Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Expression Profiles of MicroRNAs in Stem Cells Differentiation

Author(s): Hadi Rajabi, Somayeh Aslani, Alireza Abhari* and Davoud Sanajou

Volume 21, Issue 10, 2020

Page: [906 - 918] Pages: 13

DOI: 10.2174/1389201021666200219092520

Price: $65

Abstract

Stem cells are undifferentiated cells and have a great potential in multilineage differentiation. These cells are classified into adult stem cells like Mesenchymal Stem Cells (MSCs) and Embryonic Stem Cells (ESCs). Stem cells also have potential therapeutic utility due to their pluripotency, self-renewal, and differentiation ability. These properties make them a suitable choice for regenerative medicine. Stem cells differentiation toward functional cells is governed by different signaling pathways and transcription factors. Recent studies have demonstrated the key role of microRNAs in the pathogenesis of various diseases, cell cycle regulation, apoptosis, aging, cell fate decisions. Several types of stem cells have different and unique miRNA expression profiles. Our review summarizes novel regulatory roles of miRNAs in the process of stem cell differentiation especially adult stem cells into a variety of functional cells through signaling pathways and transcription factors modulation. Understanding the mechanistic roles of miRNAs might be helpful in elaborating clinical therapies using stem cells and developing novel biomarkers for the early and effective diagnosis of pathologic conditions.

Keywords: MicroRNA, stem cells, differentiation, signaling pathways, transcription factors, cell cycle.

Graphical Abstract
[1]
DiStefano, T.; Chen, H.Y.; Panebianco, C.; Kaya, K.D.; Brooks, M.J.; Gieser, L.; Morgan, N.Y.; Pohida, T.; Swaroop, A. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Reports, 2018, 10(1), 300-313.
[http://dx.doi.org/10.1016/j.stemcr.2017.11.001] [PMID: 29233554]
[2]
Dianat-Moghadam, H.; Heidarifard, M.; Jahanban-Esfahlan, R.; Panahi, Y.; Hamishehkar, H.; Pouremamali, F.; Rahbarghazi, R.; Nouri, M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J. Control. Release, 2018, 288, 62-83.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.043] [PMID: 30184466]
[3]
Fortier, L.A. Stem cells: Classifications, controversies, and clinical applications. Vet. Surg., 2005, 34(5), 415-423.
[http://dx.doi.org/10.1111/j.1532-950X.2005.00063.x] [PMID: 16266332]
[4]
Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391), 1145-1147.
[5]
Ivey, K.N.; Muth, A.; Arnold, J.; King, F.W.; Yeh, R-F.; Fish, J.E.; Hsiao, E.C.; Schwartz, R.J.; Conklin, B.R.; Bernstein, H.S.; Srivastava, D. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2008, 2(3), 219-229.
[http://dx.doi.org/10.1016/j.stem.2008.01.016] [PMID: 18371447]
[6]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[7]
Keyhanmanesh, R.; Rahbarghazi, R.; Aslani, M.R.; Hassanpour, M.; Ahmadi, M. Systemic delivery of mesenchymal stem cells condition media in repeated doses acts as magic bullets in restoring IFN-γ/IL-4 balance in asthmatic rats. Life Sci., 2018, 212, 30-36.
[http://dx.doi.org/10.1016/j.lfs.2018.09.049] [PMID: 30268855]
[8]
Xuan, W.; Wang, Y.; Tang, Y.; Ali, A.; Hu, H.; Maienschein-Cline, M.; Ashraf, M. Cardiac progenitors induced from human induced pluripotent stem cells with cardiogenic small molecule effectively regenerate infarcted hearts and attenuate fibrosis., Shock (Augusta, Ga.),, 2018.
[http://dx.doi.org/10.1097/shk.0000000000001133]
[9]
Bonilla-Porras, A.R.; Arevalo-Arbelaez, A.; Alzate-Restrepo, J.F.; Velez-Pardo, C.; Jimenez-Del-Rio, M. PARKIN overexpression in human mesenchymal stromal cells from Wharton’s jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson’s disease. Cytotherapy, 2018, 20(1), 45-61.
[http://dx.doi.org/10.1016/j.jcyt.2017.09.011] [PMID: 29079356]
[10]
Redondo, L.M.; García, V.; Peral, B.; Verrier, A.; Becerra, J.; Sánchez, A.; García-Sancho, J. Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J. Craniomaxillofac. Surg., 2018, 46(2), 222-229.
[http://dx.doi.org/10.1016/j.jcms.2017.11.004] [PMID: 29229365]
[11]
Tang, D-Q.; Cao, L-Z.; Burkhardt, B.R.; Xia, C-Q.; Litherland, S.A.; Atkinson, M.A.; Yang, L-J. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes, 2004, 53(7), 1721-1732.
[http://dx.doi.org/10.2337/diabetes.53.7.1721] [PMID: 15220196]
[12]
Rajabi, H.; Hosseini, V.; Rahimzadeh, S.; Seyfizadeh, N.; Aslani, S.; Abhari, A. Current status of used protocols for mesenchymal stem cell differentiation: A focus on insulin producing, osteoblast-like and neural cells. Curr. Stem Cell Res. Ther., 2019, 14(7), 570-578.
[http://dx.doi.org/10.2174/1574888x14666190318111614] [PMID: 30887929]
[13]
Brennecke, J.; Hipfner, D.R.; Stark, A.; Russell, R.B.; Cohen, S.M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1), 25-36.
[http://dx.doi.org/10.1016/S0092-8674(03)00231-9] [PMID: 12679032]
[14]
Bartel, D.P.; Chen, C-Z. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet., 2004, 5(5), 396-400.
[http://dx.doi.org/10.1038/nrg1328] [PMID: 15143321]
[15]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[16]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[17]
Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science, 2004, 303(5654), 95-98.
[http://dx.doi.org/10.1126/science.1090599] [PMID: 14631048]
[18]
de Santi, C.; Greene, C.M. The biology of microRNA. MicroRNAs and Other Non-Coding RNAs in Inflammation; Springer, 2015, pp. 3-19.
[http://dx.doi.org/10.1007/978-3-319-13689-9_1]
[19]
Hanna, J.H.; Saha, K.; Jaenisch, R. Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues. Cell, 2010, 143(4), 508-525.
[http://dx.doi.org/10.1016/j.cell.2010.10.008] [PMID: 21074044]
[20]
Hackett, J.A.; Surani, M.A. Regulatory principles of pluripotency: From the ground state up. Cell Stem Cell, 2014, 15(4), 416-430.
[http://dx.doi.org/10.1016/j.stem.2014.09.015] [PMID: 25280218]
[21]
Thomson, M.; Liu, S.J.; Zou, L-N.; Smith, Z.; Meissner, A.; Ramanathan, S. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell, 2011, 145(6), 875-889.
[http://dx.doi.org/10.1016/j.cell.2011.05.017] [PMID: 21663792]
[22]
Wellner, U.; Schubert, J.; Burk, U.C.; Schmalhofer, O.; Zhu, F.; Sonntag, A.; Waldvogel, B.; Vannier, C.; Darling, D.; zur Hausen, A.; Brunton, V.G.; Morton, J.; Sansom, O.; Schüler, J.; Stemmler, M.P.; Herzberger, C.; Hopt, U.; Keck, T.; Brabletz, S.; Brabletz, T. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol., 2009, 11(12), 1487-1495.
[http://dx.doi.org/10.1038/ncb1998] [PMID: 19935649]
[23]
Tay, Y.; Zhang, J.; Thomson, A.M.; Lim, B.; Rigoutsos, I. MicroRNAs to Nanog, OCT4 and SOX2 coding regions modulate embryonic stem cell differentiation. Nature, 2008, 455(7216), 1124-1128.
[http://dx.doi.org/10.1038/nature07299] [PMID: 18806776]
[24]
Zhang, L.; Zheng, Y.; Sun, Y.; Zhang, Y.; Yan, J.; Chen, Z.; Jiang, H. MiR-134-Mbd3 axis regulates the induction of pluripotency. J. Cell. Mol. Med., 2016, 20(6), 1150-1158.
[http://dx.doi.org/10.1111/jcmm.12805] [PMID: 26929159]
[25]
Xu, N.; Papagiannakopoulos, T.; Pan, G.; Thomson, J.A.; Kosik, K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 2009, 137(4), 647-658.
[http://dx.doi.org/10.1016/j.cell.2009.02.038] [PMID: 19409607]
[26]
Jiang, K.; Ren, C.; Nair, V.D. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res. (Amst.), 2013, 11(3), 1299-1313.
[http://dx.doi.org/10.1016/j.scr.2013.09.001] [PMID: 24084696]
[27]
Lee, S.; Yoon, D.S.; Paik, S.; Lee, K-M.; Jang, Y.; Lee, J.W. microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9. Stem Cells Dev., 2014, 23(15), 1798-1808.
[http://dx.doi.org/10.1089/scd.2013.0609] [PMID: 24654627]
[28]
Yang, B.; Guo, H.; Zhang, Y.; Chen, L.; Ying, D.; Dong, S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One, 2011, 6(7), e21679.
[http://dx.doi.org/10.1371/journal.pone.0021679] [PMID: 21799743]
[29]
Papachroni, K.K.; Karatzas, D.N.; Papavassiliou, K.A.; Basdra, E.K.; Papavassiliou, A.G. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med., 2009, 15(5), 208-216.
[http://dx.doi.org/10.1016/j.molmed.2009.03.001] [PMID: 19362057]
[30]
Arumugam, B.; Balagangadharan, K.; Selvamurugan, N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. J. Cell Commun. Signal., 2018, 12(3), 561-573.
[http://dx.doi.org/10.1007/s12079-018-0449-3] [PMID: 29350343]
[31]
Thies, R.S.; Bauduy, M.; Ashton, B.A.; Kurtzberg, L.; Wozney, J.M.; Rosen, V. Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology, 1992, 130(3), 1318-1324.
[PMID: 1311236]
[32]
Komori, T.; Yagi, H.; Nomura, S.; Yamaguchi, A.; Sasaki, K.; Deguchi, K.; Shimizu, Y.; Bronson, R.; Gao, Y-H.; Inada, M. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 8(5), 755-764.
[33]
Jensen, E.D.; Gopalakrishnan, R.; Westendorf, J.J. Regulation of gene expression in osteoblasts. Biofactors, 2010, 36(1), 25-32.
[PMID: 20087883]
[34]
Vimalraj, S.; Arumugam, B.; Miranda, P.J.; Selvamurugan, N. Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int. J. Biol. Macromol., 2015, 78, 202-208.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.008] [PMID: 25881954]
[35]
Chirshev, E.; Oberg, K.C.; Ioffe, Y.J.; Unternaehrer, J.J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin. Transl. Med., 2019, 8(1), 24.
[http://dx.doi.org/10.1186/s40169-019-0240-y] [PMID: 31468250]
[36]
Wang, Y.; Pang, X.; Wu, J.; Jin, L.; Yu, Y.; Gobin, R.; Yu, J. MicroRNA hsa-let-7b suppresses the odonto/osteogenic differentiation capacity of stem cells from apical papilla by targeting MMP1. J. Cell. Biochem., 2018, 119(8), 6545-6554.
[http://dx.doi.org/10.1002/jcb.26737] [PMID: 29384216]
[37]
Kaushik, A.P.; Das, A.; Cui, Q. Osteonecrosis of the femoral head: An update in year 2012. World J. Orthop., 2012, 3(5), 49-57.
[http://dx.doi.org/10.5312/wjo.v3.i5.49] [PMID: 22655222]
[38]
Ma, D-H.; Li, B-S.; Liu, J-J.; Xiao, Y-F.; Yong, X.; Wang, S-M.; Wu, Y-Y.; Zhu, H-B.; Wang, D-X.; Yang, S-M. miR-93-5p/IFNAR1 axis promotes gastric cancer metastasis through activating the STAT3 signaling pathway. Cancer Lett., 2017, 408, 23-32.
[http://dx.doi.org/10.1016/j.canlet.2017.08.017] [PMID: 28842285]
[39]
Xiang, Y.; Liao, X-H.; Yu, C-X.; Yao, A.; Qin, H.; Li, J-P.; Hu, P.; Li, H.; Guo, W.; Gu, C-J.; Zhang, T.C. MiR-93-5p inhibits the EMT of breast cancer cells via targeting MKL-1 and STAT3. Exp. Cell Res., 2017, 357(1), 135-144.
[http://dx.doi.org/10.1016/j.yexcr.2017.05.007] [PMID: 28499590]
[40]
Zhang, Y.; Wei, Q-S.; Ding, W-B.; Zhang, L-L.; Wang, H-C.; Zhu, Y-J.; He, W.; Chai, Y-N.; Liu, Y-W. Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2. PLoS One, 2017, 12(8), e0182678.
[http://dx.doi.org/10.1371/journal.pone.0182678] [PMID: 28797104]
[41]
Yan, G.Q.; Wang, X.; Yang, F.; Yang, M.L.; Zhang, G.R.; Wang, G.K.; Zhou, Q. MicroRNA-22 promoted osteogenic differentiation of human periodontal ligament stem cells by targeting HDAC6. J. Cell. Biochem., 2017, 118(7), 1653-1658.
[http://dx.doi.org/10.1002/jcb.25931] [PMID: 28195408]
[42]
Chen, J.; He, G.; Wang, Y.; Cai, D. MicroRNA-223 promotes osteoblast differentiation of MC3T3-E1 cells by targeting histone deacetylase 2. Int. J. Mol. Med., 2019, 43(3), 1513-1521.
[PMID: 30628667]
[43]
Hu, H.; Hilton, M.J.; Tu, X.; Yu, K.; Ornitz, D.M.; Long, F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development, 2005, 132(1), 49-60.
[http://dx.doi.org/10.1242/dev.01564] [PMID: 15576404]
[44]
Zheng, X.; Mann, R.K.; Sever, N.; Beachy, P.A. Genetic and biochemical definition of the Hedgehog receptor. Genes Dev., 2010, 24(1), 57-71.
[http://dx.doi.org/10.1101/gad.1870310] [PMID: 20048000]
[45]
Kimura, H.; Ng, J.M.; Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell, 2008, 13(3), 249-260.
[http://dx.doi.org/10.1016/j.ccr.2008.01.027] [PMID: 18328428]
[46]
Kim, W.K.; Meliton, V.; Bourquard, N.; Hahn, T.J.; Parhami, F. Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J. Cell. Biochem., 2010, 111(5), 1199-1209.
[http://dx.doi.org/10.1002/jcb.22846] [PMID: 20717924]
[47]
Ling, L.; Nurcombe, V.; Cool, S.M. Wnt signaling controls the fate of mesenchymal stem cells. Gene, 2009, 433(1-2), 1-7.
[http://dx.doi.org/10.1016/j.gene.2008.12.008] [PMID: 19135507]
[48]
Chang, J.; Sonoyama, W.; Wang, Z.; Jin, Q.; Zhang, C.; Krebsbach, P.H.; Giannobile, W.; Shi, S.; Wang, C-Y. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J. Biol. Chem., 2007, 282(42), 30938-30948.
[http://dx.doi.org/10.1074/jbc.M702391200] [PMID: 17720811]
[49]
Bodine, P.V.; Komm, B.S. Wnt signaling and osteoblastogenesis. Rev. Endocr. Metab. Disord., 2006, 7(1-2), 33-39.
[http://dx.doi.org/10.1007/s11154-006-9002-4] [PMID: 16960757]
[50]
Gaur, T.; Lengner, C.J.; Hovhannisyan, H.; Bhat, R.A.; Bodine, P.V.; Komm, B.S.; Javed, A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem., 2005, 280(39), 33132-33140.
[http://dx.doi.org/10.1074/jbc.M500608200] [PMID: 16043491]
[51]
Aslani, S.; Abhari, A.; Sakhinia, E.; Sanajou, D.; Rajabi, H.; Rahimzadeh, S. Interplay between microRNAs and Wnt, transforming growth factor-β, and bone morphogenic protein signaling pathways promote osteoblastic differentiation of mesenchymal stem cells. J. Cell. Physiol., 2019, 234(6), 8082-8093.
[http://dx.doi.org/10.1002/jcp.27582] [PMID: 30548580]
[52]
Li, J.; Zhang, Y.; Zhao, Q.; Wang, J.; He, X. Microrna-10a influences osteoblast differentiation and angiogenesis by regulating β-catenin expression. Cell. Physiol. Biochem., 2015, 37(6), 2194-2208.
[http://dx.doi.org/10.1159/000438576] [PMID: 26610149]
[53]
Tang, X.; Lin, J.; Wang, G.; Lu, J. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One, 2017, 12(6), e0179860.
[http://dx.doi.org/10.1371/journal.pone.0179860] [PMID: 28628652]
[54]
Korvala, J.; Jüppner, H.; Mäkitie, O.; Sochett, E.; Schnabel, D.; Mora, S.; Bartels, C.F.; Warman, M.L.; Deraska, D.; Cole, W.G.; Hartikka, H.; Ala-Kokko, L.; Männikkö, M. Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med. Genet., 2012, 13(1), 26.
[http://dx.doi.org/10.1186/1471-2350-13-26] [PMID: 22487062]
[55]
Li, T.; Li, H.; Wang, Y.; Li, T.; Fan, J.; Xiao, K.; Zhao, R.C.; Weng, X. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int. J. Biochem. Cell Biol., 2016, 72, 55-62.
[http://dx.doi.org/10.1016/j.biocel.2016.01.004] [PMID: 26774446]
[56]
Chang, H.; Brown, C.W.; Matzuk, M.M. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr. Rev., 2002, 23(6), 787-823.
[http://dx.doi.org/10.1210/er.2002-0003] [PMID: 12466190]
[57]
Chen, G.; Deng, C.; Li, Y-P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci., 2012, 8(2), 272-288.
[http://dx.doi.org/10.7150/ijbs.2929] [PMID: 22298955]
[58]
Buijs, J.T.; Henriquez, N.V.; van Overveld, P.G.; van der Horst, G.; ten Dijke, P.; van der Pluijm, G. TGF-β and BMP7 interactions in tumour progression and bone metastasis. Clin. Exp. Metastasis, 2007, 24(8), 609-617.
[http://dx.doi.org/10.1007/s10585-007-9118-2] [PMID: 18008174]
[59]
Lehmann, K.; Seemann, P.; Stricker, S.; Sammar, M.; Meyer, B.; Süring, K.; Majewski, F.; Tinschert, S.; Grzeschik, K-H.; Müller, D.; Knaus, P.; Nürnberg, P.; Mundlos, S. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc. Natl. Acad. Sci. USA, 2003, 100(21), 12277-12282.
[http://dx.doi.org/10.1073/pnas.2133476100] [PMID: 14523231]
[60]
Zhen, G.; Wen, C.; Jia, X.; Li, Y.; Crane, J.L.; Mears, S.C.; Askin, F.B.; Frassica, F.J.; Chang, W.; Yao, J.; Carrino, J.A.; Cosgarea, A.; Artemov, D.; Chen, Q.; Zhao, Z.; Zhou, X.; Riley, L.; Sponseller, P.; Wan, M.; Lu, W.W.; Cao, X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19(6), 704-712.
[http://dx.doi.org/10.1038/nm.3143] [PMID: 23685840]
[61]
Zhang, G.P.; Zhang, J.; Zhu, C.H.; Lin, L.; Wang, J.; Zhang, H.J.; Li, J.; Yu, X.G.; Zhao, Z.S.; Dong, W.; Liu, G.B. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J. Cell. Mol. Med., 2017, 21(2), 254-264.
[http://dx.doi.org/10.1111/jcmm.12961] [PMID: 27860183]
[62]
Grünhagen, J.; Bhushan, R.; Degenkolbe, E.; Jäger, M.; Knaus, P.; Mundlos, S.; Robinson, P.N.; Ott, C.E. MiR-497195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J. Bone Miner. Res., 2015, 30(5), 796-808.
[http://dx.doi.org/10.1002/jbmr.2412] [PMID: 25407900]
[63]
Li, H.; Fan, J.; Fan, L.; Li, T.; Yang, Y.; Xu, H.; Deng, L.; Li, J.; Li, T.; Weng, X.; Wang, S.; Chunhua Zhao, R. miRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-β/SMAD2 signaling pathway. Aging Dis., 2018, 9(6), 1058-1073.
[http://dx.doi.org/10.14336/AD.2018.0214] [PMID: 30574418]
[64]
Bhushan, R.; Grünhagen, J.; Becker, J.; Robinson, P.N.; Ott, C-E.; Knaus, P. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int. J. Biochem. Cell Biol., 2013, 45(3), 696-705.
[http://dx.doi.org/10.1016/j.biocel.2012.12.008] [PMID: 23262291]
[65]
Lewis, J. In Notch signalling and the control of cell fate choices in vertebrates, Semin Cell Dev Biol; Elsevier, 1998, pp. 583-589.
[66]
Mancini, S.J.; Mantei, N.; Dumortier, A.; Suter, U.; MacDonald, H.R.; Radtke, F. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood, 2005, 105(6), 2340-2342.
[http://dx.doi.org/10.1182/blood-2004-08-3207] [PMID: 15550486]
[67]
Nefedova, Y.; Sullivan, D.M.; Bolick, S.C.; Dalton, W.S.; Gabrilovich, D.I. Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood, 2008, 111(4), 2220-2229.
[http://dx.doi.org/10.1182/blood-2007-07-102632] [PMID: 18039953]
[68]
Wang, Z.; Li, Y.; Kong, D.; Ahmad, A.; Banerjee, S.; Sarkar, F.H. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett., 2010, 292(2), 141-148.
[http://dx.doi.org/10.1016/j.canlet.2009.11.012] [PMID: 20022691]
[69]
Urbanek, K.; Lesiak, M.; Krakowian, D.; Koryciak-Komarska, H.; Likus, W.; Czekaj, P.; Kusz, D.; Sieroń, A.L. Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. Lab. Invest., 2017, 97(10), 1225-1234.
[http://dx.doi.org/10.1038/labinvest.2017.60] [PMID: 28805807]
[70]
Tchekneva, E.E.; Goruganthu, M.U.L.; Uzhachenko, R.V.; Thomas, P.L.; Antonucci, A.; Chekneva, I.; Koenig, M.; Piao, L.; Akhter, A.; de Aquino, M.T.P.; Ranganathan, P.; Long, N.; Magliery, T.; Valujskikh, A.; Evans, J.V.; Arasada, R.R.; Massion, P.P.; Carbone, D.P.; Shanker, A.; Dikov, M.M. Determinant roles of dendritic cell-expressed Notch Delta-like and Jagged ligands on anti-tumor T cell immunity. J. Immunother. Cancer, 2019, 7(1), 95.
[http://dx.doi.org/10.1186/s40425-019-0566-4] [PMID: 30940183]
[71]
Ziouti, F.; Ebert, R.; Rummler, M.; Krug, M.; Müller-Deubert, S.; Lüdemann, M.; Jakob, F.; Willie, B.M.; Jundt, F. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells. Stem Cells Int; , 2019. Article ID 5150634, 13 pages;
[http://dx.doi.org/10.1155/2019/5150634]
[72]
Ugarte, F.; Ryser, M.; Thieme, S.; Fierro, F. A.; Navratiel, K.; Bornhauser, M.; Brenner, S. Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp. Hematol, 2009, 37(7), 867-875e1.
[http://dx.doi.org/10.1016/j.exphem.2009.03.007]
[73]
Fan, C.; Jia, L.; Zheng, Y.; Jin, C.; Liu, Y.; Liu, H.; Zhou, Y. MiR-34a promotes osteogenic differentiation of human adipose-derived stem cells via the RBP2/NOTCH1/CYCLIN D1 coregulatory network. Stem Cell Reports, 2016, 7(2), 236-248.
[http://dx.doi.org/10.1016/j.stemcr.2016.06.010] [PMID: 27453008]
[74]
Bae, Y.; Yang, T.; Zeng, H-C.; Campeau, P.M.; Chen, Y.; Bertin, T.; Dawson, B.C.; Munivez, E.; Tao, J.; Lee, B.H. miRNA-34c regulates Notch signaling during bone development. Hum. Mol. Genet., 2012, 21(13), 2991-3000.
[http://dx.doi.org/10.1093/hmg/dds129] [PMID: 22498974]
[75]
Luo, H.; Gao, H.; Liu, F.; Qiu, B. Regulation of Runx2 by microRNA-9 and microRNA-10 modulates the osteogenic differentiation of mesenchymal stem cells. Int. J. Mol. Med., 2017, 39(4), 1046-1052.
[http://dx.doi.org/10.3892/ijmm.2017.2918] [PMID: 28290608]
[76]
Chen, Y.-C.; Ho, C.-C.; Yi, C.-H.; Liu, X.-Z.; Cheng, T.-T.; Lam, C.-F. Exendin-4, a glucagon-like peptide-1 analogue accelerates healing of chronic gastric ulcer in diabetic rats. PLoS One, 2017, 12(11), 1932-6203.
[http://dx.doi.org/10.1371/journal.pone.0187434]
[77]
Hussain, M.A.; Theise, N.D. Stem-cell therapy for diabetes mellitus. Lancet, 2004, 364(9429), 203-205.
[http://dx.doi.org/10.1016/S0140-6736(04)16635-X] [PMID: 15246735]
[78]
Lalu, M.M.; McIntyre, L.; Pugliese, C.; Fergusson, D.; Winston, B.W.; Marshall, J.C.; Granton, J.; Stewart, D.J. Canadian Critical Care Trials Group Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials. PLoS One, 2012, 7(10), e47559.
[http://dx.doi.org/10.1371/journal.pone.0047559] [PMID: 23133515]
[79]
Rulifson, I.C.; Karnik, S.K.; Heiser, P.W.; ten Berge, D.; Chen, H.; Gu, X.; Taketo, M.M.; Nusse, R.; Hebrok, M.; Kim, S.K. Wnt signaling regulates pancreatic β cell proliferation. Proc. Natl. Acad. Sci. USA, 2007, 104(15), 6247-6252.
[http://dx.doi.org/10.1073/pnas.0701509104] [PMID: 17404238]
[80]
Vethe, H.; Ghila, L.; Berle, M.; Hoareau, L.; Haaland, Ø.A.; Scholz, H.; Paulo, J.A.; Chera, S.; Ræder, H. The effect of Wnt pathways modulators on human iPSC-derived pancreatic beta cell maturation. Front. Endocrinol. (Lausanne), 2019, 10, 293.
[http://dx.doi.org/10.3389/fendo.2019.00293] [PMID: 31139151]
[81]
Koizumi, M.; Doi, R.; Toyoda, E.; Masui, T.; Tulachan, S.S.; Kawaguchi, Y.; Fujimoto, K.; Gittes, G.K.; Imamura, M. Increased PDX-1 expression is associated with outcome in patients with pancreatic cancer. Surgery, 2003, 134(2), 260-266.
[http://dx.doi.org/10.1067/msy.2003.231] [PMID: 12947327]
[82]
Chu, K.; Tsai, M-J. Neuronatin, a downstream target of BETA2/NeuroD1 in the pancreas, is involved in glucose-mediated insulin secretion. Diabetes, 2005, 54(4), 1064-1073.
[http://dx.doi.org/10.2337/diabetes.54.4.1064] [PMID: 15793245]
[83]
Qiu, Y.; Guo, M.; Huang, S.; Stein, R. Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol. Cell. Biol., 2002, 22(2), 412-420.
[http://dx.doi.org/10.1128/MCB.22.2.412-420.2002] [PMID: 11756538]
[84]
Zhang, Z-W.; Zhang, L-Q.; Ding, L.; Wang, F.; Sun, Y-J.; An, Y.; Zhao, Y.; Li, Y-H.; Teng, C-B. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett., 2011, 585(16), 2592-2598.
[http://dx.doi.org/10.1016/j.febslet.2011.06.039] [PMID: 21781967]
[85]
Mu, C.; Wang, T.; Wang, X.; Tian, H.; Liu, Y. Identification of microRNAs regulating Hlxb9 gene expression during the induction of insulin-producing cells. Cell Biol. Int., 2016, 40(5), 515-523.
[http://dx.doi.org/10.1002/cbin.10586] [PMID: 26801823]
[86]
Li, X. MiR-375, a microRNA related to diabetes. Gene, 2014, 533(1), 1-4.
[http://dx.doi.org/10.1016/j.gene.2013.09.105] [PMID: 24120394]
[87]
Sebastiani, G.; Valentini, M.; Grieco, G.E.; Ventriglia, G.; Nigi, L.; Mancarella, F.; Pellegrini, S.; Martino, G.; Sordi, V.; Piemonti, L.; Dotta, F. MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol., 2017, 54(3), 265-281.
[http://dx.doi.org/10.1007/s00592-016-0955-9] [PMID: 28039581]
[88]
Wei, R.; Yang, J.; Liu, G.Q.; Gao, M.J.; Hou, W.F.; Zhang, L.; Gao, H.W.; Liu, Y.; Chen, G.A.; Hong, T.P. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene, 2013, 518(2), 246-255.
[http://dx.doi.org/10.1016/j.gene.2013.01.038] [PMID: 23370336]
[89]
Isern, J.; García-García, A.; Martín, A.M.; Arranz, L.; Martín-Pérez, D.; Torroja, C.; Sánchez-Cabo, F.; Méndez-Ferrer, S. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 2014, 3e03696
[http://dx.doi.org/10.7554/elife.03696] [PMID: 25255216]
[90]
Ge, W.; Ren, C.; Duan, X.; Geng, D.; Zhang, C.; Liu, X.; Chen, H.; Wan, M.; Geng, R. Differentiation of mesenchymal stem cells into neural stem cells using cerebrospinal fluid. Cell Biochem. Biophys., 2015, 71(1), 449-455.
[http://dx.doi.org/10.1007/s12013-014-0222-z] [PMID: 25217067]
[91]
Han, J.; Denli, A.M.; Gage, F.H. The enemy within: Intronic miR-26b represses its host gene, ctdsp2, to regulate neurogenesis. Genes Dev., 2012, 26(1), 6-10.
[http://dx.doi.org/10.1101/gad.184416.111] [PMID: 22215805]
[92]
Benod, C.; Villagomez, R.; Webb, P. TLX: An elusive receptor. J. Steroid Biochem. Mol. Biol., 2016, 157, 41-47.
[http://dx.doi.org/10.1016/j.jsbmb.2015.11.001] [PMID: 26554934]
[93]
Zhao, C.; Sun, G.; Li, S.; Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol., 2009, 16(4), 365-371.
[http://dx.doi.org/10.1038/nsmb.1576] [PMID: 19330006]
[94]
Huang, Y.; Liu, X.; Wang, Y. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating tailless expression. Biochem. Biophys. Res. Commun., 2015, 466(2), 214-220.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.011] [PMID: 26361139]
[95]
Pevny, L.H.; Nicolis, S.K. Sox2 roles in neural stem cells. Int. J. Biochem. Cell Biol., 2010, 42(3), 421-424.
[http://dx.doi.org/10.1016/j.biocel.2009.08.018] [PMID: 19733254]
[96]
Heo, I.; Joo, C.; Cho, J.; Ha, M.; Han, J.; Kim, V.N. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell, 2008, 32(2), 276-284.
[http://dx.doi.org/10.1016/j.molcel.2008.09.014] [PMID: 18951094]
[97]
Rybak, A.; Fuchs, H.; Smirnova, L.; Brandt, C.; Pohl, E.E.; Nitsch, R.; Wulczyn, F.G. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol., 2008, 10(8), 987-993.
[http://dx.doi.org/10.1038/ncb1759] [PMID: 18604195]
[98]
Morgado, A.L.; Rodrigues, C.M.; Solá, S. MicroRNA‐145 regulates neural stem cell differentiation through the Sox2–Lin28/let‐7 signaling pathway. Stem Cells, 2016, 34(5), 1386-1395.
[http://dx.doi.org/10.1002/stem.2309] [PMID: 26849971]
[99]
Shu, P.; Fu, H.; Zhao, X.; Wu, C.; Ruan, X.; Zeng, Y.; Liu, W.; Wang, M.; Hou, L.; Chen, P.; Yin, B.; Yuan, J.; Qiang, B.; Peng, X. MicroRNA-214 modulates neural progenitor cell differentiation by targeting Quaking during cerebral cortex development. Sci. Rep., 2017, 7(1), 8014.
[http://dx.doi.org/10.1038/s41598-017-08450-8] [PMID: 28808337]
[100]
Yang, Y.; Shen, Z.; Sun, W.; Gao, S.; Li, Y.; Guo, Y. The role of miR-122-5p in negatively regulating T-box brain 1 expression on the differentiation of mouse bone mesenchymal stem cells. Neuroreport, 2017, 28(7), 367-374.
[http://dx.doi.org/10.1097/WNR.0000000000000752] [PMID: 28240720]
[101]
Hevner, R.F.; Shi, L.; Justice, N.; Hsueh, Y.; Sheng, M.; Smiga, S.; Bulfone, A.; Goffinet, A.M.; Campagnoni, A.T.; Rubenstein, J.L. Tbr1 regulates differentiation of the preplate and layer 6. Neuron, 2001, 29(2), 353-366.
[http://dx.doi.org/10.1016/S0896-6273(01)00211-2] [PMID: 11239428]
[102]
Marangos, P.J.; Schmechel, D.E. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu. Rev. Neurosci., 1987, 10(1), 269-295.
[http://dx.doi.org/10.1146/annurev.ne.10.030187.001413] [PMID: 3551759]
[103]
Polcyn, R.; Capone, M.; Hossain, A.; Matzelle, D.; Banik, N.L.; Haque, A. Neuron specific enolase is a potential target for regulating neuronal cell survival and death: implications in neurodegeneration and regeneration. Neuroimmunol. Neuroinflamm., 2017, 4, 254-257.
[http://dx.doi.org/10.20517/2347-8659.2017.59] [PMID: 29423430]
[104]
Xu, C.; Wang, C.; Meng, Q.; Gu, Y.; Wang, Q.; Xu, W.; Han, Y.; Qin, Y.; Li, J.; Jia, S.; Xu, J.; Zhou, Y. miR-153 promotes neural differentiation in the mouse hippocampal HT-22 cell line and increases the expression of neuron-specific enolase. Mol. Med. Rep., 2019, 20(2), 1725-1735.
[http://dx.doi.org/10.3892/mmr.2019.10421] [PMID: 31257504]
[105]
Smith, C.J.; Anderton, B.H.; Davis, D.R.; Gallo, J-M. Tau isoform expression and phosphorylation state during differentiation of cultured neuronal cells. FEBS Lett., 1995, 375(3), 243-248.
[http://dx.doi.org/10.1016/0014-5793(95)01221-Y] [PMID: 7498509]
[106]
Lai, K.; Kaspar, B.K.; Gage, F.H.; Schaffer, D.V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci., 2003, 6(1), 21-27.
[http://dx.doi.org/10.1038/nn983] [PMID: 12469128]
[107]
Lie, D-C.; Colamarino, S.A.; Song, H-J.; Désiré, L.; Mira, H.; Consiglio, A.; Lein, E.S.; Jessberger, S.; Lansford, H.; Dearie, A.R.; Gage, F.H. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(7063), 1370-1375.
[http://dx.doi.org/10.1038/nature04108] [PMID: 16251967]
[108]
Wexler, E.M.; Paucer, A.; Kornblum, H.I.; Palmer, T.D.; Geschwind, D.H. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells, 2009, 27(5), 1130-1141.
[http://dx.doi.org/10.1002/stem.36] [PMID: 19418460]
[109]
Wu, R.; Tang, Y.; Zang, W.; Wang, Y.; Li, M.; Du, Y.; Zhao, G.; Xu, Y. MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Mol. Cell. Biochem., 2014, 387(1-2), 151-158.
[http://dx.doi.org/10.1007/s11010-013-1880-7] [PMID: 24307102]
[110]
Hu, F.; Sun, B.; Xu, P.; Zhu, Y.; Meng, X-H.; Teng, G-J.; Xiao, Z-D. MiR-218 induces neuronal differentiation of ASCs in a temporally sequential manner with fibroblast growth factor by regulation of the Wnt signaling pathway. Sci. Rep., 2017, 7, 39427.
[http://dx.doi.org/10.1038/srep39427] [PMID: 28045049]
[111]
Jiao, S.; Liu, Y.; Yao, Y.; Teng, J. miR-124 promotes proliferation and neural differentiation of neural stem cells through targeting DACT1 and activating Wnt/β-catenin pathways. Mol. Cell. Biochem., 2018, 449(1-2), 305-314.
[http://dx.doi.org/10.1007/s11010-018-3367-z] [PMID: 29786763]
[112]
Rabadán, M.A.; Herrera, A.; Fanlo, L.; Usieto, S.; Carmona-Fontaine, C.; Barriga, E.H.; Mayor, R.; Pons, S.; Martí, E. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2. Development, 2016, 143(12), 2194-2205.
[http://dx.doi.org/10.1242/dev.134981] [PMID: 27122165]
[113]
Ishibashi, M.; Ang, S-L.; Shiota, K.; Nakanishi, S.; Kageyama, R.; Guillemot, F. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev., 1995, 9(24), 3136-3148.
[http://dx.doi.org/10.1101/gad.9.24.3136] [PMID: 8543157]
[114]
Bray, S.J. Notch signalling in context. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 722-735.
[http://dx.doi.org/10.1038/nrm.2016.94] [PMID: 27507209]
[115]
Baek, J.H.; Hatakeyama, J.; Sakamoto, S.; Ohtsuka, T.; Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development, 2006, 133(13), 2467-2476.
[http://dx.doi.org/10.1242/dev.02403] [PMID: 16728479]
[116]
Zheng, J.; Yi, D.; Shi, X.; Shi, H. miR-1297 regulates neural stem cell differentiation and viability through controlling Hes1 expression. Cell Prolif., 2017, 50(4)e12347
[http://dx.doi.org/10.1111/cpr.12347] [PMID: 28464358]
[117]
Chen, T.; Liu, W.; Chao, X.; Qu, Y.; Zhang, L.; Luo, P.; Xie, K.; Huo, J.; Fei, Z. Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: Involvement of mitogen-activated protein kinase pathway. Neuroscience, 2011, 183, 203-211.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.038] [PMID: 21453755]
[118]
Li, S-H.; Gao, P.; Wang, L-T.; Yan, Y-H.; Xia, Y.; Song, J.; Li, H-Y.; Yang, J-X. Osthole stimulated neural stem cells differentiation into neurons in an Alzheimer’s disease cell model via upregulation of microRNA-9 and rescued the functional impairment of hippocampal neurons in APP/PS1 transgenic mice. Front. Neurosci., 2017, 11, 340.
[http://dx.doi.org/10.3389/fnins.2017.00340] [PMID: 28659755]
[119]
Saha, S.; Panigrahi, D.P.; Patil, S.; Bhutia, S.K. Autophagy in health and disease: A comprehensive review. Biomed. Pharmacother., 2018, 104, 485-495.
[http://dx.doi.org/10.1016/j.biopha.2018.05.007] [PMID: 29800913]
[120]
Vessoni, A.T.; Muotri, A.R.; Okamoto, O.K. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev., 2012, 21(4), 513-520.
[http://dx.doi.org/10.1089/scd.2011.0526] [PMID: 22066548]
[121]
Salemi, S.; Yousefi, S.; Constantinescu, M.A.; Fey, M.F.; Simon, H-U. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res., 2012, 22(2), 432-435.
[http://dx.doi.org/10.1038/cr.2011.200] [PMID: 22184008]
[122]
Ali, S.O.; Shahin, N.N.; Safar, M.M.; Rizk, S.M. Therapeutic potential of endothelial progenitor cells in a rat model of epilepsy: Role of autophagy. J. Adv. Res., 2019, 18, 101-112.
[http://dx.doi.org/10.1016/j.jare.2019.01.013] [PMID: 30847250]
[123]
Morgado, A.L.; Xavier, J.M.; Dionísio, P.A.; Ribeiro, M.F.; Dias, R.B.; Sebastião, A.M.; Solá, S.; Rodrigues, C.M. MicroRNA-34a modulates neural stem cell differentiation by regulating expression of synaptic and autophagic proteins. Mol. Neurobiol., 2015, 51(3), 1168-1183.
[http://dx.doi.org/10.1007/s12035-014-8794-6] [PMID: 24973144]
[124]
McCurley, A.; Pires, P.W.; Bender, S.B.; Aronovitz, M.; Zhao, M.J.; Metzger, D.; Chambon, P.; Hill, M.A.; Dorrance, A.M.; Mendelsohn, M.E.; Jaffe, I.Z. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med., 2012, 18(9), 1429-1433.
[http://dx.doi.org/10.1038/nm.2891] [PMID: 22922412]
[125]
Allahverdian, S.; Chaabane, C.; Boukais, K.; Francis, G.A.; Bochaton-Piallat, M-L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 540-550.
[http://dx.doi.org/10.1093/cvr/cvy022] [PMID: 29385543]
[126]
High, F.A.; Lu, M.M.; Pear, W.S.; Loomes, K.M.; Kaestner, K.H.; Epstein, J.A. Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 1955-1959.
[http://dx.doi.org/10.1073/pnas.0709663105] [PMID: 18245384]
[127]
Sinha, S.; Hoofnagle, M.H.; Kingston, P.A.; McCanna, M.E.; Owens, G.K. Transforming growth factor-β1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am. J. Physiol. Cell Physiol., 2004, 287(6), C1560-C1568.
[http://dx.doi.org/10.1152/ajpcell.00221.2004] [PMID: 15306544]
[128]
Liu, X.; Song, L.; Liu, J.; Wang, S.; Tan, X.; Bai, X.; Bai, T.; Wang, Y.; Li, M.; Song, Y.; Li, Y. miR-18b inhibits TGF-β1-induced differentiation of hair follicle stem cells into smooth muscle cells by targeting SMAD2. Biochem. Biophys. Res. Commun., 2013, 438(3), 551-556.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.090] [PMID: 23916701]
[129]
Wang, Z.; Pang, L.; Zhao, H.; Song, L.; Wang, Y.; Sun, Q.; Guo, C.; Wang, B.; Qin, X.; Pan, A. miR-128 regulates differentiation of hair follicle mesenchymal stem cells into smooth muscle cells by targeting SMAD2. Acta Histochem., 2016, 118(4), 393-400.
[http://dx.doi.org/10.1016/j.acthis.2016.04.001] [PMID: 27087048]
[130]
Mill, C.; George, S.J. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc. Res., 2012, 95(2), 233-240.
[http://dx.doi.org/10.1093/cvr/cvs141] [PMID: 22492675]
[131]
Hashemi Gheinani, A.; Burkhard, F.C.; Rehrauer, H.; Aquino Fournier, C.; Monastyrskaya, K.; Micro, R.N.A. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway. J. Biol. Chem., 2015, 290(11), 7067-7086.
[http://dx.doi.org/10.1074/jbc.M114.618694] [PMID: 25596533]
[132]
Prosdocimo, D.A.; Sabeh, M.K.; Jain, M.K. Kruppel-like factors in muscle health and disease. Trends Cardiovasc. Med., 2015, 25(4), 278-287.
[http://dx.doi.org/10.1016/j.tcm.2014.11.006] [PMID: 25528994]
[133]
Liu, Y.; Sinha, S.; McDonald, O.G.; Shang, Y.; Hoofnagle, M.H.; Owens, G.K. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J. Biol. Chem., 2005, 280(10), 9719-9727.
[134]
Davis-Dusenbery, B.N.; Chan, M.C.; Reno, K.E.; Weisman, A.S.; Layne, M.D.; Lagna, G.; Hata, A. down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4. J. Biol. Chem., 2011, 286(32), 28097-28110.
[http://dx.doi.org/10.1074/jbc.M111.236950] [PMID: 21673106]
[135]
Xie, C.; Huang, H.; Sun, X.; Guo, Y.; Hamblin, M.; Ritchie, R.P.; Garcia-Barrio, M.T.; Zhang, J.; Chen, Y.E. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev., 2011, 20(2), 205-210.
[http://dx.doi.org/10.1089/scd.2010.0283] [PMID: 20799856]
[136]
Aji, K.; Zhang, Y.; Aimaiti, A.; Wang, Y.; Rexiati, M.; Azhati, B.; Tusong, H.; Cui, L.; Wang, C. MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Krüppel-like factor 4. Mol. Med. Rep., 2017, 15(6), 3787-3795.
[http://dx.doi.org/10.3892/mmr.2017.6478] [PMID: 28440409]
[137]
Yamaguchi, S.; Yamahara, K.; Homma, K.; Suzuki, S.; Fujii, S.; Morizane, R.; Monkawa, T.; Matsuzaki, Y.; Kangawa, K.; Itoh, H. The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis, 2011, 219(2), 468-474.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.004] [PMID: 21945499]
[138]
Zhang, T.; Kraus, W.L. SIRT1-dependent regulation of chromatin and transcription: Linking NAD(+) metabolism and signaling to the control of cellular functions. Biochim. Biophys. Acta, 2010, 1804(8), 1666-1675.
[http://dx.doi.org/10.1016/j.bbapap.2009.10.022] [PMID: 19879981]
[139]
Matsuzaki, T.; Matsushita, T.; Takayama, K.; Matsumoto, T.; Nishida, K.; Kuroda, R.; Kurosaka, M. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann. Rheum. Dis., 2014, 73(7), 1397-1404.
[http://dx.doi.org/10.1136/annrheumdis-2012-202620] [PMID: 23723318]
[140]
Cantó, C.; Auwerx, J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab., 2009, 20(7), 325-331.
[http://dx.doi.org/10.1016/j.tem.2009.03.008] [PMID: 19713122]
[141]
Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.; Sinclair, D.A.; Pfluger, P.T.; Tschöp, M.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev., 2012, 92(3), 1479-1514.
[http://dx.doi.org/10.1152/physrev.00022.2011] [PMID: 22811431]
[142]
Gorenne, I.; Kumar, S.; Gray, K.; Figg, N.; Yu, H.; Mercer, J.; Bennett, M. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation, 2013, 127(3), 386-396.
[http://dx.doi.org/10.1161/Circulationaha.112.124404] [PMID: 23224247]
[143]
Yu, X.; Zhang, L.; Wen, G.; Zhao, H.; Luong, L.A.; Chen, Q.; Huang, Y.; Zhu, J.; Ye, S.; Xu, Q.; Wang, W.; Xiao, Q. Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells. Cell Death Differ., 2015, 22(7), 1170-1180.
[http://dx.doi.org/10.1038/cdd.2014.206] [PMID: 25526086]
[144]
Luo, L.; Liu, M. Adipose tissue in control of metabolism. J. Endocrinol., 2016, 231(3), R77-R99.
[http://dx.doi.org/10.1530/JOE-16-0211] [PMID: 27935822]
[145]
Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health; Nat. Rev. Mol. Cell Bio, 2019, p. 1.
[146]
Shao, X.; Wang, M.; Wei, X.; Deng, S.; Fu, N.; Peng, Q.; Jiang, Y.; Ye, L.; Xie, J.; Lin, Y. Peroxisome proliferator-activated receptor-γ: Master regulator of adipogenesis and obesity. Curr. Stem Cell Res. Ther., 2016, 11(3), 282-289.
[http://dx.doi.org/10.2174/1574888X10666150528144905] [PMID: 26018229]
[147]
Li, Y.; Jin, D.; Xie, W.; Wen, L.; Chen, W.; Xu, J.; Ding, J.; Ren, D. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr. Stem Cell Res. Ther., 2018, 13(3), 185-192.
[http://dx.doi.org/10.2174/1574888X12666171012141908] [PMID: 29034841]
[148]
Lane, M.D.; Tang, Q-Q.; Jiang, M-S. Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem. Biophys. Res. Commun., 1999, 266(3), 677-683.
[http://dx.doi.org/10.1006/bbrc.1999.1885] [PMID: 10603305]
[149]
Sun, J.; Wang, Y.; Li, Y.; Zhao, G. Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential. J. Transl. Med., 2014, 12(1), 168.
[http://dx.doi.org/10.1186/1479-5876-12-168] [PMID: 24929254]
[150]
Li, H.; Li, T.; Wang, S.; Wei, J.; Fan, J.; Li, J.; Han, Q.; Liao, L.; Shao, C.; Zhao, R.C. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. (Amst.), 2013, 10(3), 313-324.
[http://dx.doi.org/10.1016/j.scr.2012.11.007] [PMID: 23399447]
[151]
Chen, L.; Chen, Y.; Zhang, S.; Ye, L.; Cui, J.; Sun, Q.; Li, K.; Wu, H.; Liu, L. MiR-540 as a novel adipogenic inhibitor impairs adipogenesis via suppression of PPARγ. J. Cell. Biochem., 2015, 116(6), 969-976.
[http://dx.doi.org/10.1002/jcb.25050] [PMID: 25560764]
[152]
Karbiener, M.; Fischer, C.; Nowitsch, S.; Opriessnig, P.; Papak, C.; Ailhaud, G.; Dani, C.; Amri, E-Z.; Scheideler, M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem. Biophys. Res. Commun., 2009, 390(2), 247-251.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.098] [PMID: 19800867]
[153]
Yang, Z.; Bian, C.; Zhou, H.; Huang, S.; Wang, S.; Liao, L.; Zhao, R.C. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev., 2011, 20(2), 259-267.
[http://dx.doi.org/10.1089/scd.2010.0072] [PMID: 20486779]
[154]
Liu, W.J.; Li, X.; Liu, Y.L.; Wang, P.; Fan, Y.; Teng, T.Y.; Bai, B.Q.; Tong, Y.; Zhang, W.; Zhang, Y. microrna-3963 promotes adipogenic differentiation of mouse-derived mesenchymal stem cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2018, 26(1), 251-257.
[PMID: 29397853]
[155]
Christodoulides, C.; Lagathu, C.; Sethi, J.K.; Vidal-Puig, A. Adipogenesis and WNT signalling. Trends Endocrinol. Metab., 2009, 20(1), 16-24.
[http://dx.doi.org/10.1016/j.tem.2008.09.002] [PMID: 19008118]
[156]
He, H.; Chen, K.; Wang, F.; Zhao, L.; Wan, X.; Wang, L.; Mo, Z. miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling. Int. J. Mol. Med., 2015, 35(6), 1587-1595.
[http://dx.doi.org/10.3892/ijmm.2015.2160] [PMID: 25847080]
[157]
Kennell, J.A.; Gerin, I.; MacDougald, O.A.; Cadigan, K.M. The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15417-15422.
[http://dx.doi.org/10.1073/pnas.0807763105] [PMID: 18824696]
[158]
Taha, M.F.; Valojerdi, M.R.; Mowla, S.J. Effect of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse embryonic stem cells. Anat. Histol. Embryol., 2006, 35(4), 271-278.
[http://dx.doi.org/10.1111/j.1439-0264.2006.00680.x] [PMID: 16836593]
[159]
Chen, T.L.; Shen, W.J.; Kraemer, F.B. Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J. Cell. Biochem., 2001, 82(2), 187-199.
[http://dx.doi.org/10.1002/jcb.1145] [PMID: 11527145]
[160]
Gimble, J.M.; Morgan, C.; Kelly, K.; Wu, X.; Dandapani, V.; Wang, C.S.; Rosen, V. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J. Cell. Biochem., 1995, 58(3), 393-402.
[http://dx.doi.org/10.1002/jcb.240580312] [PMID: 7593260]
[161]
Zhou, S.; Eid, K.; Glowacki, J. Cooperation between TGF-β and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J. Bone Miner. Res., 2004, 19(3), 463-470.
[http://dx.doi.org/10.1359/JBMR.0301239] [PMID: 15040835]
[162]
Qiu, J.; Huang, G.; Na, N.; Chen, L. MicroRNA-214-5p/TGF-β/Smad2 signaling alters adipogenic differentiation of bone marrow stem cells in postmenopausal osteoporosis. Mol. Med. Rep., 2018, 17(5), 6301-6310.
[http://dx.doi.org/10.3892/mmr.2018.8713] [PMID: 29532880]
[163]
Kim, Y.J.; Hwang, S.J.; Bae, Y.C.; Jung, J.S. MiR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells, 2009, 27(12), 3093-3102.
[http://dx.doi.org/10.1002/stem.235] [PMID: 19816956]
[164]
Zhang, X.; Chang, A.; Li, Y.; Gao, Y.; Wang, H.; Ma, Z.; Li, X.; Wang, B. miR-140-5p regulates adipocyte differentiation by targeting transforming growth factor-β signaling. Sci. Rep., 2015, 5, 18118.
[http://dx.doi.org/10.1038/srep18118] [PMID: 26657345]
[165]
Adachi, T.; Nakanishi, M.; Otsuka, Y.; Nishimura, K.; Hirokawa, G.; Goto, Y.; Nonogi, H.; Iwai, N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin. Chem., 2010, 56(7), 1183-1185.
[http://dx.doi.org/10.1373/clinchem.2010.144121] [PMID: 20395621]
[166]
Habbe, N.; Koorstra, J-B.M.; Mendell, J.T.; Offerhaus, G.J.; Ryu, J.K.; Feldmann, G.; Mullendore, M.E.; Goggins, M.G.; Hong, S-M.; Maitra, A. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther., 2009, 8(4), 340-346.
[http://dx.doi.org/10.4161/cbt.8.4.7338] [PMID: 19106647]
[167]
Tomimaru, Y.; Eguchi, H.; Nagano, H.; Wada, H.; Kobayashi, S.; Marubashi, S.; Tanemura, M.; Tomokuni, A.; Takemasa, I.; Umeshita, K.; Kanto, T.; Doki, Y.; Mori, M. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J. Hepatol., 2012, 56(1), 167-175.
[http://dx.doi.org/10.1016/j.jhep.2011.04.026] [PMID: 21749846]
[168]
Zeng, L.; Liu, J.; Wang, Y.; Wang, L.; Weng, S.; Tang, Y.; Zheng, C.; Cheng, Q.; Chen, S.; Yang, G-Y. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front. Biosci. (Elite Ed.), 2011, 3(3), 1265-1272.
[PMID: 21622133]
[169]
Ding, X.; Ding, J.; Ning, J.; Yi, F.; Chen, J.; Zhao, D.; Zheng, J.; Liang, Z.; Hu, Z.; Du, Q. Circulating microRNA-122 as a potential biomarker for liver injury. Mol. Med. Rep., 2012, 5(6), 1428-1432.
[http://dx.doi.org/10.3892/mmr.2012.838] [PMID: 22427142]
[170]
Toivonen, J.M.; Manzano, R.; Oliván, S.; Zaragoza, P.; García-Redondo, A.; Osta, R. MicroRNA-206: A potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One, 2014, 9(2), e89065.
[http://dx.doi.org/10.1371/journal.pone.0089065] [PMID: 24586506]
[171]
Wu, C.W.; Ng, S.C.; Dong, Y.; Tian, L.; Ng, S.S.M.; Leung, W.W.; Law, W.T.; Yau, T.O.; Chan, F.K.L.; Sung, J.J.Y.; Yu, J. Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. clin. cancer res, 2014, 20(11), 2994-3002.
[http://dx.doi.org/10.1158/1078-0432.ccr-13-1750] [PMID: 24691020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy