Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Expression of Escherichia coli Heat-Labile Enterotoxin B Subunit in Centella (Centella asiatica (L.) Urban) via Biolistic Transformation

Author(s): Nguyen H. Loc*, Nghiem V. Tung, Phan T.A. Kim and Moon S. Yang

Volume 21, Issue 10, 2020

Page: [973 - 979] Pages: 7

DOI: 10.2174/1389201021666200226094150

Price: $65

Abstract

Background: Heat-Labile enterotoxin B subunit (LTB) produced by Escherichia coli, a non-toxic protein subunit with potential biological properties, is a powerful mucosal and parenteral adjuvant which can induce a strong immune response against co-administered antigens.

Objective: In the present study, LTB protein, encoded by the optimized ltb (also known synthetic ltb, s-ltb) gene in centella plant (Centella asiatica) for use as an antigen, has been discussed.

Methods: The s-ltb gene was cloned into a plant expression vector, pMYO51, adjacent to the CaMV 35S promoter and was then introduced into centella plant by biolistic transformation. PCR amplification was conducted to determine the presence of s-ltb gene in the transgenic centella plant. The expression of s-ltb gene was analyzed by immunoblotting and quantified by ELISA. In vitro activity of LTB protein was determined by GM1-ELISA.

Results: PCR amplification has found seven transgenic centella individuals. However, only five of them produced LTB protein. ELISA analysis showed that the highest amount of LTB protein detected in transgenic centella leaves was about 0.8% of the total soluble protein. GM1-ELISA assay indicated that plant LTB protein bound specifically to GM1-ganglioside, suggesting that the LTB subunits formed active pentamers.

Conclusion: The s-ltb gene that was successfully transformed into centella plants by the biolistic method has produced a relatively high amount of plant LTB protein in the pentameric quaternary structure that has GM1-ganglioside binding affinity, a receptor on the intestinal epithelial membrane.

Keywords: Biolistic transformation, Centella asiatica, heat-labile enterotoxin B subunit of E. coli (LTB), plant-based vaccine, synthetic ltb gene (s-ltb).

Graphical Abstract
[1]
Rezaee, M.A.; Rezaee, A.; Moazzeni, S.M.; Salmanian, A.H.; Yasuda, Y.; Tochikubo, K.; Pirayeh, S.N.; Arzanlou, M. Expression of Escherichia coli Heat-Labile Enterotoxin B subunit (LTB) in Saccharomyces cerevisiae. J. Microbiol., 2005, 43(4), 354-360.
[PMID: 16145550]
[2]
Duan, Q.; Xia, P.; Nandre, R.; Zhang, W.; Zhu, G. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Front. Cell. Infect. Microbiol., 2019, 9, 292.
[http://dx.doi.org/10.3389/fcimb.2019.00292] [PMID: 31456954]
[3]
Kim, T.G.; Kim, M.Y.; Kim, B.G.; Kang, T.J.; Kim, Y.S.; Jang, Y.S.; Arntzen, C.J.; Yang, M.S. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Protein Expr. Purif., 2007, 51(1), 22-27.
[http://dx.doi.org/10.1016/j.pep.2006.05.024] [PMID: 16919472]
[4]
Salimian, J.; Salmanian, A.; Khalesi, R.; Mohseni, M.; Moazzeni, S. Antibody against recombinant heat labile enterotoxin B subunit (rLTB) could block LT binding to ganglioside M1 receptor. Iran. J. Microbiol., 2010, 2(3), 120-127.
[PMID: 22347560]
[5]
Zhang, W.; Sack, D.A. Current progress in developing subunit vaccines against enterotoxigenic Escherichia coli-associated diarrhea. Clin. Vaccine Immunol., 2015, 22(9), 983-991.
[http://dx.doi.org/10.1128/CVI.00224-15] [PMID: 26135975]
[6]
Guidry, J.J.; Cárdenas, L.; Cheng, E.; Clements, J.D. Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli heat-labile enterotoxin. Infect. Immun., 1997, 65(12), 4943-4950.
[http://dx.doi.org/10.1128/IAI.65.12.4943-4950.1997] [PMID: 9393780]
[7]
Fleckenstein, J.M.; Lindler, L.E.; Elsinghorst, E.A.; Dale, J.B. Identification of a gene within a pathogenicity island of enterotoxigenic Escherichia coli H10407 required for maximal secretion of the heat-labile enterotoxin. Infect. Immun., 2000, 68(5), 2766-2774.
[http://dx.doi.org/10.1128/IAI.68.5.2766-2774.2000] [PMID: 10768971]
[8]
Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev., 1998, 11(1), 142-201.
[http://dx.doi.org/10.1128/CMR.11.1.142] [PMID: 9457432]
[9]
Kozuka, S.; Yasuda, Y.; Isaka, M.; Masaki, N.; Taniguchi, T.; Matano, K.; Moriyama, A.; Ohkuma, K.; Goto, N.; Udaka, S.; Tochikubo, K. Efficient extracellular production of recombinant Escherichia coli heat-labile enterotoxin B subunit by using the expression/secretion system of Bacillus brevis and its mucosal immunoadjuvanticity. Vaccine, 2000, 18(17), 1730-1737.
[http://dx.doi.org/10.1016/S0264-410X(99)00547-2] [PMID: 10699320]
[10]
Williams, N.A.; Hirst, T.R.; Nashar, T.O. Immune modulation by the cholera-like enterotoxins: From adjuvant to therapeutic. Immunol. Today, 1999, 20(2), 95-101.
[http://dx.doi.org/10.1016/S0167-5699(98)01397-8] [PMID: 10098329]
[11]
Tochikubo, K.; Yasuda, Y. Principles of mucosal immunity and development of mucosal vaccines using cholera toxin B subunit and its related adjuvants. Rec. Res. Devel. Microbiol., 2000, 4, 387-405.
[12]
Chikwamba, R.; McMurray, J.; Shou, H.; Frame, B.; Pegg, S.E.; Scott, P.; Mason, H.; Wang, K. Expression of a synthetic E. coli heat-labile enterotoxin B sub-unit (LT-B) in maize. Mol. Breed., 2002, 10, 253-265.
[http://dx.doi.org/10.1023/A:1020509915672]
[13]
Kang, T.J.; Han, S.C.; Yang, M.S. Expression of the B subunit of E. coli heat-labile enterotoxin in tobacco using a herbicide resistance gene as a selection marker. Plant Cell Tissue Organ Cult., 2005, 81, 165-174.
[http://dx.doi.org/10.1007/s11240-004-4734-x]
[14]
Oszvald, M.; Kang, T.J.; Jenes, B.; Kim, T.G.; Tamas, L.; Yang, M.S. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic rice (Oryza sativa L.). Biotechnol. Bioprocess Eng.; BBE, 2007, 12, 676-683.
[http://dx.doi.org/10.1007/BF02931085]
[15]
Kim, T.G.; Kim, B.G.; Kim, M.Y.; Choi, J.K.; Jung, E.S.; Yang, M.S. Expression and immunogenicity of enterotoxigenic Escherichia coli heat-labile toxin B subunit in transgenic rice callus. Mol. Biotechnol., 2010, 44(1), 14-21.
[http://dx.doi.org/10.1007/s12033-009-9200-x] [PMID: 19657748]
[16]
Soh, H.S.; Chung, H.Y.; Lee, H.H.; Ajjappala, H.; Jang, K.; Park, J.H.; Sim, J.S.; Lee, G.Y.; Lee, H.J.; Han, Y.H.; Lim, J.W.; Choi, I.; Chung, I.S.; Hahn, B.S. Expression and functional validation of Heat-Labile Enterotoxin B (LTB) and Cholera Toxin B (CTB) subunits in transgenic rice (Oryza sativa). Springerplus, 2015, 4, 148.
[http://dx.doi.org/10.1186/s40064-015-0847-4] [PMID: 25853032]
[17]
Lim, J.G.; Kim, J.A.; Chung, H.J.; Kim, T.G.; Kim, J.M.; Lee, K.R.; Park, S.M.; Yang, M.S.; Kim, D.H. Expression of functional pentameric heat-labile enterotoxin B subunit of Escherichia coli in Saccharomyces cerevisiae. J. Microbiol. Biotechnol., 2009, 19(5), 502-510.
[http://dx.doi.org/10.4014/jmb.0803.207] [PMID: 19494699]
[18]
Kim, J.M.; Park, S.M.; Kim, J.A.; Park, J.A.; Yi, M.H.; Kim, N.S.; Bae, J.L.; Park, S.G.; Jang, Y.S.; Yang, M.S.; Kim, D.H. Functional pentameric formation via coexpression of the Escherichia coli heat-labile enterotoxin B subunit and its fusion protein subunit with a neutralizing epitope of ApxIIA exotoxin improves the mucosal immunogenicity and protection against challenge by Actinobacillus pleuropneumoniae. Clin. Vaccine Immunol., 2011, 18(12), 2168-2177.
[http://dx.doi.org/10.1128/CVI.05230-11] [PMID: 22030372]
[19]
Loc, N.H.; Bach, N.H.; Kim, T.G.; Yang, M.S. Tissue culture and expression of Escherichia coli heat-labile enterotoxin B subunit in transgenic Peperomia pellucida. Protein Expr. Purif., 2010, 72(1), 82-86.
[http://dx.doi.org/10.1016/j.pep.2010.02.010] [PMID: 20176109]
[20]
Loc, N.H.; Long, D.T.; Kim, T.G.; Yang, M.S. Expression of Escherichia coli heat-labile enterotoxin B subunit in transgenic tomato (Lycopersicon esculentum L.) fruit. Czech J. Genet. Plant Breed., 2014, 50, 26-31.
[http://dx.doi.org/10.17221/77/2013-CJGPB]
[21]
Loc, N.H.; Song, N.V.; Long, D.T.; Kim, T.G.; Yang, M.S. In vivo evaluation of transgenic watercress containing gene encoding Escherichia coli heat-labile toxin B subunit. J. Plant Biochem. Biotechnol., 2015, 24, 129-134.
[http://dx.doi.org/10.1007/s13562-013-0244-4]
[22]
Cunha, C.E.P.D.; Moreira, C.; Rocha, A.D.S.R.; Finger, P.F.; Magalhães, C.G.; Ferreira, M.R.A.; Dellagostin, O.A.; Moreira, Â.N.; Conceição, F.R. Parenteral adjuvant potential of recombinant B subunit of Escherichia coli heat-labile enterotoxin. Mem. Inst. Oswaldo Cruz, 2017, 112(12), 812-816.
[http://dx.doi.org/10.1590/0074-02760170133] [PMID: 29211241]
[23]
Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 1962, 15, 473-497.
[http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x]
[24]
Kang, T.J.; Han, S.C.; Jang, M.O.; Kang, K.H.; Jang, Y.S.; Yang, M.S. Enhanced expression of B-subunit of Escherichia coli heat-labile enterotoxin in tobacco by optimization of coding sequence. Appl. Biochem. Biotechnol., 2004, 117(3), 175-187.
[http://dx.doi.org/10.1385/ABAB:117:3:175] [PMID: 15304769]
[25]
Babu, K.N.; Rajesh, M.K.; Samsudeen, K.; Minoo, D.; Suraby, E.J.; Anupama, K.; Ritto, P. Randomly Amplified Polymorphic DNA (RAPD) and derived techniques. Methods Mol. Biol., 2014, 1115, 191-209.
[http://dx.doi.org/10.1007/978-1-62703-767-9_10] [PMID: 24415476]
[26]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[27]
Dekeyser, R.A.; Claes, B.; De Rycke, R.; Habets, M.E.; Van Montagu, M.C.; Caplan, A.B. Transient gene expression in intact and organized rice tissues. Plant Cell, 1990, 2(7), 591-602.
[http://dx.doi.org/10.2307/3869123] [PMID: 12354966]
[28]
Ravin, N.V.; Kuprianov, V.V.; Zamchuk, L.A.; Kochetov, A.V.; Dorokhov, Y.L.; Atabekov, J.G.; Skryabin, K.G. Highly efficient expression of Escherichia coli heat-labile enterotoxin B subunit in plants using potato virus X-based vector. Biochemistry (Mosc.), 2008, 73(10), 1108-1113.
[http://dx.doi.org/10.1134/S0006297908100064] [PMID: 18991556]
[29]
Tiwari, K.N.; Sharma, N.C.; Tiwari, V.; Singh, B.D. Micropropagation of Centella asiatica (L.), a valuable medicinal herb. Plant Cell Tissue Organ Cult., 2000, 63, 179-185.
[http://dx.doi.org/10.1023/A:1010690603095]
[30]
Kumari, R.; Abbas, S.A.; Singh, A. Micropropagation of Centella asiatica through tissue culture an attempt to develop an efficient protocol for large scale production. Indian J. Soc. Res., 2018, 8, 41-45.
[31]
Das, R.; Hasan, M.F.; Hossain, M.S.; Rahman, M. Micropropagation of Centella asiatica L. an important medicinal herb. Progress. Agric., 2008, 19, 51-56.
[http://dx.doi.org/10.3329/pa.v19i2.16928]
[32]
Kumar, M.S. Rapid in vitro multiplication of Centella asiatica (L). Urban. Through multiple shoots from leaf explants. Euro. J. Biotechnol. Biosci., 2017, 5, 41-47.
[33]
Joshee, N.; Biswas, B.K.; Yadav, A.K. Somatic embryogenesis and plant development in Centella asiatica L., A highly prized medicinal plant of the tropics. HortScience, 2007, 42, 633-637.
[http://dx.doi.org/10.21273/HORTSCI.42.3.633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy