Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Effect of p53-R249S on the Suppression of Hepatocellular Carcinoma Cells Survival Induced by Podophyllum Derivatives

Author(s): Huan Chen , Mingyang Zhang , Ziping Wang, Lingqi Li , Qiqi Li and Huai Wang*

Volume 20, Issue 7, 2020

Page: [865 - 874] Pages: 10

DOI: 10.2174/1871520620666200218110047

Price: $65

Abstract

Background: Hepatocellular Carcinoma (HCC), the second leading cause of cancer-related mortality with over half a million new cases diagnosed annually in the world, accounts for nearly 70% of cancer deaths in parts of Asia and Africa. Podophyllum, one of the important members of the lignane class of natural products derived from plants in Podophyllum peltatum L., has been shown to suppress tumor growth in various cancers. However, the effects of Podophyllum compounds on HCC and the mechanisms for its tumor-suppressive function remain unknown.

Methods: A molecular docking study was employed to the analysis of the interaction between compounds and their targeted proteins. Cell proliferation was measured by MTT assay. Western blot analysis was used to evaluate protein expression. qRT-PCR was performed to assess RNA expression.

Results: Molecular docking analysis was consistent with the beneficial effect of fluorine atom substituent in the 3-position of 2-aminopyridine in our previous study. Also, P-3F and D-3F displayed the most potent cytotoxicities against PLC/PRF/5 with p53-R249S and weakest inhibition of L02 (normal liver cell) growth. However, these derivatives had no effect on the suppression of HepG2 (wild-type p53) and Hep3B (p53-null) proliferation significantly. Further study showed that both compounds increase γ-H2AX expression in PLC/PRF/5 cell, along with repression of the c-Myc activation, purportedly by induction of p53 level and transcriptional activation.

Conclusion: The results suggested that podophyllum derivatives containing fluorine atom in the 3-position of 2- aminopyridine could inhibit the growth of HCC harboring p53-R249S by restoring the activity of p53 with decreasing the level of c-Myc.

Keywords: Podophyllum derivatives, 2-Aminopyridine, fluorine atom, HCC, p53-R249S, c-Myc.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227.
[http://dx.doi.org/10.3389/fonc.2018.00227] [PMID: 29963498]
[3]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[4]
Velasco-Velázquez, M.A.; Popov, V.M.; Lisanti, M.P.; Pestell, R.G. The role of breast cancer stem cells in metastasis and therapeutic implications. Am. J. Pathol., 2011, 179(1), 2-11.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.005] [PMID: 21640330]
[5]
Matsui, W.H. Cancer stem cell signaling pathways. Medicine (Baltimore), 2016, 95(1)(Suppl. 1), S8-S19.
[http://dx.doi.org/10.1097/MD.0000000000004765] [PMID: 27611937]
[6]
Thomas, S.J.; Snowden, J.A.; Zeidler, M.P.; Danson, S.J. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer, 2015, 113(3), 365-371.
[http://dx.doi.org/10.1038/bjc.2015.233] [PMID: 26151455]
[7]
Sansone, P.; Bromberg, J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J. Clin. Oncol., 2012, 30(9), 1005-1014.
[http://dx.doi.org/10.1200/JCO.2010.31.8907] [PMID: 22355058]
[8]
Kiger, A.A.; Jones, D.L.; Schulz, C.; Rogers, M.B.; Fuller, M.T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science, 2001, 294(5551), 2542-2545.
[http://dx.doi.org/10.1126/science.1066707] [PMID: 11752574]
[9]
Hernandez-Vargas, H.; Ouzounova, M.; Le Calvez-Kelm, F.; Lambert, M.P.; McKay-Chopin, S.; Tavtigian, S.V.; Puisieux, A.; Matar, C.; Herceg, Z. Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics, 2011, 6(4), 428-439.
[http://dx.doi.org/10.4161/epi.6.4.14515] [PMID: 21266853]
[10]
Nascimento, A.S.; Peres, L.L.; Fari, A.V.S.; Milani, R.; Silva, R.A.; da Costa Fernandes, C.J., Jr; Peppelenbosch, M.P.; Ferreira-Halder, C.V.; Zambuzzi, W.F. Phosphoproteome profiling reveals critical role of JAK-STAT signaling in maintaining chemoresistance in breast cancer. Oncotarget, 2017, 8(70), 114756-114768.
[http://dx.doi.org/10.18632/oncotarget.21801] [PMID: 29383118]
[11]
Pérez, W.I.; Soto, Y.; Ortíz, C.; Matta, J.; Meléndez, E. Ferrocenes as potential chemotherapeutic drugs: synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorg. Med. Chem., 2015, 23(3), 471-479.
[http://dx.doi.org/10.1016/j.bmc.2014.12.023] [PMID: 25555734]
[12]
Fiorina, V.J.; Dubois, R.J.; Brynes, S. Ferrocenyl polyamines as agents for the chemoimmunotherapy of cancer. J. Med. Chem., 1978, 21(4), 393-395.
[http://dx.doi.org/10.1021/jm00202a016] [PMID: 650668]
[13]
Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem., 2011, 35(10), 1973-1985.
[http://dx.doi.org/10.1039/c1nj20172g]
[14]
Gormen, M.; Plażuk, D.; Pigeon, P.; Hillard, E.A.; Plamont, M-A.; Top, S. Comparative toxicity of [3]ferrocenophane and ferrocene moieties on breast cancer cells. Tetrahedron Lett., 2010, 51(1), 118-120.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.102]
[15]
Farzaneh, S.; Zeinalzadeh, E.; Daraei, B.; Shahhosseini, S.; Zarghi, A. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: Design, synthesis, cytotoxicity and enzyme-inhibitory activity. Anticancer. Agents Med. Chem., 2018, 18(2), 295-301.
[http://dx.doi.org/10.2174/1871520617666171003145533] [PMID: 28971779]
[16]
Zarghi, A.; Najafnia, L.; Daraee, B.; Dadrass, O.G.; Hedayati, M. Synthesis of 2,3-diaryl-1,3-thiazolidine-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(20), 5634-5637.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.084] [PMID: 17822894]
[17]
Qu, Y.; Han, B.; Yu, Y.; Yao, W.; Bose, S.; Karlan, B.Y.; Giuliano, A.E.; Cui, X. Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells. PLoS One, 2015, 10(7), e0131285
[http://dx.doi.org/10.1371/journal.pone.0131285] [PMID: 26147507]
[18]
Evans, M.K.; Yu, C.R.; Lohani, A.; Mahdi, R.M.; Liu, X.; Trzeciak, A.R.; Egwuagu, C.E. Expression of SOCS1 and SOCS3 genes is differentially regulated in breast cancer cells in response to proinflammatory cytokine and growth factor signals. Oncogene, 2007, 26(13), 1941-1948.
[http://dx.doi.org/10.1038/sj.onc.1209993] [PMID: 17001312]
[19]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[20]
Fillmore, C.M.; Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res.BCR,, 2008, 10, R25.
[http://dx.doi.org/10.1186/bcr1982]
[21]
Sajadian, S.; Vatankhah, M.; Majdzadeh, M.; Montaser Kouhsari,, S.;; Ghahremani,, M.;; Ostad,, S. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells. Toxicol. Mech. Methods, 2015, 25(5), 1-8.
[http://dx.doi.org/10.3109/15376516.2015.1045656]
[22]
Ricardo, S.; Vieira, A.F.; Gerhard, R.; Leitão, D.; Pinto, R.; Cameselle-Teijeiro, J.F.; Milanezi, F.; Schmitt, F.; Paredes, J. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol., 2011, 64(11), 937-946.
[http://dx.doi.org/10.1136/jcp.2011.090456] [PMID: 21680574]
[23]
Prieto-Vila, M.; Takahashi, R.U.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci., 2017, 18(12), 2574.
[http://dx.doi.org/10.3390/ijms18122574] [PMID: 29194401]
[24]
Oktem, G.; Bilir, A.; Uslu, R.; Inan, S.V.; Demiray, S.B.; Atmaca, H.; Ayla, S.; Sercan, O.; Uysal, A. Expression profiling of stem cell signaling alters with spheroid formation in CD133high/CD44high prostate cancer stem cells. Oncol. Lett., 2014, 7(6), 2103-2109.
[http://dx.doi.org/10.3892/ol.2014.1992] [PMID: 24932297]
[25]
Guo, W. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl. Med., 2014, 3(8), 942-948.
[http://dx.doi.org/10.5966/sctm.2014-0020] [PMID: 24904174]
[26]
Chatterjee, S.; Behnam Azad, B.; Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res., 2014, 124, 31-82.
[http://dx.doi.org/10.1016/B978-0-12-411638-2.00002-1] [PMID: 25287686]
[27]
Wuebben, E.L.; Rizzino, A. The dark side of SOX2: cancer - a comprehensive overview. Oncotarget, 2017, 8(27), 44917-44943.
[http://dx.doi.org/10.18632/oncotarget.16570] [PMID: 28388544]
[28]
Clark, D.W.; Palle, K. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Ann. Transl. Med., 2016, 4(24), 518.
[http://dx.doi.org/10.21037/atm.2016.11.82] [PMID: 28149880]
[29]
Singh, S.; Brocker, C.; Koppaka, V.; Chen, Y.; Jackson, B.C.; Matsumoto, A.; Thompson, D.C.; Vasiliou, V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic. Biol. Med., 2013, 56, 89-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.010] [PMID: 23195683]
[30]
Sajadimajd, S.; Khazaei, M. Oxidative stress and cancer: The role of Nrf2. Curr. Cancer Drug Targets, 2018, 18(6), 538-557.
[http://dx.doi.org/10.2174/1568009617666171002144228] [PMID: 28969555]
[31]
Zhu, J.; Wang, H.; Sun, Q.; Ji, X.; Zhu, L.; Cong, Z.; Zhou, Y.; Liu, H.; Zhou, M. Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer, 2013, 13, 380.
[http://dx.doi.org/10.1186/1471-2407-13-380] [PMID: 23937621]
[32]
Liu, H.; Lv, L.; Yang, K. Chemotherapy targeting cancer stem cells. Am. J. Cancer Res., 2015, 5(3), 880-893.
[PMID: 26045975]
[33]
Fani, S.; Dehghan, F.; Karimian, H.; Mun Lo, K.; Ebrahimi Nigjeh, S.; Swee Keong, Y.; Soori, R.; May Chow, K.; Kamalidehghan, B.; Mohd Ali, H.; Mohd Hashim, N. Monobenzyltin complex C1 induces apoptosis in MCF-7 breast cancer cells through the intrinsic signaling pathway and through the targeting of MCF-7-derived breast cancer stem cells via the Wnt/β-Catenin signaling pathway. PLoS One, 2016, 11(8), e0160836
[http://dx.doi.org/10.1371/journal.pone.0160836] [PMID: 27529753]
[34]
Debatin, K-M. The role of CD95 system in chemotherapy. Drug Resist. Updat., 1999, 2(2), 85-90.
[http://dx.doi.org/10.1054/drup.1999.0073] [PMID: 11504475]
[35]
Richardson, D.S.; Allen, P.D.; Kelsey, S.M.; Newland, A.C. Inhibition of FAS/FAS-ligand does not block chemotherapy-induced apoptosis in drug sensitive and resistant cells. Adv. Exp. Med. Biol., 1999, 457, 259-266.
[http://dx.doi.org/10.1007/978-1-4615-4811-9_28] [PMID: 10500801]
[36]
Castaldo, S.A.; Freitas, J.R.; Conchinha, N.V.; Madureira, P.A. The tumorigenic roles of the cellular REDOX regulatory systems. Oxid. Med. Cell. Longev., 2016, 2016, 8413032
[http://dx.doi.org/10.1155/2016/8413032] [PMID: 26682014]
[37]
Wang, J.; Luo, B.; Li, X.; Lu, W.; Yang, J.; Hu, Y.; Huang, P.; Wen, S. Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells. Cell Death Dis., 2017, 8(6), e2887
[http://dx.doi.org/10.1038/cddis.2017.272] [PMID: 28640251]
[38]
Hiroshi, T.; Masahiro, M. DNA cleaving activity and cytotoxic activity of ferricenium cations. Chem. Lett., 1997, 26(11), 1177-1178.
[http://dx.doi.org/10.1246/cl.1997.1177]
[39]
Houlton, A.; Roberts, R.M.G.; Silver, J. Studies on the anti-tumour activity of some iron sandwich compounds. J. Organomet. Chem., 1991, 418(1), 107-112.
[http://dx.doi.org/10.1016/0022-328X(91)86350-Y]
[40]
Menet, C.J.M.; Hodges, A.J.; Vater, H.D. Novel compound usefulfor the treatment of degenerative and inflammatory diseases. WO Patent 2,010,149,771A1,, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy