Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update

Author(s): George I. Lambrou*, Maria Adamaki , Kyriaki Hatziagapiou and Spiros Vlahopoulos*

Volume 12, Issue 2, 2020

Page: [131 - 149] Pages: 19

DOI: 10.2174/2589977512666200220122650

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic.

Aim: The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon.

Methods: An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved.

Results: Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways.

Conclusion: Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.

Keywords: Glucocorticoids, prednisolone, acute lymphoblastic leukemia, glucocorticoid-induced apoptosis resistance, apoptosis, gene expression, RelA.

Graphical Abstract
[1]
Lauten M, Stanulla M, Zimmermann M, Welte K, Riehm H, Schrappe M. Clinical outcome of patients with childhood acute lymphoblastic leukaemia and an initial leukaemic blood blast count of less than 1000 per microliter. Klin Padiatr 2001; 213(4): 169-74.
[http://dx.doi.org/10.1055/s-2001-16848] [PMID: 11528550]
[2]
Behbehani GK. Immunophenotyping by Mass Cytometry Meth in mol bioclif, NJ 2019; 2032: 31-58.
[http://dx.doi.org/10.1007/978-1-4939-9650-6_2]
[3]
Della Starza I, Chiaretti S, De Propris MS, et al. Minimal residual disease in acute lymphoblastic leukemia: technical and clinical advances. Front Oncol 2019; 9: 726.
[http://dx.doi.org/10.3389/fonc.2019.00726] [PMID: 31448230]
[4]
DiGiuseppe JA, Cardinali JL. Immunophenotyping of acute lymphoblastic leukemia Meth in mol bio 2019; 2032: 297-310.
[5]
Schrappe M. Prognostic factors in childhood acute lymphoblastic leukemia. Indian J Pediatr 2003; 70(10): 817-24.
[http://dx.doi.org/10.1007/978-1-4939-9650-6_16]
[6]
Thastrup M, Marquart HV, Levinsen M, et al. Flow cytometric detection of leukemic blasts in cerebrospinal fluid predicts risk of relapse in childhood acute lymphoblastic leukemia: a nordic society of pediatric hematology and oncology study. Leukemia 2019.
[PMID: 31534171]
[7]
Gandemer V, Pochon C, Oger E, et al. Clinical value of pre-transplant minimal residual disease in childhood lymphoblastic leukaemia: the results of the French minimal residual disease-guided protocol. Br J Haematol 2014; 165(3): 392-401.
[http://dx.doi.org/10.1111/bjh.12749] [PMID: 24479958]
[8]
Woo HY, Kim DW, Park H, Seong KW, Koo HH, Kim SH. Molecular cytogenetic analysis of gene rearrangements in childhood acute lymphoblastic leukemia. J Korean Med Sci 2005; 20(1): 36-41.
[http://dx.doi.org/10.3346/jkms.2005.20.1.36] [PMID: 15716599]
[9]
Nordgren A, Schoumans J, Söderhäll S, Nordenskjöld M, Blennow E. Interphase fluorescence in situ hybridization and spectral karyotyping reveals hidden genetic aberrations in children with acute lymphoblastic leukaemia and a normal banded karyotype. Br J Haematol 2001; 114(4): 786-93.
[http://dx.doi.org/10.1046/j.1365-2141.2001.03008.x ] [PMID: 11564064]
[10]
Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439): 531-7.
[http://dx.doi.org/10.1126/science.286.5439.531] [PMID: 10521349]
[11]
Glazko G, Zybailov B, Emmert-Streib F, Baranova A, Rahmatallah Y. Proteome-transcriptome alignment of molecular portraits achieved by self-contained gene set analysis: Consensus colon cancer subtypes case study. PLoS One 2019; 14(8)e0221444
[http://dx.doi.org/10.1371/journal.pone.0221444] [PMID: 31437237]
[12]
Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 1999; 96(6): 2907-12.
[http://dx.doi.org/10.1073/pnas.96.6.2907] [PMID: 10077610]
[13]
Locati LD, Serafini MS, Iannò MF, et al. Mining of self-organizing map gene-expression portraits reveals prognostic stratification of hpv-positive head and neck squamous cell carcinoma. Cancers (Basel) 2019; 11(8)E1057
[http://dx.doi.org/10.3390/cancers11081057] [PMID: 31357501]
[14]
Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000; 16(10): 906-14.
[http://dx.doi.org/10.1093/bioinformatics/16.10.906 ] [PMID: 11120680]
[15]
Park JS, Choi SB, Kim HJ, et al. Intraoperative diagnosis support tool for serous ovarian tumors based on microarray data using multicategory machine learning. Inter J Gyne Can 2016; 26(1): 104-3.
[http://dx.doi.org/10.1097/IGC.0000000000000566]
[16]
Sitwala KV, Dandekar MN, Hess JL. HOX proteins and leukemia. Int J Clin Exp Pathol 2008; 1(6): 461-74.
[PMID: 18787682]
[17]
Bassan R, Intermesoli T, Scattolin A, et al. minimal residual disease assessment and risk-based therapy in acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk 2017; 17S: S2-9.
[http://dx.doi.org/10.1016/j.clml.2017.02.019] [PMID: 28760298]
[18]
Gökbuget N. How should we treat a patient with relapsed Ph-negative B-ALL and what novel approaches are being investigated? Best Pract Res Clin Haematol 2017; 30(3): 261-74.
[http://dx.doi.org/10.1016/j.beha.2017.07.010] [PMID: 29050699]
[19]
Schrappe M, Aricò M, Harbott J, et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: Good initial steroid response allows early prediction of a favorable treatment outcome. Blood 1998; 92(8): 2730-41.
[PMID: 9763557]
[20]
Biondi A, Cario G, De Lorenzo P, et al. Long-term follow up of pediatric philadelphia positive acute lymphoblastic leukemia treated with the esphall2004 study: High white blood cell count at diagnosis is the strongest prognostic factor. Haematologica 2019; 104(1): e13-6.
[http://dx.doi.org/10.3324/haematol.2018.199422] [PMID: 30213832]
[21]
Dördelmann M, Reiter A, Borkhardt A, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 94(4): 1209-17.
[http://dx.doi.org/10.1182/blood.V94.4.1209] [PMID: 10438708]
[22]
Follini E, Marchesini M, Roti G. Strategies to overcome resistance mechanisms in t-cell acute lymphoblastic leukemia. Int J Mol Sci 2019; 20(12)E3021
[http://dx.doi.org/10.3390/ijms20123021] [PMID: 31226848]
[23]
Creutzig U, Zimmermann M, Reinhardt D, et al. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer 2016; 122(24): 3821-30.
[http://dx.doi.org/10.1002/cncr.30220] [PMID: 27529519]
[24]
Ma SK, Wan TS, Chan LC. Cytogenetics and molecular genetics of childhood leukemia. Hematol Oncol 1999; 17(3): 91-105.
[http://dx.doi.org/10.1002/(SICI)1099-1069(199909)17:3<91:AID-HON643>3.0.CO;2-Y] [PMID: 10641030]
[25]
Kebriaei P, Anastasi J, Larson RA. Acute lymphoblastic leukaemia: Diagnosis and classification. Best Pract Res Clin Haematol 2002; 15(4): 597-621.
[http://dx.doi.org/10.1053/beha.2002.0224] [PMID: 12617866]
[26]
Gmidène A, Sennana H, Elghezal H, et al. Cytogenetic analysis of 298 newly diagnosed cases of acute lymphoblastic leukaemia in Tunisia. Hematol Oncol 2008; 26(2): 91-7.
[http://dx.doi.org/10.1002/hon.840] [PMID: 18271061]
[27]
Almeida RS, Costa E, Silva M, Coutinho LL, et al. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia. Hematol Oncol 2019; 37(1): 103-12.
[http://dx.doi.org/10.1002/hon.2567] [PMID: 30393877]
[28]
Lejman M, Zawitkowska J, Styka B, et al. Microarray testing as an efficient tool to redefine hyperdiploid paediatric B-cell precursor acute lymphoblastic leukaemia patients. Leuk Res 2019.83106163
[http://dx.doi.org/10.1016/j.leukres.2019.05.013] [PMID: 31202078]
[29]
Yang M, Vesterlund M, Siavelis I, et al. Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun 2019; 10(1): 1519.
[http://dx.doi.org/10.1038/s41467-019-09469-3] [PMID: 30944321]
[30]
Bereza W, Szczepanek J, Laskowska J, Tretyn A. New candidate genes for lack of sensitivity to therapy in pediatric leukemias. Curr Cancer Drug Targets 2017; 17(4): 333-43.
[http://dx.doi.org/10.2174/1568009616666161208150148] [PMID: 27928969]
[31]
Kampen KR, Fancello L, Girardi T, et al. Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nat Commun 2019; 10(1): 2542.
[http://dx.doi.org/10.1038/s41467-019-10508-2] [PMID: 31186416]
[32]
Kaspers GJ, Pieters R, Van Zantwijk CH, Van Wering ER, Van Der Does-Van Den Berg A, Veerman AJ. Prednisolone resistance in childhood acute lymphoblastic leukemia: vitro-vivo correlations and cross-resistance to other drugs. Blood 1998; 92(1): 259-66.
[http://dx.doi.org/10.1182/blood.V92.1.259.413k21_259_266] [PMID: 9639525]
[33]
Pieters R, den Boer ML, Durian M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia--implications for treatment of infants. Leukemia 1998; 12(9): 1344-8.
[http://dx.doi.org/10.1038/sj.leu.2401129] [PMID: 9737681]
[34]
Tissing WJ, Meijerink JP, den Boer ML, et al. Genetic variations in the glucocorticoid receptor gene are not related to glucocorticoid resistance in childhood acute lymphoblastic leukemia. Clin Cancer Res 2005; 11(16): 6050-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2097 ] [PMID: 16115950]
[35]
Karl M, Lamberts SW, Detera-Wadleigh SD, et al. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J Clin Endocrinol Metab 1993; 76(3): 683-9.
[PMID: 8445027]
[36]
Li M, Shen Y, Halloran BP, Baumann BD, Miller K, Wronski TJ. Skeletal response to corticosteroid deficiency and excess in growing male rats. Bone 1996; 19(2): 81-8.
[http://dx.doi.org/10.1016/8756-3282(96)00170-6] [PMID: 8853849]
[37]
Pruett SB, Fan R, Zheng Q. Characterization of glucocorticoid receptor translocation, cytoplasmic IkappaB, nuclear NFkappaB, and activation of NFkappaB in T lymphocytes exposed to stress-inducible concentrations of corticosterone in vivo. Int Immunopharmacol 2003; 3(1): 1-16.
[http://dx.doi.org/10.1016/S1567-5769(02)00081-4 ] [PMID: 12538030]
[38]
Hongo T, Yajima S, Sakurai M, Horikoshi Y, Hanada R. In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia. Blood 1997; 89(8): 2959-65.
[http://dx.doi.org/10.1182/blood.V89.8.2959] [PMID: 9108416]
[39]
Den Boer ML, Harms DO, Pieters R, et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003; 21(17): 3262-8.
[http://dx.doi.org/10.1200/JCO.2003.11.031] [PMID: 12947061]
[40]
Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L. Pharmacogenomic and pharmacotranscriptomic profiling of childhood acute lymphoblastic leukemia: paving the way to personalized treatment. Genes (Basel) 2019; 10(3)E191
[http://dx.doi.org/10.3390/genes10030191] [PMID: 30832275]
[41]
Reiter A. Therapy of B-cell acute lymphoblastic leukaemia in childhood: the BFM experience. Baillieres Clin Haematol 1994; 7(2): 321-37.
[http://dx.doi.org/10.1016/S0950-3536(05)80205-7] [PMID: 7803904]
[42]
Creutzig U, Zimmermann M, Dworzak MN, Ritter J, Schellong G, Reinhardt D. Development of a curative treatment within the AML-BFM studies. Klin Padiatr 2013; 225(Suppl. 1): S79-86.
[http://dx.doi.org/10.1055/s-0033-1337968] [PMID: 23700063]
[43]
Johnson LK, Lan NC, Baxter JD. Stimulation and inhibition of cellular functions by glucocorticoids. correlations with rapid influences on chromatin structure. J Biol Chem 1979; 254(16): 7785-94.
[PMID: 468788]
[44]
Genty V, El-Khoury V, Liautaud-Roger F, Dine G, Dufer J. Nuclear chromatin patterns in 3 glucocorticoid-resistant RPMI 8226 human myeloma cell sub-lines: correlations with cell growth and immunological phenotype. Cancer Biol Ther 2005; 4(8): 832-9.
[http://dx.doi.org/10.4161/cbt.4.8.1890] [PMID: 16210912]
[45]
Steinbach D, Viehmann S, Zintl F, Gruhn B. PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 2002; 138(1): 89-91.
[http://dx.doi.org/10.1016/S0165-4608(02)00582-4 ] [PMID: 12419593]
[46]
Lambrou GI, Vlahopoulos S, Papathanasiou C, et al. Prednisolone exerts late mitogenic and biphasic effects on resistant acute lymphoblastic leukemia cells: Relation to early gene expression. Leuk Res 2009; 33(12): 1684-95.
[http://dx.doi.org/10.1016/j.leukres.2009.04.018] [PMID: 19450877]
[47]
Ekert PG, Vaux DL. The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol 2005; 17(6): 626-30.
[http://dx.doi.org/10.1016/j.ceb.2005.09.001] [PMID: 16219456]
[48]
Liu Y, Corcoran M, Rasool O, et al. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene 1997; 15(20): 2463-73.
[http://dx.doi.org/10.1038/sj.onc.1201643] [PMID: 9395242]
[49]
Vahteristo P, Syrjäkoski K, Heikkinen T, et al. BARD1 variants Cys557Ser and Val507Met in breast cancer predisposition. Eur J Hum Genet 2006; 14(2): 167-72.
[http://dx.doi.org/10.1038/sj.ejhg.5201542] [PMID: 16333312]
[50]
Ni F, Yan CY, Zhou S, et al. Repression of GRIM19 expression potentiates cisplatin chemoresistance in advanced bladder cancer cells via disrupting ubiquitination-mediated Bcl-xL degradation. Cancer Chemother Pharmacol 2018; 82(4): 593-605.
[http://dx.doi.org/10.1007/s00280-018-3651-3] [PMID: 30032449]
[51]
Chen W, Liu Q, Fu B, Liu K, Jiang W. Overexpression of GRIM-19 accelerates radiation-induced osteosarcoma cells apoptosis by p53 stabilization. Life Sci 2018; 208: 232-8.
[http://dx.doi.org/10.1016/j.lfs.2018.07.015] [PMID: 30005830]
[52]
Ilelis F, do Amaral NS, Alves MR, et al. Prognostic value of GRIM-19, NF-κB and IKK2 in patients with high-grade serous ovarian cancer. Pathol Res Pract 2018; 214(2): 187-94.
[http://dx.doi.org/10.1016/j.prp.2017.12.002] [PMID: 29254797]
[53]
Máximo V, Lima J, Soares P, Silva A, Bento I, Sobrinho-Simões M. GRIM-19 in health and disease. Adv Anat Pathol 2008; 15(1): 46-53.
[http://dx.doi.org/10.1097/PAP.0b013e31815e5258 ] [PMID: 18156812]
[54]
Huang G, Lu H, Hao A, et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol 2004; 24(19): 8447-56.
[http://dx.doi.org/10.1128/MCB.24.19.8447-8456.2004 ] [PMID: 15367666]
[55]
Barnich N, Hisamatsu T, Aguirre JE, Xavier R, Reinecker HC, Podolsky DK. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J Biol Chem 2005; 280(19): 19021-6.
[http://dx.doi.org/10.1074/jbc.M413776200] [PMID: 15753091]
[56]
Lu H, Cao X. GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol Biol Cell 2008; 19(5): 1893-902.
[http://dx.doi.org/10.1091/mbc.e07-07-0683] [PMID: 18287540]
[57]
Lee S, Luo W, Shah T, et al. The effects of DLEU1 gene expression in Burkitt Lymphoma (BL): Potential mechanism of chemoimmunotherapy resistance in BL. Oncotarget 2017; 8(17): 27839-53.
[http://dx.doi.org/10.18632/oncotarget.15711] [PMID: 28427156]
[58]
Wang J, Quan X, Peng D, Hu G. Long non-coding RNA DLEU1 promotes cell proliferation of glioblastoma multiforme. Mol Med Rep 2019; 20(2): 1873-82.
[http://dx.doi.org/10.3892/mmr.2019.10428] [PMID: 31257517]
[59]
Hoffmann TJ, Passarelli MN, Graff RE, et al. Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer. Nat Commun 2017; 8: 14248.
[http://dx.doi.org/10.1038/ncomms14248] [PMID: 28139693]
[60]
Lepore I, Dell’Aversana C, Pilyugin M, et al. HDAC inhibitors repress BARD1 isoform expression in acute myeloid leukemia cells via activation of miR-19a and/or b. PLoS One 2013; 8(12)e83018
[http://dx.doi.org/10.1371/journal.pone.0083018] [PMID: 24349422]
[61]
Kwei KA, Finch JS, Ranger-Moore J, Bowden GT. The role of Rac1 in maintaining malignant phenotype of mouse skin tumor cells. Cancer Lett 2006; 231(2): 326-38.
[http://dx.doi.org/10.1016/j.canlet.2005.02.031] [PMID: 15893875]
[62]
Haditsch U, Anderson MP, Freewoman J, et al. Neuronal Rac1 is required for learning-evoked neurogenesis. J Neurosci 2013; 33(30): 12229-41.
[http://dx.doi.org/10.1523/JNEUROSCI.2939-12.2013 ] [PMID: 23884931]
[63]
Wallace AD, Wheeler TT, Young DA. Inducibility of E4BP4 suggests a novel mechanism of negative gene regulation by glucocorticoids. Biochem Biophys Res Commun 1997; 232(2): 403-6.
[http://dx.doi.org/10.1006/bbrc.1997.6206] [PMID: 9125190]
[64]
Beach JA, Nary LJ, Hirakawa Y, Holland E, Hovanessian R, Medh RD. E4BP4 facilitates glucocorticoid-evoked apoptosis of human leukemic CEM cells via upregulation of Bim. J Mol Signal 2011; 6(1): 13.
[http://dx.doi.org/10.1186/1750-2187-6-13] [PMID: 21975218]
[65]
Kurihara N, Menaa C, Maeda H, Haile DJ, Reddy SV. Osteoclast-stimulating factor interacts with the spinal muscular atrophy gene product to stimulate osteoclast formation. J Biol Chem 2001; 276(44): 41035-9.
[http://dx.doi.org/10.1074/jbc.M100233200] [PMID: 11551898]
[66]
Shanmugarajan S, Swoboda KJ, Iannaccone ST, Ries WL, Maria BL, Reddy SV. Congenital bone fractures in spinal muscular atrophy: functional role for SMN protein in bone remodeling. J Child Neurol 2007; 22(8): 967-73.
[http://dx.doi.org/10.1177/0883073807305664] [PMID: 17761651]
[67]
Reddy S, Devlin R, Menaa C, et al. Isolation and characterization of a cDNA clone encoding a novel peptide (OSF) that enhances osteoclast formation and bone resorption. J Cell Physiol 1998; 177(4): 636-45.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199812)177 ] [PMID: 10092216]
[68]
Garrett IR, Durie BG, Nedwin GE, et al. Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N Engl J Med 1987; 317(9): 526-32.
[http://dx.doi.org/10.1056/NEJM198708273170902 ] [PMID: 3497347]
[69]
Nwabuko OC, Igbigbi EE, Chukwuonye II, Nnoli MA. Multiple myeloma in Niger Delta, Nigeria: complications and the outcome of palliative interventions. Cancer Manag Res 2017; 9: 189-96.
[http://dx.doi.org/10.2147/CMAR.S126136] [PMID: 28579833]
[70]
Illert AL, Albers C, Kreutmair S, et al. Grb10 is involved in BCR-ABL-positive leukemia in mice. Leukemia 2015; 29(4): 858-68.
[http://dx.doi.org/10.1038/leu.2014.283] [PMID: 25249015]
[71]
Kazi JU, Rönnstrand L. FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol Oncol 2013; 7(3): 402-18.
[http://dx.doi.org/10.1016/j.molonc.2012.11.003] [PMID: 23246379]
[72]
Kebache S, Ash J, Annis MG, et al. Grb10 and active Raf-1 kinase promote Bad-dependent cell survival. J Biol Chem 2007; 282(30): 21873-83.
[http://dx.doi.org/10.1074/jbc.M611066200] [PMID: 17535812]
[73]
Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA. Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators. Mol Cell Endocrinol 2012; 351(2): 142-51.
[http://dx.doi.org/10.1016/j.mce.2012.01.003] [PMID: 22273806]
[74]
Casas S, Ollila J, Aventín A, Vihinen M, Sierra J, Knuutila S. Changes in apoptosis-related pathways in acute myelocytic leukemia. Cancer Genet Cytogenet 2003; 146(2): 89-101.
[http://dx.doi.org/10.1016/S0165-4608(03)00102-X ] [PMID: 14553942]
[75]
Gomez N, Erazo T, Lizcano JM. ERK5 and cell proliferation: nuclear localization is what matters. Front Cell Dev Biol 2016; 4: 105.
[http://dx.doi.org/10.3389/fcell.2016.00105] [PMID: 27713878]
[76]
Nantel A, Mohammad-Ali K, Sherk J, Posner BI, Thomas DY. Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases. J Biol Chem 1998; 273(17): 10475-84.
[http://dx.doi.org/10.1074/jbc.273.17.10475] [PMID: 9553107]
[77]
Procaccia S, Ordan M, Cohen I, Bendetz-Nezer S, Seger R. Direct binding of MEK1 and MEK2 to AKT induces Foxo1 phosphorylation, cellular migration and metastasis. Sci Rep 2017; 7: 43078.
[http://dx.doi.org/10.1038/srep43078] [PMID: 28225038]
[78]
Yoon SK, Sung SK, Lee DH, Kim HW. Tissue inhibitor of metalloproteinase-1 (timp-1) and il-23 induced by polysaccharide of the black hoof medicinal mushroom, m (agaricomycetes). Int J Med Mushrooms 2017; 19(3): 213-23.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i3.30] [PMID: 28605336]
[79]
Loging WT, Reisman D. Inhibition of the putative tumor suppressor gene TIMP-3 by tumor-derived p53 mutants and wild type p53. Oncogene 1999; 18(52): 7608-15.
[http://dx.doi.org/10.1038/sj.onc.1203135] [PMID: 10602522]
[80]
Destouches D, Huet E, Sader M, et al. Multivalent pseudopeptides targeting cell surface nucleoproteins inhibit cancer cell invasion through tissue inhibitor of metalloproteinases 3 (TIMP-3) release. J Biol Chem 2012; 287(52): 43685-93.
[http://dx.doi.org/10.1074/jbc.M112.380402] [PMID: 23109338]
[81]
Hua B, Tamamori-Adachi M, Luo Y, et al. A splice variant of stress response gene ATF3 counteracts NF-kappaB-dependent antiapoptosis through inhibiting recruitment of CREB-binding protein/p300 coactivator. J Biol Chem 2006; 281(3): 1620-9.
[http://dx.doi.org/10.1074/jbc.M508471200] [PMID: 16291753]
[82]
Diop F, Moia R, Favini C, Spaccarotella E, De Paoli L, Bruscaggin A, et al. Biological and clinical implications of BIRC3 mutations in chronic lymphocytic leukemia. Haematologica 2019.
[PMID: 31371416]
[83]
Medh RD, Webb MS, Miller AL, et al. Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics 2003; 81(6): 543-55.
[http://dx.doi.org/10.1016/S0888-7543(03)00045-4 ] [PMID: 12782123]
[84]
Kivivuori SM, Siitonen S, Porkka K, Vettenranta K, Alitalo R, Saarinen-Pihkala U. Expression of vascular endothelial growth factor receptor 3 and Tie1 tyrosine kinase receptor on acute leukemia cells. Pediatr Blood Cancer 2007; 48(4): 387-92.
[http://dx.doi.org/10.1002/pbc.20857] [PMID: 16685739]
[85]
Kontos CD, Cha EH, York JD, Peters KG. The endothelial receptor tyrosine kinase Tie1 activates phosphatidylinositol 3-kinase and Akt to inhibit apoptosis. Mol Cell Biol 2002; 22(6): 1704-13.
[http://dx.doi.org/10.1128/MCB.22.6.1704-1713.2002 ] [PMID: 11865050]
[86]
García-Aranda M, Redondo M. Targeting Protein Kinases to Enhance the Response to anti-PD-1/PD-L1 Immunotherapy. Int J Mol Sci 2019; 20(9)E2296
[http://dx.doi.org/10.3390/ijms20092296] [PMID: 31075880]
[87]
Müller-Tidow C, Schwäble J, Steffen B, et al. High-throughput analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential novel drug targets. Clin Cancer Res 2004; 10(4): 1241-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-0954-03 ] [PMID: 14977821]
[88]
Ikegaki N, Gotoh T, Kung B, et al. De novo identification of MIZ-1 (ZBTB17) encoding a MYC-interacting zinc-finger protein as a new favorable neuroblastoma gene. Clin Cancer Res 2007; 13(20): 6001-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0071 ] [PMID: 17947461]
[89]
Naci D, Aoudjit F. Alpha2beta1 integrin promotes T cell survival and migration through the concomitant activation of ERK/Mcl-1 and p38 MAPK pathways. Cell Signal 2014; 26(9): 2008-15.
[http://dx.doi.org/10.1016/j.cellsig.2014.05.016] [PMID: 24880062]
[90]
Foletta VC, Brown FD, Young WS III. Cloning of rat ARHGAP4/C1, a RhoGAP family member expressed in the nervous system that colocalizes with the Golgi complex and microtubules. Brain Res Mol Brain Res 2002; 107(1): 65-79.
[http://dx.doi.org/10.1016/S0169-328X(02)00448-5 ] [PMID: 12414125]
[91]
Lucas B, Hardin J. Mind the (sr)GAP - roles of Slit-Robo GAPs in neurons, brains and beyond. J Cell Sci 2017; 130(23): 3965-74.
[http://dx.doi.org/10.1242/jcs.207456] [PMID: 29097383]
[92]
Jalil J, Lavandero S, Chiong M, Ocaranza MP. Rho/Rho kinase signal transduction pathway in cardiovascular disease and cardiovascular remodeling. Rev Esp Cardiol 2005; 58(8): 951-61.
[http://dx.doi.org/10.1157/13078132] [PMID: 16053829]
[93]
Heikinheimo K, Jee KJ, Niini T, et al. Gene expression profiling of ameloblastoma and human tooth germ by means of a cDNA microarray. J Dent Res 2002; 81(8): 525-30.
[http://dx.doi.org/10.1177/154405910208100805] [PMID: 12147741]
[94]
Verrills NM, Liem NL, Liaw TY, Hood BD, Lock RB, Kavallaris M. Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia--an in vivo study. Proteomics 2006; 6(5): 1681-94.
[http://dx.doi.org/10.1002/pmic.200500417] [PMID: 16456880]
[95]
Zhang YH, Lu AD, Yang L, et al. PRAME overexpression predicted good outcome in pediatric B-cell acute lymphoblastic leukemia patients receiving chemotherapy. Leuk Res 2017; 52: 43-9.
[http://dx.doi.org/10.1016/j.leukres.2016.11.005] [PMID: 27875783]
[96]
Goellner S, Steinbach D, Schenk T, Gruhn B, Zintl F, Ramsay E, et al. Childhood acute myelogenous leukaemia: association between PRAME, apoptosis- and MDR-related gene expression. Eur J Cancer 2006; 42(16): 2807-14.
[97]
Tanaka N, Wang YH, Shiseki M, Takanashi M, Motoji T. Inhibition of PRAME expression causes cell cycle arrest and apoptosis in leukemic cells. Leuk Res 2011; 35(9): 1219-25.
[http://dx.doi.org/10.1016/j.leukres.2011.04.005] [PMID: 21550659]
[98]
Tajeddine N, Millard I, Gailly P, Gala JL. Real-time RT-PCR quantification of PRAME gene expression for monitoring minimal residual disease in acute myeloblastic leukaemia. Clin Chem Lab Med 2006; 44(5): 548-55.
[http://dx.doi.org/10.1515/CCLM.2006.106] [PMID: 16681423]
[99]
Ortmann CA, Eisele L, Nückel H, et al. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol 2008; 87(10): 809-18.
[http://dx.doi.org/10.1007/s00277-008-0514-8] [PMID: 18587578]
[100]
Tajeddine N, Louis M, Vermylen C, Gala JL, Tombal B, Gailly P. Tumor associated antigen PRAME is a marker of favorable prognosis in childhood acute myeloid leukemia patients and modifies the expression of S100A4, Hsp 27, p21, IL-8 and IGFBP-2 in vitro and in vivo. Leuk Lymphoma 2008; 49(6): 1123-31.
[http://dx.doi.org/10.1080/10428190802035933] [PMID: 18452107]
[101]
Levy-Strumpf N, Kimchi A. Death associated proteins (DAPs): from gene identification to the analysis of their apoptotic and tumor suppressive functions. Oncogene 1998; 17(25): 3331-40.
[http://dx.doi.org/10.1038/sj.onc.1202588] [PMID: 9916995]
[102]
Kelly AC, Bidwell CA, Chen X, Macko AR, Anderson MJ, Limesand SW. Chronic adrenergic signaling causes abnormal rna expression of proliferative genes in fetal sheep islets. Endocrinology 2018; 159(10): 3565-78.
[http://dx.doi.org/10.1210/en.2018-00540] [PMID: 30124804]
[103]
Fabiani E, Leone G, Giachelia M, et al. Analysis of genome-wide methylation and gene expression induced by 5-aza-2′-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leuk Lymphoma 2010; 51(12): 2275-84.
[http://dx.doi.org/10.3109/10428194.2010.528093] [PMID: 21077739]
[104]
Voso MT, Scardocci A, Guidi F, et al. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood 2004; 103(2): 698-700.
[http://dx.doi.org/10.1182/blood-2003-07-2249] [PMID: 14504087]
[105]
Guzman ML, Upchurch D, Grimes B, et al. Expression of tumor-suppressor genes interferon regulatory factor 1 and death-associated protein kinase in primitive acute myelogenous leukemia cells. Blood 2001; 97(7): 2177-9.
[http://dx.doi.org/10.1182/blood.V97.7.2177] [PMID: 11264190]
[106]
Jiang Y, Xu P, Yao D, Chen X, Dai H. CD33, CD96 and Death Associated Protein Kinase (DAPK) Expression are associated with the survival rate and/or response to the chemotherapy in the patients with acute myeloid leukemia (AML). Med Sci Monit 2017; 23: 1725-32.
[http://dx.doi.org/10.12659/MSM.900305] [PMID: 28391288]
[107]
Hulkko SM, Wakui H, Zilliacus J. The pro-apoptotic protein deathassociated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function. Biochem J 2000; 349(Pt 3): 885-93.
[http://dx.doi.org/10.1042/bj3490885] [PMID: 10903152]
[108]
Price LC, Shao D, Meng C, et al. Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells. Respir Res 2015; 16: 114.
[http://dx.doi.org/10.1186/s12931-015-0262-y] [PMID: 26382031]
[109]
Hulkko SM, Zilliacus J. Functional interaction between the pro-apoptotic DAP3 and the glucocorticoid receptor. Biochem Biophys Res Commun 2002; 295(3): 749-55.
[http://dx.doi.org/10.1016/S0006-291X(02)00713-1 ] [PMID: 12099703]
[110]
Surovtseva YV, Shutt TE, Cotney J, et al. Mitochondrial ribosomal protein L12 selectively associates with human mitochondrial RNA polymerase to activate transcription. Proc Natl Acad Sci USA 2011; 108(44): 17921-6.
[http://dx.doi.org/10.1073/pnas.1108852108] [PMID: 22003127]
[111]
Hartmann BL, Geley S, Kofler R. Sequence-specific transcription factors during glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells. Wien Klin Wochenschr 1999; 111(9): 360-7.
[PMID: 10407997]
[112]
Li MD, Ruan HB, Singh JP, Zhao L, Zhao T, Azarhoush S, et al. O-GlcNAc transferase is involved in glucocorticoid receptor-mediated transrepression. J Biol Chem 2012 Apr 13; 287(16): 12904-12.
[http://dx.doi.org/10.1074/jbc.M111.303792] [PMID: 22371499]
[113]
Chua SS, Ma Z, Ngan E, Tsai SY. CDC 25B as a steroid receptor coactivator. Vitam Horm 2004; 68: 231-56.
[http://dx.doi.org/10.1016/S0083-6729(04)68008-3 ] [PMID: 15193457]
[114]
Wissink S, van Heerde EC, vand der Burg B, van der Saag PT A. dual mechanism mediates repression of NF-kappaB activity by glucocorticoids Molecular endocrinology (Baltimore, Md 1998; 12(3): 355-63.
[115]
Ma ZQ, Liu Z, Ngan ES, Tsai SY. CDC 25B functions as a novel coactivator for the steroid receptors. Mol Cell Biol 2001; 21(23): 8056-67.
[http://dx.doi.org/10.1128/MCB.21.23.8056-8067.2001 ] [PMID: 11689696]
[116]
Capasso A, Cerchia C, Di Giovanni C, Granato G, Albano F, Romano S, et al. Ligand-based chemoinformatic discovery of a novel small molecule inhibitor targeting CDC25 dual specificity phosphatases and displaying in vitro efficacy against melanoma cells. Oncotarget 2015 Nov 24; 6(37): 40202-22.
[http://dx.doi.org/10.18632/oncotarget.5473] [PMID: 26474275]
[117]
Kino T, Nordeen SK, Chrousos GP. Conditional modulation of glucocorticoid receptor activities by CREB-binding protein (CBP) and p300. J Steroid Biochem Mol Biol 1999; 70(1-3): 15-25.
[http://dx.doi.org/10.1016/S0960-0760(99)00100-4 ] [PMID: 10528999]
[118]
Iacobucci I, Di Rorà AG, Falzacappa MV, et al. In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia. J Hematol Oncol 2015; 8: 125.
[http://dx.doi.org/10.1186/s13045-015-0206-5] [PMID: 26542114]
[119]
Kino T, Chrousos GP. Human immunodeficiency virus type-1 accessory protein Vpr: A causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome? Ann N Y Acad Sci 2004; 1024: 153-67.
[http://dx.doi.org/10.1196/annals.1321.013] [PMID: 15265780]
[120]
Gutierrez GJ, Ronai Z. Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem Sci 2006; 31(6): 324-32.
[http://dx.doi.org/10.1016/j.tibs.2006.04.001] [PMID: 16647857]
[121]
Hideshima T, Chauhan D, Ishitsuka K, et al. Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene 2005; 24(19): 3121-9.
[http://dx.doi.org/10.1038/sj.onc.1208522] [PMID: 15735676]
[122]
Bimonte S, Barbieri A, Leongito M. Curcumin AntiCancer studies in pancreatic cancer. Nutrients 2016; 8(7)E433
[http://dx.doi.org/10.3390/nu8070433] [PMID: 27438851]
[123]
Guan F, Shan Y, Wang Q, Wang M, Chen Y, Yin M, et al. Induction of apoptosis by Bigelovii A through inhibition of NF κB activity. Mol Med Rep 2018 Aug; 18(2): 1600-8.
[http://dx.doi.org/10.3892/mmr.2018.9104] [PMID: 29901099]
[124]
Geng CD, Vedeckis WV. C-Myb and members of the c-Ets family of transcription factors act as molecular switches to mediate opposite steroid regulation of the human glucocorticoid receptor 1A promoter. J Biol Chem 2005; 280(52): 43264-71.
[http://dx.doi.org/10.1074/jbc.M508245200] [PMID: 16263717]
[125]
Lelièvre E, Lionneton F, Soncin F, Vandenbunder B. The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol 2001; 33(4): 391-407.
[http://dx.doi.org/10.1016/S1357-2725(01)00025-5 ] [PMID: 11312108]
[126]
Zaiman AL, Nieves A, Lenz J. CBF, Myb, and Ets binding sites are important for activity of the core I element of the murine retrovirus SL3-3 in T lymphocytes. J Virol 1998; 72(4): 3129-37.
[http://dx.doi.org/10.1128/JVI.72.4.3129-3137.1998 ] [PMID: 9525638]
[127]
Eberhardt W, Schulze M, Engels C, Klasmeier E, Pfeilschifter J. Glucocorticoid-Mediated Suppression of Cytokine-Induced Matrix Metalloproteinase-9 Expression in Rat Mesangial Cells: Involvement of Nuclear Factor-κB and Ets Transcription Factors. Mol Endocrinol 2002; 16(8): 1752-66.
[http://dx.doi.org/10.1210/me.2001-0278]
[128]
Facchinello N, Skobo T, Meneghetti G, Colletti E, Dinarello A, Tiso N, et al. nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor Sci Rep 2017; 06 29; 7(1): 4371.
[http://dx.doi.org/10.1038/s41598-017-04535-6] [PMID: 28663543]
[129]
McNair C, Urbanucci A, Comstock CE, et al. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017; 36(12): 1655-68.
[http://dx.doi.org/10.1038/onc.2016.334] [PMID: 27669432]
[130]
Seo J, Chung YS, Sharma GG, et al. CDT1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene 2005; 24(55): 8176-86.
[http://dx.doi.org/10.1038/sj.onc.1208881] [PMID: 16261166]
[131]
Zhang JH, He YL, Zhu R, Du W, Xiao JH. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells. Tumour Biol 2017; 39(6)1010428317713394
[http://dx.doi.org/10.1177/1010428317713394] [PMID: 28639894]
[132]
Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA. E2F3 is critical for normal cellular proliferation. Genes Dev 2000; 14(6): 690-703.
[PMID: 10733529]
[133]
Wilkinson S, Paterson HF, Marshall CJ. CDC42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 2005; 7(3): 255-61.
[http://dx.doi.org/10.1038/ncb1230] [PMID: 15723050]
[134]
Korus M, Mahon GM, Cheng L, Whitehead IP. p38 MAPK-mediated activation of NF-kappaB by the RhoGEF domain of Bcr. Oncogene 2002; 21(30): 4601-12.
[http://dx.doi.org/10.1038/sj.onc.1205678] [PMID: 12096337]
[135]
Sheller-Miller S, Richardson L, Martin L, Jin J, Menon R. Systematic review of p38 mitogen-activated kinase and its functional role in reproductive tissues Amer J rep immune 2018; 80(6)e13047
[http://dx.doi.org/10.1111/aji.13047]
[136]
Chen JB, Zhang M, Zhang XL, et al. Glucocorticoid-inducible kinase 2 promotes bladder cancer cell proliferation, migration and invasion by enhancing β-catenin/c-myc signaling pathway. J Cancer 2018; 9(24): 4774-82.
[http://dx.doi.org/10.7150/jca.25811] [PMID: 30588263]
[137]
Jozic I, Vukelic S, Stojadinovic O, et al. Stress signals, mediated by membranous glucocorticoid receptor, activate plc/pkc/gsk-3β/β-catenin pathway to inhibit wound closure. J Invest Dermatol 2017; 137(5): 1144-54.
[http://dx.doi.org/10.1016/j.jid.2016.11.036] [PMID: 28017831]
[138]
Medh RD, Wang A, Zhou F, Thompson EB. Constitutive expression of ectopic c-Myc delays glucocorticoid-evoked apoptosis of human leukemic CEM-C7 cells. Oncogene 2001; 20(34): 4629-39.
[http://dx.doi.org/10.1038/sj.onc.1204680] [PMID: 11498786]
[139]
Renner K, Ausserlechner MJ, Kofler R. A conceptual view on glucocorticoid-lnduced apoptosis, cell cycle arrest and glucocorticoid resistance in lymphoblastic leukemia. Curr Mol Med 2003; 3(8): 707-17.
[http://dx.doi.org/10.2174/1566524033479357] [PMID: 14682492]
[140]
Rogatsky I, Trowbridge JM, Garabedian MJ. Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol Cell Biol 1997; 17(6): 3181-93.
[http://dx.doi.org/10.1128/MCB.17.6.3181] [PMID: 9154817]
[141]
Ausserlechner MJ, Obexer P, Wiegers GJ, Hartmann BL, Geley S, Kofler R. The cell cycle inhibitor p16(INK4A) sensitizes lymphoblastic leukemia cells to apoptosis by physiologic glucocorticoid levels. J Biol Chem 2001; 276(24): 10984-9.
[http://dx.doi.org/10.1074/jbc.M008188200] [PMID: 11441822]
[142]
Kan CY, Petti C, Bracken L, et al. Up-regulation of survivin during immortalization of human myofibroblasts is linked to repression of tumor suppressor p16(INK4a) protein and confers resistance to oxidative stress. J Biol Chem 2013; 288(17): 12032-41.
[http://dx.doi.org/10.1074/jbc.M112.447821] [PMID: 23449974]
[143]
Ausserlechner MJ, Obexer P, Geley S, Kofler R. G1 arrest by p16INK4A uncouples growth from cell cycle progression in leukemia cells with deregulated cyclin E and c-Myc expression. Leukemia 2005; 19(6): 1051-7.
[http://dx.doi.org/10.1038/sj.leu.2403729] [PMID: 15800668]
[144]
Hagenbuchner J, Ausserlechner MJ, Porto V, et al. The anti-apoptotic protein BCL2L1/Bcl-xL is neutralized by pro-apoptotic PMAIP1/Noxa in neuroblastoma, thereby determining bortezomib sensitivity independent of prosurvival MCL1 expression. J Biol Chem 2010; 285(10): 6904-12.
[http://dx.doi.org/10.1074/jbc.M109.038331] [PMID: 20051518]
[145]
Håkansson P, Segal D, Lassen C, et al. Identification of genes differentially regulated by the P210 BCR/ABL1 fusion oncogene using cDNA microarrays. Exp Hematol 2004; 32(5): 476-82.
[http://dx.doi.org/10.1016/j.exphem.2004.02.012] [PMID: 15145216]
[146]
Vitanza NA, Zaky W, Blum R, et al. Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance. Pediatr Blood Cancer 2014; 61(10): 1779-85.
[http://dx.doi.org/10.1002/pbc.25119] [PMID: 24976218]
[147]
Tang X, Guilherme A, Chakladar A, et al. An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci USA 2006; 103(7): 2087-92.
[http://dx.doi.org/10.1073/pnas.0507660103] [PMID: 16461467]
[148]
Peng HY, Liang YC, Tan TH, Chuang HC, Lin YJ, Lin JC. RBM4a-SRSF3-MAP4K4 Splicing Cascade Constitutes a Molecular Mechanism for Regulating Brown Adipogenesis. Int J Mol Sci 2018; 19(9)E2646
[http://dx.doi.org/10.3390/ijms19092646] [PMID: 30200638]
[149]
Carrel L, Clemson CM, Dunn JM, et al. X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE-1 genes in human and mouse. Hum Mol Genet 1996; 5(3): 391-401.
[http://dx.doi.org/10.1093/hmg/5.3.391] [PMID: 8852665]
[150]
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. BioEssays 2014; 36(8): 746-56.
[http://dx.doi.org/10.1002/bies.201400032] [PMID: 24913292]
[151]
Hernández-Ortega S, Sánchez-Botet A, Quandt E, et al. Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Exp Mol Med 2019; 51(4): 44.
[http://dx.doi.org/10.1038/s12276-019-0242-2] [PMID: 30992425]
[152]
Yanagi T, Imafuku K, Kitamura S, Hata H, Shimizu H. CDK16/PCTK1/PCTAIRE1 is highly expressed in melanomas but not in melanocytic nevi or sarcomas. J Dermatol 2019; 46(7): 634-6.
[http://dx.doi.org/10.1111/1346-8138.14928] [PMID: 31106900]
[153]
Kowalski D, Pendyala L, Daignan-Fornier B, Howell SB, Huang RY. Dysregulation of purine nucleotide biosynthesis pathways modulates cisplatin cytotoxicity in Saccharomyces cerevisiae. Mol Pharmacol 2008; 74(4): 1092-100.
[http://dx.doi.org/10.1124/mol.108.048256] [PMID: 18612078]
[154]
Thiel G, Al Sarraj J, Stefano L. cAMP response element binding protein (CREB) activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene. BMC Mol Biol 2005; 6(1): 2.
[http://dx.doi.org/10.1186/1471-2199-6-2] [PMID: 15659240]
[155]
Yilmaz S, Beytut E, Erişir M, Ozan S, Aksakal M. Effects of additional Vitamin E and selenium supply on G6PDH activity in rats treated with high doses of glucocorticoid. Neurosci Lett 2006; 393(2-3): 85-9.
[http://dx.doi.org/10.1016/j.neulet.2005.03.076] [PMID: 16324786]
[156]
Liang H, Habte-Tsion HM, Ge X, et al. Dietary arginine affects the insulin signaling pathway, glucose metabolism and lipogenesis in juvenile blunt snout bream Megalobrama amblycephala. Sci Rep 2017; 7(1): 7864.
[http://dx.doi.org/10.1038/s41598-017-06104-3] [PMID: 28801592]
[157]
Tome ME, Johnson DB, Samulitis BK, Dorr RT, Briehl MM. Glucose 6-phosphate dehydrogenase overexpression models glucose deprivation and sensitizes lymphoma cells to apoptosis Antiox red signal 2006; 8(7-8): 1315-27.
[158]
Xiao W, Wang RS, Handy DE, Loscalzo J. Nad(h) and Nadp(h) redox couples and cellular energy metabolism Antiox red signal 2018; 28(3): 251-72.
[159]
Ozmen I. Evaluation of effect of some corticosteroids on glucose-6-phosphate dehydrogenase and comparative study of antioxidant enzyme activities. J Enzyme Inhib Med Chem 2005; 20(1): 19-24.
[http://dx.doi.org/10.1080/14756360412331295026 ] [PMID: 15895680]
[160]
Mortazavi Y, Kaviani S, Mirzamohammadi F, Alimoghaddam K, Pourfathollah AA, Salehi O. Evaluation of x-chromosome inactivation patterns in patients with acute myeloid leukemia during remission. ISRN Hematol 2012.2012971493
[http://dx.doi.org/10.5402/2012/971493] [PMID: 23150832]
[161]
Uz T, Dwivedi Y, Qeli A, Peters-Golden M, Pandey G, Manev H. Glucocorticoid receptors are required for up-regulation of neuronal 5-lipoxygenase (5LOX) expression by dexamethasone. FASEB J 2001; 15(10): 1792-4.
[http://dx.doi.org/10.1096/fj.00-0836fje] [PMID: 11481232]
[162]
Di Meco A, Li JG, Praticò D. Dissecting the role of 5-lipoxygenase in the homocysteine-induced alzheimer’s disease pathology. J Alzheimers Dis 2018; 62(3): 1337-44.
[http://dx.doi.org/10.3233/JAD-170700] [PMID: 29254095]
[163]
Leszczynski D, Häyry P. Eicosanoids are regulatory molecules in gamma-interferon-induced endothelial antigenicity and adherence for leucocytes. FEBS Lett 1989; 242(2): 383-6.
[http://dx.doi.org/10.1016/0014-5793(89)80506-X] [PMID: 2492473]
[164]
Colamorea T, Di Paola R, Macchia F, et al. 5-Lipoxygenase upregulation by dexamethasone in human mast cells. Biochem Biophys Res Commun 1999; 265(3): 617-24.
[http://dx.doi.org/10.1006/bbrc.1999.1732] [PMID: 10600470]
[165]
Kong X, Wu SH, Zhang L, Chen XQ. Pilot application of lipoxin A4 analog and lipoxin A4 receptor agonist in asthmatic children with acute episodes. Exp Ther Med 2017; 14(3): 2284-90.
[http://dx.doi.org/10.3892/etm.2017.4787] [PMID: 28962156]
[166]
Los M, Schenk H, Hexel K, Baeuerle PA, Dröge W, Schulze-Osthoff K. IL-2 gene expression and NF-kappa B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J 1995; 14(15): 3731-40.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb00043.x ] [PMID: 7641692]
[167]
Zaza G, Yang W, Kager L, et al. Acute lymphoblastic leukemia with TEL-AML1 fusion has lower expression of genes involved in purine metabolism and lower de novo purine synthesis. Blood 2004; 104(5): 1435-41.
[http://dx.doi.org/10.1182/blood-2003-12-4306] [PMID: 15142881]
[168]
Smid A, Karas-Kuzelicki N, Milek M, Jazbec J, Mlinaric-Rascan I. Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy. PLoS One 2014; 9(10): 195-51.
[http://dx.doi.org/10.1371/journal.pone.0109551] [PMID: 25303517]
[169]
Ghasemi A, Khanzadeh T, Zadi Heydarabad M, et al. Evaluation of BAX and BCL-2 Gene expression and apoptosis induction in acute lymphoblastic leukemia cell line ccrfcem after high- dose prednisolone treatment. Asian Pac J Cancer Prev 2018; 19(8): 2319-23.
[PMID: 30141309]
[170]
Talebi M, Bahar Aghdam S, Azimi A, Mohammadi H, Karimi Yonjali S, Asariha M, et al. Regulatory effect of resveratrol and prednisolone on mdr1 protein expression in acute lymphoblastic leukemia cell line (ccrf-cem). Asian Pac J Cancer Prev 2019; 20(4): 1171-6.
[http://dx.doi.org/10.31557/APJCP.2019.20.4.1171 ] [PMID: 31030491]
[171]
Nievergall E, Reynolds J, Kok CH, et al. TGF-α and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy. Leukemia 2016; 30(6): 1263-72.
[http://dx.doi.org/10.1038/leu.2016.34] [PMID: 26898188]
[172]
Buse P, Woo PL, Alexander DB, et al. Transfor ming growth factor-alpha abrogates glucocorticoid-stimulated tight junction formation and growth suppression in rat mammary epithelial tumor cells. J Biol Chem 1995; 270(12): 6505-14.
[http://dx.doi.org/10.1074/jbc.270.12.6505] [PMID: 7896785]
[173]
Firestone GL, Kapadia BJ. Minireview: Steroid/nuclear receptor-regulated dynamics of occluding and anchoring junctions. Mol Endocrinol 2014; 28(11): 1769-84.
[174]
Lopaczynski W. Differential regulation of signaling pathways for insulin and insulin-like growth factor I. Acta Biochim Pol 1999; 46(1): 51-60.
[http://dx.doi.org/10.18388/abp.1999_4183] [PMID: 10453981]
[175]
Yin W, Park JI, Loeser RF. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways. J Biol Chem 2009; 284(46): 31972-81.
[http://dx.doi.org/10.1074/jbc.M109.056838] [PMID: 19762915]
[176]
Maruthini D, Harris SE, Barth JH, Balen AH, Campbell BK, Picton HM. The effect of metformin treatment in vivo on acute and long-term energy metabolism and progesterone production in vitro by granulosa cells from women with polycystic ovary syndrome. Hum Reprod 2014; 29(10): 2302-16.
[http://dx.doi.org/10.1093/humrep/deu187] [PMID: 25139174]
[177]
Ellis MJ, Jenkins S, Hanfelt J, et al. Insulin-like growth factors in human breast cancer. Breast Cancer Res Treat 1998; 52(1-3): 175-84.
[http://dx.doi.org/10.1023/A:1006127621512] [PMID: 10066081]
[178]
Reiss K, Porcu P, Sell C, Pietrzkowski Z, Baserga R. The insulin-like growth factor 1 receptor is required for the proliferation of hemopoietic cells. Oncogene 1992; 7(11): 2243-8.
[PMID: 1359494]
[179]
Kimbrough-Allah MN, Millena AC, Khan SA. Differential role of PTEN in Transforming Growth Factor β (TGF-β) effects on proliferation and migration in prostate cancer cells. Prostate 2018; 78(5): 377-89.
[http://dx.doi.org/10.1002/pros.23482] [PMID: 29341212]
[180]
Nip H, Dar AA, Saini S, et al. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget 2016; 7(42): 68371-84.
[http://dx.doi.org/10.18632/oncotarget.12031] [PMID: 27634912]
[181]
Tanno B, Negroni A, Vitali R, et al. Expression of insulin-like growth factor-binding protein 5 in neuroblastoma cells is regulated at the transcriptional level by c-Myb and B-Myb via direct and indirect mechanisms. J Biol Chem 2002; 277(26): 23172-80.
[http://dx.doi.org/10.1074/jbc.M200141200] [PMID: 11973331]
[182]
Ho WL, Chou CH, Jeng YM, et al. GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma. Oncotarget 2014; 5(23): 12247-59.
[http://dx.doi.org/10.18632/oncotarget.2627] [PMID: 25362349]
[183]
Woitge HW, Kream BE. Calvariae from fetal mice with a disrupted Igf1 gene have reduced rates of collagen synthesis but maintain responsiveness to glucocorticoids. JBMR 2000; 15(10): 1956-64.
[http://dx.doi.org/10.1359/jbmr.2000.15.10.1956]
[184]
Sarzi-Puttini P, Atzeni F, Schölmerich J, Cutolo M, Straub RH. Anti-TNF antibody treatment improves glucocorticoid induced Insulin-like Growth Factor 1 (IGF1) resistance without influencing myoglobin and IGF1 binding proteins 1 and 3. Ann Rheum Dis 2006; 65(3): 301-5.
[http://dx.doi.org/10.1136/ard.2005.040816] [PMID: 16079165]
[185]
Baker JF, Von Feldt JM, Mostoufi-Moab S, Kim W, Taratuta E, Leonard MB. Insulin-like growth factor 1 and adiponectin and associations with muscle deficits, disease characteristics, and treatments in rheumatoid arthritis. J Rheumatol 2015; 42(11): 2038-45.
[http://dx.doi.org/10.3899/jrheum.150280] [PMID: 26329340]
[186]
Latres E, Amini AR, Amini AA. Insulin-like Growth Factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 2005; 280(4): 2737-44.
[http://dx.doi.org/10.1074/jbc.M407517200] [PMID: 15550386]
[187]
Jost M, Folgueras AR, Frérart F. Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. Cancer Res 2006; 66(10): 5234-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4315 ] [PMID: 16707448]
[188]
Zhou Y, Xu X, Lv H, Wen Q, Li J, Tan L, et al. The long noncoding rna malat-1 is highly expressed in ovarian cancer and induces cell growth and migration. PLoS One 2016; 11(5)e0155250
[http://dx.doi.org/10.1371/journal.pone.0155250] [PMID: 27227769]
[189]
Qiu J, Cheng R, Zhou XY, Zhu JG, Zhu C, Qin DN, et al. Gene expression profiles of adipose tissue of high-fat diet-induced obese rats by cDNA microarrays. Mol Biol Rep 2010; 37(8): 3691-5.
[http://dx.doi.org/10.1007/s11033-010-0021-6] [PMID: 20191385]
[190]
Wu Y, Pan S, Leng J, Jamal M, Yin Q, et al. The prognostic value of matrix metalloproteinase-7 and matrix metalloproteinase-15 in acute myeloid leukemia. J Cell Biochem 2019; 120(6): 10613-24.
[http://dx.doi.org/10.1002/jcb.28351] [PMID: 30809850]
[191]
Man CH, Fung TK, Ho C, et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 2012; 119(22): 5133-43.
[http://dx.doi.org/10.1182/blood-2011-06-363960] [PMID: 22368270]
[192]
Qiuping Z, Jei X, Youxin J, et al. CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation. Cancer Res 2004; 64(20): 7579-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0641 ] [PMID: 15492285]
[193]
Wang C, Liu Z, Xu Z, Wu X, Zhang D, Zhang Z, et al. The role of chemokine receptor 9/chemokine ligand 25 signaling: From immune cells to cancer cells. Oncol Lett 2018 Aug; 16(2): 2071-7.
[http://dx.doi.org/10.3892/ol.2018.8896] [PMID: 30008902]
[194]
Gez S, Crossett B, Christopherson RI. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. Biochim Biophys Acta 2007; 1774(9): 1173-83.
[http://dx.doi.org/10.1016/j.bbapap.2007.06.011] [PMID: 17698427]
[195]
Mayer RL, Schwarzmeier JD, Gerner MC, Bileck A, Mader JC, Meier-Menches SM, et al. Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia Mol Cell Proteomics 2018; 02; 17(2): 290-303.
[http://dx.doi.org/10.1074/mcp.RA117.000425] [PMID: 29196338]
[196]
Ji Q, Ding YH, Sun Y, et al. Antineoplastic effects and mechanisms of micheliolide in acute myelogenous leukemia stem cells. Oncotarget 2016; 7(40): 65012-23.
[http://dx.doi.org/10.18632/oncotarget.11342] [PMID: 27542251]
[197]
Takada Y, Kobayashi Y, Aggarwal BB. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. J Biol Chem 2005; 280(17): 17203-12.
[http://dx.doi.org/10.1074/jbc.M500077200] [PMID: 15710601]
[198]
Ortiz-Lazareno PC, Bravo-Cuellar A, Lerma-Díaz JM, et al. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss. Cancer Cell Int 2014; 14(1): 13.
[http://dx.doi.org/10.1186/1475-2867-14-13] [PMID: 24495648]
[199]
Falkner KC, Pinaire JA, Xiao GH, Geoghegan TE, Prough RA. Regulation of the rat glutathione S-transferase A2 gene by glucocorticoids: involvement of both the glucocorticoid and pregnane X receptors. Mol Pharmacol 2001; 60(3): 611-9.
[PMID: 11502894]
[200]
Falkner KC, Prough RA. Regulation of the rat glutathione S-transferase A2 gene by glucocorticoids: Crosstalk through C/EBPs. Drug Metab Rev 2007; 39(2-3): 401-18.
[http://dx.doi.org/10.1080/03602530701511216] [PMID: 17786629]
[201]
Falkner KC, Rushmore TH, Linder MW, Prough RA. Negative regulation of the rat glutathione S-transferase A2 gene by glucocorticoids involves a canonical glucocorticoid consensus sequence. Mol Pharmacol 1998; 53(6): 1016-26.
[PMID: 9614203]
[202]
Kratschmar DV, Calabrese D, Walsh J, et al. Suppression of the Nrf2-dependent antioxidant response by glucocorticoids and 11β-HSD1-mediated glucocorticoid activation in hepatic cells. PLoS One 2012; 7(5): 367-74.
[http://dx.doi.org/10.1371/journal.pone.0036774] [PMID: 22606287]
[203]
Murata D, Endo Y, Obata T, et al. A crucial role of uridine/cytidine kinase 2 in antitumor activity of 3′-ethynyl nucleosides. Drug Metab Dispos 2004; 32(10): 1178-82.
[http://dx.doi.org/10.1124/dmd.104.000737] [PMID: 15280220]
[204]
Van Rompay AR, Norda A, Lindén K, Johansson M, Karlsson A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. Mol Pharmacol 2001; 59(5): 1181-6.
[http://dx.doi.org/10.1124/mol.59.5.1181] [PMID: 11306702]
[205]
Okesli-Armlovich A, Gupta A, Jimenez M, et al. Discovery of small molecule inhibitors of human uridine-cytidine kinase 2 by high-throughput screening. Bioorg Med Chem Lett 2019; 29(18): 2559-64.
[http://dx.doi.org/10.1016/j.bmcl.2019.08.010] [PMID: 31420268]
[206]
Sripayap P, Nagai T, Uesawa M, Kobayashi H, Tsukahara T, Ohmine K, et al. Mechanisms of resistance to azacitidine in human leukemia cell lines. Exp hematol 2014; 42(4): 294-306.
[http://dx.doi.org/10.1016/j.exphem.2013.12.004]
[207]
Valencia A, Masala E, Rossi A. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia 2014; 28(3): 621-8.
[http://dx.doi.org/10.1038/leu.2013.330] [PMID: 24192812]
[208]
Mills KI, Woodgate LJ, Gilkes AF. Inhibition of mitochondrial function in HL60 cells is associated with an increased apoptosis and expression of CD14. Biochem Biophys Res Commun 1999; 263(2): 294-300.
[http://dx.doi.org/10.1006/bbrc.1999.1356] [PMID: 10491287]
[209]
Ahmad Z, Hassan SS, Azim S. A therapeutic connection between dietary phytochemicals and ATP synthase. Curr Med Chem 2017; 24(35): 3894-906.
[http://dx.doi.org/10.2174/0929867324666170823125330] [PMID: 28831918]
[210]
de Pedro N, Cautain B, Melguizo A, et al. Mitochondrial complex I inhibitors, acetogenins, induce HepG2 cell death through the induction of the complete apoptotic mitochondrial pathway. J Bioenerg Biomembr 2013; 45(1-2): 153-64.
[http://dx.doi.org/10.1007/s10863-012-9489-1] [PMID: 23180140]
[211]
Hagen T, D’Amico G, Quintero M, et al. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol. Biochem Biophys Res Commun 2004; 322(3): 923-9.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.204] [PMID: 15336552]
[212]
Huang W, Li D, Liu Y. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis. J Environ Sci (China) 2014; 26(9): 1930-5.
[http://dx.doi.org/10.1016/j.jes.2014.06.032] [PMID: 25193844]
[213]
Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003; 278(10): 8516-25.
[http://dx.doi.org/10.1074/jbc.M210432200] [PMID: 12496265]
[214]
Ferro DP, Falconi MA, Adam RL. Fractal characteristics of May-Grünwald-Giemsa stained chromatin are independent prognostic factors for survival in multiple myeloma. PLoS One 2011; 6(6)e20706
[http://dx.doi.org/10.1371/journal.pone.0020706] [PMID: 21698234]
[215]
Parra E, McGuire K, Hedlund G, Dohlsten M. Overexpression of p65 and c-Jun substitutes for B7-1 costimulation by targeting the CD28RE within the IL-2 promoter. J Immunol 1998; 160(11): 5374-81.
[PMID: 9605137]
[216]
Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res 2011; 21(2): 223-44.
[http://dx.doi.org/10.1038/cr.2011.13] [PMID: 21243012]
[217]
Beyer M, Kochanek M, Darabi K, et al. Reduced frequencies and suppressive function of CD4+CD25HI regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106(6): 2018-25.
[http://dx.doi.org/10.1182/blood-2005-02-0642] [PMID: 15914560]
[218]
Dong S, Harrington BK, Hu EY, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest 2019; 129(1): 122-36.
[http://dx.doi.org/10.1172/JCI99386] [PMID: 30457982]
[219]
Espinasse MA, Pépin A, Virault-Rocroy P, et al. Glucocorticoid-induced leucine zipper is expressed in human neutrophils and promotes apoptosis through mcl-1 down-regulation. J Innate Immun 2016; 8(1): 81-96.
[http://dx.doi.org/10.1159/000439052] [PMID: 26384220]
[220]
Weber PS, Toelboell T, Chang LC, et al. Mechanisms of glucocorticoid-induced down-regulation of neutrophil L-selectin in cattle: evidence for effects at the gene-expression level and primarily on blood neutrophils. J Leukoc Biol 2004; 75(5): 815-27.
[http://dx.doi.org/10.1189/jlb.1003505] [PMID: 14761937]
[221]
Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 1990; 265(25): 15294-9.
[PMID: 2394722]
[222]
Taylor-Papadimitriou J, Burchell JM, Graham R, Beatson R. Latest developments in MUC1 immunotherapy. Biochem Soc Trans 2018; 46(3): 659-68.
[http://dx.doi.org/10.1042/BST20170400] [PMID: 29784646]
[223]
Mukherjee P, Tinder TL, Basu GD, Gendler SJ. MUC1 (CD227) interacts with LCK tyrosine kinase in Jurkat lymphoma cells and normal T cells. J Leukoc Biol 2005; 77(1): 90-9.
[http://dx.doi.org/10.1189/jlb.0604333] [PMID: 15513966]
[224]
Agrawal B, Krantz MJ, Parker J, Longenecker BM. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res 1998; 58(18): 4079-81.
[PMID: 9751614]
[225]
Agrawal B. New therapeutic targets for cancer: The interplay between immune and metabolic checkpoints and gut microbiota. Clin Transl Med 2019; 8(1): 23.
[http://dx.doi.org/10.1186/s40169-019-0241-x] [PMID: 31468283]
[226]
Agrawal B, Longenecker BM. MUC1 mucin-mediated regulation of human T cells. Int Immunol 2005; 17(4): 391-9.
[http://dx.doi.org/10.1093/intimm/dxh219] [PMID: 15710907]
[227]
Agrawal B, Gupta N, Konowalchuk JD. MUC1 Mucin: A putative regulatory (checkpoint) molecule of t cells. Front Immunol 2018; 9: 2391.
[http://dx.doi.org/10.3389/fimmu.2018.02391] [PMID: 30405607]
[228]
Correa I, Plunkett T, Vlad A, Mungul A, Candelora-Kettel J, Burchell JM, et al. Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration Immunology 2003 Jan; 108(1): 32-41.41.
[http://dx.doi.org/10.1046/j.1365-2567.2003.01562.x] [PMID: 12519300]
[229]
de La Fuente C, Santiago F, Chong SY, et al. Overexpression of P21(WAF1) in human T-cell lymphotropic virus type 1-infected cells and its association with cyclin A/CDK2. J Vir 2000; 74(16): 7270-83.
[http://dx.doi.org/10.1128/JVI.74.16.7270-7283.2000 ] [PMID: 10906181]
[230]
Szymocha R, Akaoka H, Dutuit M. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha. J Virol 2000; 74(14): 6433-41.
[http://dx.doi.org/10.1128/JVI.74.14.6433-6441.2000 ] [PMID: 10864655]
[231]
Mukai R, Ohshima T. Enhanced stabilization of mcl1 by the human t-cell leukemia virus type 1 bzip factor is modulated by blocking the recruitment of cullin 1 to the scf complex. Mol Cell Biol 2016; 36(24): 3075-85.
[http://dx.doi.org/10.1128/MCB.00450-16] [PMID: 27697867]
[232]
Chen S, Wang Y, Su Y, et al. miR 205 5p/PTK7 axis is involved in the proliferation, migration and invasion of colorectal cancer cells. Mol Med Rep 2018; 17(5): 6253-60.
[http://dx.doi.org/10.3892/mmr.2018.8650] [PMID: 29488611]
[233]
Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, et al. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers Clin Chem 2004 Mar; 50(3): 490-9.9.
[234]
Darling TK, Lamb TJ. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front Immunol 2019; 10: 1473.
[http://dx.doi.org/10.3389/fimmu.2019.01473] [PMID: 31333644]
[235]
Freywald A, Sharfe N, Rashotte C, Grunberger T, Roifman CM. The EphB6 receptor inhibits JNK activation in T lymphocytes and modulates T cell receptor-mediated responses. J Biol Chem 2003; 278(12): 10150-6.
[http://dx.doi.org/10.1074/jbc.M208179200] [PMID: 12517763]
[236]
El Zawily A, McEwen E, Toosi B, et al. The EphB6 receptor is overexpressed in pediatric T cell acute lymphoblastic leukemia and increases its sensitivity to doxorubicin treatment. Sci Rep 2017; 7(1): 14767.
[http://dx.doi.org/10.1038/s41598-017-15200-3] [PMID: 29116180]
[237]
Luo H, Yu G, Wu Y, Wu J. EphB6 crosslinking results in costimulation of T cells. J Clin Invest 2002; 110(8): 1141-50.
[http://dx.doi.org/10.1172/JCI0215883] [PMID: 12393850]
[238]
Shi W, Wang Y, Peng J, Qi S, Vitale N, Kaneda N, et al. EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells J Biol Chem 2019; 04 26; 294(17): 6871-87.
[http://dx.doi.org/10.1074/jbc.RA118.005767] [PMID: 30824540]
[239]
Hulleman E, Kazemier KM, Holleman A, et al. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 2009; 113(9): 2014-21.
[http://dx.doi.org/10.1182/blood-2008-05-157842] [PMID: 18978206]
[240]
Distelhorst CW, Janiga KE, Howard KJ, Strandjord SE, Campbell EJ. Neutrophil elastase produces 52-kD and 30-kD glucocorticoid receptor fragments in the cytosol of human leukemia cells. Blood 1987; 70(3): 860-8.
[http://dx.doi.org/10.1182/blood.V70.3.860.860] [PMID: 3304464]
[241]
Damjanovic SS, Antic JA, Ilic BB, et al. Glucocorticoid receptor and molecular chaperones in the pathogenesis of adrenal incidentalomas: potential role of reduced sensitivity to glucocorticoids. Mol Med 2013; 18: 1456-65.
[http://dx.doi.org/10.2119/molmed.2012.00261] [PMID: 23196783]
[242]
Liu W, Hillmann AG, Harmon JM. Hormone-independent repression of AP-1-inducible collagenase promoter activity by glucocorticoid receptors. Mol Cell Biol 1995; 15(2): 1005-13.
[http://dx.doi.org/10.1128/MCB.15.2.1005] [PMID: 7823916]
[243]
Hudson WH, Vera IMS, Nwachukwu JC, et al. Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements. Nat Commun 2018; 9(1): 1337.
[http://dx.doi.org/10.1038/s41467-018-03780-1] [PMID: 29626214]
[244]
Tao Y, Williams-Skipp C, Scheinman RI. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. J Biol Chem 2001; 276(4): 2329-32.
[http://dx.doi.org/10.1074/jbc.C000526200] [PMID: 11106637]
[245]
Tissing WJ, Lauten M, Meijerink JP, et al. Expression of the glucocorticoid receptor and its isoforms in relation to glucocorticoid resistance in childhood acute lymphocytic leukemia. Haematologica 2005; 90(9): 1279-81.
[PMID: 16154856]
[246]
Bhadri VA, Trahair TN, Lock RB. Glucocorticoid resistance in paediatric acute lymphoblastic leukaemia. J Paediatr Child Health 2012; 48(8): 634-40.
[http://dx.doi.org/10.1111/j.1440-1754.2011.02212.x ] [PMID: 22050419]
[247]
Mahmoudi H, Ebrahimi E, Daneshpazhooh M, et al. Single-nucleotide polymorphisms associated with pemphigus vulgaris: Potent markers for better treatment and personalized medicine. Int J Immunogenet 2020; 47(1): 41-9.
[PMID: 31342641]
[248]
Tissing WJ, Meijerink JP, Brinkhof B, et al. Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood 2006; 108(3): 1045-9.
[http://dx.doi.org/10.1182/blood-2006-01-0261] [PMID: 16574952]
[249]
Schlossmacher G, Stevens A, White A. Glucocorticoid receptor-mediated apoptosis: mechanisms of resistance in cancer cells. J Endocrinol 2011; 211(1): 17-25.
[http://dx.doi.org/10.1530/JOE-11-0135] [PMID: 21602312]
[250]
Wang XW, Xu YH. Expression differences in TEL-AML1 fusion gene in leukemia glucocorticoid-sensitive and -resistant cell lines. Genet Mol Res 2015; 14(3): 7883-93.
[http://dx.doi.org/10.4238/2015.July.14.14] [PMID: 26214469]
[251]
Qattan MY, Bakker EY, Rajendran R, et al. Differential regulation of cell death pathways by the microenvironment correlates with chemoresistance and survival in leukaemia. PLoS One 2017; 12(6)e0178606
[http://dx.doi.org/10.1371/journal.pone.0178606] [PMID: 28582465]
[252]
Thompson EB, Johnson BH. Regulation of a distinctive set of genes in glucocorticoid-evoked apoptosis in CEM human lymphoid cells. Recent Prog Horm Res 2003; 58: 175-97.
[http://dx.doi.org/10.1210/rp.58.1.175] [PMID: 12795419]
[253]
Palmer LA, Harmon JM. Biochemical evidence that glucocorticoid-sensitive cell lines derived from the human leukemic cell line CCRF-CEM express a normal and a mutant glucocorticoid receptor gene. Cancer Res 1991; 51(19): 5224-31.
[PMID: 1913646]
[254]
Powers JH, Hillmann AG, Tang DC, Harmon JM. Cloning and expression of mutant glucocorticoid receptors from glucocorticoid-sensitive and -resistant human leukemic cells. Cancer Res 1993; 53(17): 4059-65.
[PMID: 8358735]
[255]
Russcher H, Smit P, van den Akker EL, et al. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression. J Clin Endocrinol Metab 2005; 90(10): 5804-10.
[http://dx.doi.org/10.1210/jc.2005-0646] [PMID: 16030164]
[256]
Kofler R, Schmidt S, Kofler A, Ausserlechner MJ. Resistance to glucocorticoid-induced apoptosis in lymphoblastic leukemia. J Endocrinol 2003; 178(1): 19-27.
[http://dx.doi.org/10.1677/joe.0.1780019] [PMID: 12844332]
[257]
Brohawn DG, O’Brien LC, Bennett JP Jr. RNAseq analyses identify tumor necrosis factor-mediated inflammation as a major abnormality in als spinal cord. PLoS One 2016; 11(8)e0160520
[http://dx.doi.org/10.1371/journal.pone.0160520] [PMID: 27487029]
[258]
Paxian S, Liptay S, Adler G, Hameister H, Schmid RM. Genomic organization and chromosomal mapping of mouse nuclear factor kappa B 2 (NFKB2). Immunogenetics 1999; 49(9): 743-50.
[http://dx.doi.org/10.1007/s002510050548] [PMID: 10398801]
[259]
Perez JR, Higgins-Sochaski KA, Maltese JY, Narayanan R. Antisense rel A in Cancer. Methods Mol Med 1996; 1: 183-99.
[PMID: 21359723]
[260]
Peeters MC, Fokkelman M, Boogaard B, et al. The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration. Cell Signal 2015; 27(12): 2579-88.
[http://dx.doi.org/10.1016/j.cellsig.2015.08.015] [PMID: 26321231]
[261]
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: Molecular mechanisms for gene repression. Endocr Rev 2003; 24(4): 488-522.
[http://dx.doi.org/10.1210/er.2002-0006] [PMID: 12920152]
[262]
Castro-Caldas M, Mendes AF, Duarte CB, Lopes MC. Dexamethasone-induced and estradiol-induced CREB activation and annexin 1 expression in CCRF-CEM lymphoblastic cells: Evidence for the involvement of cAMP and p38 MAPK. Mediators Inflamm 2003; 12(6): 329-37.
[http://dx.doi.org/10.1080/09629350310001633351 ] [PMID: 14668092]
[263]
Tonko M, Ausserlechner MJ, Bernhard D, Helmberg A, Kofler R. Gene expression profiles of proliferating vs. G1/G0 arrested human leukemia cells suggest a mechanism for glucocorticoid-induced apoptosis. FASEB J 2001; 15(3): 693-9.
[http://dx.doi.org/10.1096/fj.00-0327com] [PMID: 11259387]
[264]
Abrams MT, Robertson NM, Yoon K, Wickstrom E. Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J Biol Chem 2004; 279(53): 55809-17.
[http://dx.doi.org/10.1074/jbc.M411767200] [PMID: 15509554]
[265]
Tissing WJ, den Boer ML, Meijerink JP, Menezes RX, Swagemakers S, van der Spek PJ, et al. Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood 2007; 109(9): 3929-35.
[http://dx.doi.org/10.1182/blood-2006-11-056366] [PMID: 17218380]
[266]
Mousavian Z, Nowzari-Dalini A, Rahmatallah Y, Masoudi-Nejad A. Differential network analysis and protein-protein interaction study reveals active protein modules in glucocorticoid resistance for infant acute lymphoblastic leukemia. Mol Med 2019; 25(1): 36.
[http://dx.doi.org/10.1186/s10020-019-0106-1] [PMID: 31370801]
[267]
Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S. Enhanced G2-M arrest by nuclear factor-kappaB-dependent p21waf1/cip1 induction. Mol Cancer Res 2005; 3(6): 345-53.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0028 ] [PMID: 15972853]
[268]
Nicot C, Mahieux R, Pise-Masison C, Brady J, Gessain A, Yamaoka S, et al. Human T-cell lymphotropic virus type 1 Tax represses c-Myb-dependent transcription through activation of the NF-kappaB pathway and modulation of coactivator usage. Mol Cell Biol 2001; 21(21): 7391-402.
[http://dx.doi.org/10.1128/MCB.21.21.7391-7402.2001 ] [PMID: 11585920]
[269]
Parry GC, Mackman N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J Immunol 1997; 159(11): 5450-6.
[PMID: 9548485]
[270]
Ollivier V, Parry GC, Cobb RR, de Prost D, Mackman N. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. J Biol Chem 1996; 271(34): 20828-35.
[http://dx.doi.org/10.1074/jbc.271.34.20828] [PMID: 8702838]
[271]
de Pablos RM, Villarán RF, Argüelles S, Herrera AJ, Venero JL, Ayala A, et al. Stress increases vulnerability to inflammation in the rat prefrontal cortex. J Neurosci 2006; 26(21): 5709-19.
[http://dx.doi.org/10.1523/JNEUROSCI.0802-06.2006 ] [PMID: 16723527]
[272]
Lim G, Wang S, Zeng Q, Sung B, Yang L, Mao J, et al. Expression of spinal NMDA receptor and PKCgamma after chronic morphine is regulated by spinal glucocorticoid receptor. J Neurosci 2005; 25(48): 11145-54.
[http://dx.doi.org/10.1523/JNEUROSCI.3768-05.2005 ] [PMID: 16319314]
[273]
Bortolozzi R, Mattiuzzo E, Trentin L, Accordi B, Basso G, Viola G Ribociclib, et al. A Cdk4/Cdk6 kinase inhibitor, enhances glucocorticoid sensitivity in B-acute lymphoblastic leukemia (B-All). Biochem Pharmacol 2018; 153: 230-41.
[http://dx.doi.org/10.1016/j.bcp.2018.01.050] [PMID: 29408328]
[274]
Junk S, Cario G, Wittner N, et al. Bortezomib treatment can overcome glucocorticoid resistance in childhood b-cell precursor acute lymphoblastic leukemia cell lines. Klin Padiatr 2015; 227(3): 123-30.
[http://dx.doi.org/10.1055/s-0034-1398628] [PMID: 25985447]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy