izumi, Y.; Kume, T.; Akaike, A.; Takahashi, T.; Sugimoto, H. PE859, A Novel Curcumin Derivative, Inhibits Amyloid-β and Tau Aggregation, and Ameliorates Cognitive Dysfunction in Senescence-Accelerated Mouse Prone 8. J. Alzheimers Dis., 2017, 59(1), 313-328.
[http://dx.doi.org/10.3233/JAD-161017] [PMID: 28598836]
[21]
Merlini, G.; Ascari, E.; Amboldi, N.; Bellotti, V.; Arbustini, E.; Perfetti, V.; Ferrari, M.; Zorzoli, I.; Marinone, M.G.; Garini, P. Interaction of the anthracycline 4′-iodo-4′-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc. Natl. Acad. Sci. USA, 1995, 92(7), 2959-2963.
[http://dx.doi.org/10.1073/pnas.92.7.2959] [PMID: 7708755]
[22]
Tagliavini, F.; Forloni, G.; Colombo, L.; Rossi, G.; Girola, L.; Canciani, B.; Angeretti, N.; Giampaolo, L.; Peressini, E.; Awan, T.; De Gioia, L.; Ragg, E.; Bugiani, O.; Salmona, M. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J. Mol. Biol., 2000, 300(5), 1309-1322.
[http://dx.doi.org/10.1006/jmbi.2000.3840] [PMID: 10903871]
[23]
Perni, M.; Galvagnion, C.; Maltsev, A.; Meisl, G.; Müller, M.B.; Challa, P.K.; Kirkegaard, J.B.; Flagmeier, P.; Cohen, S.I.; Cascella, R.; Chen, S.W.; Limbocker, R.; Sormanni, P.; Heller, G.T.; Aprile, F.A.; Cremades, N.; Cecchi, C.; Chiti, F.; Nollen, E.A.; Knowles, T.P.; Vendruscolo, M.; Bax, A.; Zasloff, M.; Dobson, C.M. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA, 2017, 114(6), E1009-E1017.
[http://dx.doi.org/10.1073/pnas.1610586114] [PMID: 28096355]
[24]
Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature, 1997, 388(6645), 839-840.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[25]
Perni, M.; Flagmeier, P.; Limbocker, R.; Cascella, R.; Aprile, F.A.; Galvagnion, C.; Heller, G.T.; Meisl, G.; Chen, S.W.; Kumita, J.R.; Challa, P.K.; Kirkegaard, J.B.; Cohen, S.I.A.; Mannini, B.; Barbut, D.; Nollen, E.A.A.; Cecchi, C.; Cremades, N.; Knowles, T.P.J.; Chiti, F.; Zasloff, M.; Vendruscolo, M.; Dobson, C.M. Multistep Inhibition of α-Synuclein Aggregation and Toxicity in vitro and in vivo by Trodusquemine. ACS Chem. Biol., 2018, 13(8), 2308-2319.
[http://dx.doi.org/10.1021/acschembio.8b00466] [PMID: 29953201]
[26]
Viet, M.H.; Ngo, S.T.; Lam, N.S.; Li, M.S. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J. Phys. Chem. B, 2011, 115(22), 7433-7446.
[http://dx.doi.org/10.1021/jp1116728] [PMID: 21563780]
[27]
Hoyer, W.; Grönwall, C.; Jonsson, A.; Ståhl, S.; Härd, T. Stabilization of a beta-hairpin in monomeric Alzheimer’s amyloid-beta peptide inhibits amyloid formation. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5099-5104.
[http://dx.doi.org/10.1073/pnas.0711731105] [PMID: 18375754]
[28]
Shaykhalishahi, H.; Mirecka, E.A.; Gauhar, A.; Grüning, C.S.; Willbold, D.; Härd, T.; Stoldt, M.; Hoyer, W. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins. ChemBioChem, 2015, 16(3), 411-414.
[http://dx.doi.org/10.1002/cbic.201402552] [PMID: 25557164]
[29]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[30]
Tucker, S.; Möller, C.; Tegerstedt, K.; Lord, A.; Laudon, H.; Sjödahl, J.; Söderberg, L.; Spens, E.; Sahlin, C.; Waara, E.R.; Satlin, A.; Gellerfors, P.; Osswald, G.; Lannfelt, L. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis., 2015, 43(2), 575-588.
[http://dx.doi.org/10.3233/JAD-140741] [PMID: 25096615]
[31]
El-Turk, F.; Newby, F.N.; De Genst, E.; Guilliams, T.; Sprules, T.; Mittermaier, A.; Dobson, C.M.; Vendruscolo, M. Structural Effects of Two Camelid Nanobodies Directed to Distinct C-Terminal Epitopes on α-Synuclein. Biochemistry, 2016, 55(22), 3116-3122.
[http://dx.doi.org/10.1021/acs.biochem.6b00149] [PMID: 27096466]
[32]
Drews, A.; Flint, J.; Shivji, N.; Jönsson, P.; Wirthensohn, D.; De Genst, E.; Vincke, C.; Muyldermans, S.; Dobson, C.; Klenerman, D. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells. Sci. Rep., 2016, 6, 31910.
[http://dx.doi.org/10.1038/srep31910] [PMID: 27553885]
[33]
Castillo-Carranza, D.L.; Sengupta, U.; Guerrero-Muñoz, M.J.; Lasagna-Reeves, C.A.; Gerson, J.E.; Singh, G.; Estes, D.M.; Barrett, A.D.; Dineley, K.T.; Jackson, G.R.; Kayed, R. Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J. Neurosci., 2014, 34(12), 4260-4272.
[http://dx.doi.org/10.1523/JNEUROSCI.3192-13.2014] [PMID: 24647946]
[34]
Stefani, M.; Rigacci, S. Protein folding and aggregation into amyloid: the interference by natural phenolic compounds. Int. J. Mol. Sci., 2013, 14(6), 12411-12457.
[http://dx.doi.org/10.3390/ijms140612411] [PMID: 23765219]
[35]
Chang, E.; Congdon, E.E.; Honson, N.S.; Duff, K.E.; Kuret, J. Structure-activity relationship of cyanine tau aggregation inhibitors. J. Med. Chem., 2009, 52(11), 3539-3547.
[http://dx.doi.org/10.1021/jm900116d] [PMID: 19432420]
[36]
Cavaliere, P.; Torrent, J.; Prigent, S.; Granata, V.; Pauwels, K.; Pastore, A.; Rezaei, H.; Zagari, A. Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim. Biophys. Acta, 2013, 1832(1), 20-28.
[http://dx.doi.org/10.1016/j.bbadis.2012.09.005] [PMID: 23022479]
[37]
Debnath, K.; Pradhan, N.; Singh, B.K.; Jana, N.R.; Jana, N.R. Poly(trehalose) Nanoparticles Prevent Amyloid Aggregation and Suppress Polyglutamine Aggregation in a Huntington’s Disease Model Mouse. ACS Appl. Mater. Interfaces, 2017, 9(28), 24126-24139.
[http://dx.doi.org/10.1021/acsami.7b06510] [PMID: 28632387]
[38]
Wang, M.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci., 2017, 5(3), 485-493.
[http://dx.doi.org/10.1039/C6BM00764C] [PMID: 28078343]
[39]
Ahmad, K.; Rabbani, G.; Baig, M.H.; Lim, J.H.; Khan, M.E.; Lee, E.J.; Ashraf, G.M.; Choi, I. Nanoparticle-Based Drugs: A Potential Armamentarium of Effective Anti-Cancer Therapies. Curr. Drug Metab., 2018, 19(10), 839-846.
[http://dx.doi.org/10.2174/1389200218666170823115647] [PMID: 28831911]
[40]
Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci., 2019, 20(10)E2468
[http://dx.doi.org/10.3390/ijms20102468] [PMID: 31109079]
[41]
Shaikh, S.; Rizvi, S.M.D.; Shakil, S.; Hussain, T.; Alshammari, T.M.; Ahmad, W.; Tabrez, S.; Al-Qahtani, M.H.; Abuzenadah, A.M. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens. J. Cell. Biochem., 2017, 118(9), 2802-2808.
[http://dx.doi.org/10.1002/jcb.25929] [PMID: 28181300]
[42]
Shaikh, S.; Shakil, S.; Abuzenadah, A.M.; Rizvi, S.M.; Roberts, P.M.; Mushtaq, G.; Kamal, M.A. Nanobiotechnological Approaches Against Multidrug Resistant Bacterial Pathogens: An Update. Curr. Drug Metab., 2015, 16(5), 362-370.
[http://dx.doi.org/10.2174/1389200216666150602145509] [PMID: 26419545]
[43]
Tarantola, M.; Pietuch, A.; Schneider, D.; Rother, J.; Sunnick, E.; Rosman, C.; Pierrat, S.; Sönnichsen, C.; Wegener, J.; Janshoff, A. Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology, 2011, 5(2), 254-268.
[http://dx.doi.org/10.3109/17435390.2010.528847] [PMID: 21050076]
[44]
Lasagna-Reeves, C.; Gonzalez-Romero, D.; Barria, M.A.; Olmedo, I.; Clos, A.; Sadagopa Ramanujam, V.M.; Urayama, A.; Vergara, L.; Kogan, M.J.; Soto, C. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun., 2010, 393(4), 649-655.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.046] [PMID: 20153731]
[45]
Mahmoudi, M.; Kalhor, H.R.; Laurent, S.; Lynch, I. Protein fibrillation and nanoparticle interactions: opportunities and challenges. Nanoscale, 2013, 5(7), 2570-2588.
[http://dx.doi.org/10.1039/c3nr33193h] [PMID: 23463168]
[46]
Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[47]
Moore, K.A.; Pate, K.M.; Soto-Ortega, D.D.; Lohse, S.; van der Munnik, N.; Lim, M.; Jackson, K.S.; Lyles, V.D.; Jones, L.; Glassgow, N.; Napumecheno, V.M.; Mobley, S.; Uline, M.J.; Mahtab, R.; Murphy, C.J.; Moss, M.A. Influence of gold nanoparticle surface chemistry and diameter upon Alzheimer’s disease amyloid-β protein aggregation. J. Biol. Eng., 2017, 11, 5.
[http://dx.doi.org/10.1186/s13036-017-0047-6] [PMID: 28191036]
[48]
Liao, Y.H.; Chang, Y.J.; Yoshiike, Y.; Chang, Y.C.; Chen, Y.R. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-beta fibrillization, induce fibril dissociation, and mitigate neurotoxicity. In: Small (Weinheim an der Bergstrasse, Germany);, 2012; 8, pp. (23)3631-3639.
[49]
Kogan, M.J.; Bastus, N.G.; Amigo, R.; Grillo-Bosch, D.; Araya, E.; Turiel, A.; Labarta, A.; Giralt, E.; Puntes, V.F. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett., 2006, 6(1), 110-115.
[http://dx.doi.org/10.1021/nl0516862] [PMID: 16402797]
[50]
Kim, Y.; Park, J.H.; Lee, H.; Nam, J.M. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer? Sci. Rep., 2016, 6, 19548.
[http://dx.doi.org/10.1038/srep19548] [PMID: 26782664]
[51]
Gao, G.; Zhang, M.; Gong, D.; Chen, R.; Hu, X.; Sun, T. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale, 2017, 9(12), 4107-4113.
[http://dx.doi.org/10.1039/C7NR00699C] [PMID: 28276561]
[52]
Hsieh, S.; Chang, C.W.; Chou, H.H. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors. Colloids Surf. B Biointerfaces, 2013, 112, 525-529.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.029] [PMID: 24060166]
[53]
Li, M.; Guan, Y.; Zhao, A.; Ren, J.; Qu, X. Using Multifunctional Peptide Conjugated Au Nanorods for Monitoring β-amyloid Aggregation and Chemo-Photothermal Treatment of Alzheimer’s Disease. Theranostics, 2017, 7(12), 2996-3006.
[http://dx.doi.org/10.7150/thno.18459] [PMID: 28839459]
[54]
Morales-Zavala, F.; Arriagada, H.; Hassan, N.; Velasco, C.; Riveros, A.; Álvarez, A.R.; Minniti, A.N.; Rojas-Silva, X.; Muñoz, L.L.; Vasquez, R.; Rodriguez, K.; Sanchez-Navarro, M.; Giralt, E.; Araya, E.; Aldunate, R.; Kogan, M.J. Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer’s disease. Nanomedicine (Lond.), 2017, 13(7), 2341-2350.
[http://dx.doi.org/10.1016/j.nano.2017.06.013] [PMID: 28673851]
[55]
Gao, N.; Sun, H.; Dong, K.; Ren, J.; Qu, X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry, 2015, 21(2), 829-835.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[56]
Zhang, Y.; Walker, J.B.; Minic, Z.; Liu, F.; Goshgarian, H.; Mao, G. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier. Sci. Rep., 2016, 6, 25794.
[http://dx.doi.org/10.1038/srep25794] [PMID: 27180729]
[57]
Palmal, S.; Maity, A.R.; Singh, B.K.; Basu, S.; Jana, N.R.; Jana, N.R. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry, 2014, 20(20), 6184-6191.
[http://dx.doi.org/10.1002/chem.201400079] [PMID: 24691975]
[58]
Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-Loaded PEG-Gold Nanoparticles Enhanced the Neuroprotection of Anthocyanins in an Aβ1-42 Mouse Model of Alzheimer’s Disease. Mol. Neurobiol., 2017, 54(8), 6490-6506.
[http://dx.doi.org/10.1007/s12035-016-0136-4] [PMID: 27730512]
[59]
Das, T.; Kolli, V.; Karmakar, S.; Sarkar, N. Functionalisation of polyvinylpyrrolidone on gold nanoparticles enhances its anti-amyloidogenic propensity towards hen egg white lysozyme. Biomedicines, 2017, 5(2), 19.
[PMID: 28536362]
[60]
Xiong, N.; Zhao, Y.; Dong, X.; Zheng, J.; Sun, Y. Design of a Molecular Hybrid of Dual Peptide Inhibitors Coupled on AuNPs for Enhanced Inhibition of Amyloid beta-Protein Aggregation and Cytotoxicity. In: Small (Weinheim an der Bergstrasse, Germany); , 2017; 13, .(13)
[61]
Chan, H.M.; Xiao, L.; Yeung, K.M.; Ho, S.L.; Zhao, D.; Chan, W.H.; Li, H.W. Effect of surface-functionalized nanoparticles on the elongation phase of beta-amyloid (1-40) fibrillogenesis. Biomaterials, 2012, 33(18), 4443-4450.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.024] [PMID: 22459190]
[62]
Alvarez, Y.D.; Fauerbach, J.A.; Pellegrotti, J.V.; Jovin, T.M.; Jares-Erijman, E.A.; Stefani, F.D. Influence of gold nanoparticles on the kinetics of α-synuclein aggregation. Nano Lett., 2013, 13(12), 6156-6163.
[http://dx.doi.org/10.1021/nl403490e] [PMID: 24219503]
[63]
Gladytz, A.; Abel, B.; Risselada, H.J. Gold-Induced Fibril Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 11242-11246.
[http://dx.doi.org/10.1002/anie.201605151] [PMID: 27513605]
[64]
Zhang, D.; Neumann, O.; Wang, H.; Yuwono, V.M.; Barhoumi, A.; Perham, M.; Hartgerink, J.D.; Wittung-Stafshede, P.; Halas, N.J. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett., 2009, 9(2), 666-671.
[http://dx.doi.org/10.1021/nl803054h] [PMID: 19199758]
[65]
Barros, H.R.; Kokkinopoulou, M.; Riegel-Vidotti, I.C.; Landfester, K.; Thérien-Aubin, H. Gold nanocolloid-protein interactions and their impact on β-sheet amyloid fibril formation. RSC Advances, 2018, 8(2), 980-986.
[http://dx.doi.org/10.1039/C7RA11219J]
[66]
Dubey, K.; Anand, B.G.; Badhwar, R.; Bagler, G.; Navya, P.N.; Daima, H.K.; Kar, K. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids, 2015, 47(12), 2551-2560.
[http://dx.doi.org/10.1007/s00726-015-2046-6] [PMID: 26193769]
[67]
Sen, S.; Dasgupta, S.; DasGupta, S. Does Surface Chirality of Gold Nanoparticles Affect Fibrillation of HSA? J. Phys. Chem. C, 2017, 121(34), 18935-18946.
[http://dx.doi.org/10.1021/acs.jpcc.7b05354]
[68]
Sanati, M.; Khodagholi, F.; Aminyavari, S.; Ghasemi, F.; Gholami, M.; Kebriaeezadeh, A.; Sabzevari, O.; Hajipour, M.J.; Imani, M.; Mahmoudi, M.; Sharifzadeh, M. Impact of Gold Nanoparticles on Amyloid β-Induced Alzheimer’s Disease in a Rat Animal Model: Involvement of STIM Proteins. ACS Chem. Neurosci., 2019, 10(5), 2299-2309.
[http://dx.doi.org/10.1021/acschemneuro.8b00622] [PMID: 30933476]
[69]
Song, M.; Sun, Y.; Luo, Y.; Zhu, Y.; Liu, Y.; Li, H. Exploring the Mechanism of Inhibition of Au Nanoparticles on the Aggregation of Amyloid-β(16-22) Peptides at the Atom Level by All-Atom Molecular Dynamics. Int. J. Mol. Sci., 2018, 19(6)E1815
[http://dx.doi.org/10.3390/ijms19061815] [PMID: 29925792]
[70]
Araya, E.; Olmedo, I.; Bastus, N.G.; Guerrero, S.; Puntes, V.F.; Giralt, E.; Kogan, M.J. Gold nanoparticles and microwave irradiation inhibit beta-amyloid amyloidogenesis. Nanoscale Res. Lett., 2008, 3(11), 435.
[http://dx.doi.org/10.1007/s11671-008-9178-5]
[71]
Brahmkhatri, V.P.; Sharma, N.; Sunanda, P.; D’Souza, A.; Raghothama, S.; Atreya, H.S. Curcumin nanoconjugate Inhibits aggregation of N-terminal region (Aβ-16) of an amyloid beta peptide. New J. Chem., 2018, 42(24), 19881-19892.
[http://dx.doi.org/10.1039/C8NJ03541E]
[72]
Shilo, M.; Motiei, M.; Hana, P.; Popovtzer, R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale, 2014, 6(4), 2146-2152.
[http://dx.doi.org/10.1039/C3NR04878K] [PMID: 24362586]
[73]
Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M.; Kogan, M.J.; Giralt, E. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials, 2012, 33(29), 7194-7205.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.063] [PMID: 22795856]
[74]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[75]
Schuemann, J.; Berbeco, R.; Chithrani, D.B.; Cho, S.H.; Kumar, R.; McMahon, S.J.; Sridhar, S.; Krishnan, S. Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization. Int. J. Radiat. Oncol. Biol. Phys., 2016, 94(1), 189-205.
[http://dx.doi.org/10.1016/j.ijrobp.2015.09.032] [PMID: 26700713]
[76]
Zanganeh, S.; Spitler, R.; Erfanzadeh, M.; Alkilany, A.M.; Mahmoudi, M. Protein corona: Opportunities and challenges. Int. J. Biochem. Cell Biol., 2016, 75, 143-147.
[http://dx.doi.org/10.1016/j.biocel.2016.01.005] [PMID: 26783938]
[77]
van der Munnik, N.P.; Moss, M.A.; Uline, M.J. Obstacles to translating the promise of nanoparticles into viable amyloid disease therapeutics. Phys. Biol., 2019, 16(2)021002
[http://dx.doi.org/10.1088/1478-3975/aafc66] [PMID: 30620933]
[78]
Benilova, I.; Karran, E.; De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci., 2012, 15(3), 349-357.
[http://dx.doi.org/10.1038/nn.3028] [PMID: 22286176]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy