Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Detecting Protein-Protein Interaction Based on Protein Fragment Complementation Assay

Author(s): Tianwen Wang, Ningning Yang, Chen Liang, Hongjv Xu, Yafei An, Sha Xiao, Mengyuan Zheng, Lu Liu, Gaozhan Wang and Lei Nie*

Volume 21, Issue 6, 2020

Page: [598 - 610] Pages: 13

DOI: 10.2174/1389203721666200213102829

Price: $65

Abstract

Proteins are the most critical executive molecules by responding to the instructions stored in the genetic materials in any form of life. More frequently, proteins do their jobs by acting as a roleplayer that interacts with other protein(s), which is more evident when the function of a protein is examined in the real context of a cell. Identifying the interactions between (or amongst) proteins is very crucial for the biochemistry investigation of an individual protein and for the attempts aiming to draw a holo-picture for the interacting members at the scale of proteomics (or protein-protein interactions mapping). Here, we introduced the currently available reporting systems that can be used to probe the interaction between candidate protein pairs based on the fragment complementation of some particular proteins. Emphasis was put on the principles and details of experimental design. These systems are dihydrofolate reductase (DHFR), β-lactamase, tobacco etch virus (TEV) protease, luciferase, β- galactosidase, GAL4, horseradish peroxidase (HRP), focal adhesion kinase (FAK), green fluorescent protein (GFP), and ubiquitin.

Keywords: Protein-protein interaction, protein complementation assay, interaction reporting system, enzyme, fluorescent protein, ubiquitin.

Graphical Abstract
[1]
(a)McGinn, S.; Gut, I.G. DNA sequencing - spanning the generations N. Biotechnol, 2013, 30(4), 366-372..
[http://dx.doi.org/10.1016/j.nbt.2012.11.012] [PMID: 23165096]
(b)Tipu, H.N.; Shabbir, A. Evolution of DNA sequencing J. Coll.Physicians Surg. Pak., 2015, 25(3), 210-215..
[PMID: 25772964]
(c) Feng, Y.; Zhang, Y.; Ying, C.; Wang, D.; Du, C. Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics,, 2015, 13(1), 4-16.
[http://dx.doi.org/10.1016/j.gpb.2015.01.009] [PMID: 25743089]
(d) Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics, 2016, 107(1), 1-8.
[http://dx.doi.org/10.1016/j.ygeno.2015.11.003] [PMID: 26554401]
[2]
(a)Madhavan, A.; Sindhu, R.; Parameswaran, B.; Sukumaran, R.K.; Pandey, A. Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Appl. Biochem. Biotechnol., 2017, 183(2), 636-651..
[http://dx.doi.org/10.1007/s12010-017-2568-3] [PMID: 28815469]
(b)Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol., 2017, 35(9), 833-844.
[http://dx.doi.org/10.1038/nbt.3935] [PMID: 28898207]
[3]
(a)Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning Adv. Exp. Med. Biol, 2016, 937, 3-17..
[http://dx.doi.org/10.1007/978-3-319-42059-2_1] [PMID: 27573892]
(b)Slack, F.J.; Chinnaiyan, A.M. The Role of Non-coding RNAs in Oncology. Cell, 2019, 179(5), 1033-1055.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[4]
Dunn, M.F.; Niks, D.; Ngo, H.; Barends, T.R.; Schlichting, I. Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem. Sci., 2008, 33(6), 254-264.
[http://dx.doi.org/10.1016/j.tibs.2008.04.008] [PMID: 18486479]
[5]
(a)Zhao, H.; French, J.B.; Fang, Y.; Benkovic, S.J. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem. Commun. (Camb.), 2013, 49(40), 4444-4452.
[http://dx.doi.org/10.1039/c3cc41437j] [PMID: 23575936]
(b)Pedley, A.M.; Benkovic, S.J. A New View into the Regulation of Purine Metabolism: The Purinosome. Trends Biochem. Sci., 2017, 42(2), 141-154.
[http://dx.doi.org/10.1016/j.tibs.2016.09.009] [PMID: 28029518]
[6]
Liu, J.L. The Cytoophidium and Its Kind: Filamentation and Compartmentation of Metabolic Enzymes. Annu. Rev. Cell Dev. Biol., 2016, 32, 349-372.
[http://dx.doi.org/10.1146/annurev-cellbio-111315-124907] [PMID: 27362644]
[7]
Stumpf, M.P.; Thorne, T.; de Silva, E.; Stewart, R.; An, H.J.; Lappe, M.; Wiuf, C. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA, 2008, 105(19), 6959-6964.
[http://dx.doi.org/10.1073/pnas.0708078105] [PMID: 18474861]
[8]
Tarassov, K.; Messier, V.; Landry, C.R.; Radinovic, S.; Serna Molina, M.M.; Shames, I.; Malitskaya, Y.; Vogel, J.; Bussey, H.; Michnick, S.W. An in vivo map of the yeast protein interactome. Science, 2008, 320(5882), 1465-1470.
[http://dx.doi.org/10.1126/science.1153878] [PMID: 18467557]
[9]
Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: methods and analysis. Int. J. Proteomics, 2014, 2014 147648
[http://dx.doi.org/10.1155/2014/147648] [PMID: 24693427]
[10]
Shibasaki, S.; Sakata, K.; Ishii, J.; Kondo, A.; Ueda, M. Development of a yeast protein fragment complementation assay (PCA) system using dihydrofolate reductase (DHFR) with specific additives. Appl. Microbiol. Biotechnol., 2008, 80(4), 735-743.
[http://dx.doi.org/10.1007/s00253-008-1624-x] [PMID: 18670770]
[11]
(a)Gegg, C.V.; Bowers, K.E.; Matthews, C.R. Probing minimal independent folding units in dihydrofolate reductase by molecular dissection . Protein Sci.,, 1997, 6(9), 1885-1892..
[http://dx.doi.org/10.1002/pro.5560060909] [PMID: 9300488]
(b)Oefner, C.; D’Arcy, A.; Winkler, F.K. Crystal structure of human dihydrofolate reductase complexed with folate. Eur. J. Biochem., 1988, 174(2), 377-385.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb14108.x] [PMID: 3383852]
[12]
Protasova, N.; Kireeva, M.L.; Murzina, N.V.; Murzin, A.G.; Uversky, V.N.; Gryaznova, O.I.; Gudkov, A.T. Protein Eng., 1994, 7(11), 1373-1377.
[http://dx.doi.org/10.1093/protein/7.11.1373] [PMID: 7700869]
[13]
Pelletier, J.N.; Campbell-Valois, F.X.; Michnick, S.W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. USA, 1998, 95(21), 12141-12146.
[http://dx.doi.org/10.1073/pnas.95.21.12141] [PMID: 9770453]
[14]
Buchwalder, A.; Szadkowski, H.; Kirschner, K. A fully active variant of dihydrofolate reductase with a circularly permuted sequence. Biochemistry, 1992, 31(6), 1621-1630.
[http://dx.doi.org/10.1021/bi00121a006] [PMID: 1737018]
[15]
Miyajima, A.; Miyajima, I.; Arai, K.; Arai, N. Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. Mol. Cell. Biol., 1984, 4(3), 407-414.
[http://dx.doi.org/10.1128/MCB.4.3.407] [PMID: 6325876]
[16]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2017, 74, 228-237.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.010] [PMID: 28865294]
[17]
Zhou, H.X.; Rivas, G.; Minton, A.P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys., 2008, 37, 375-397.
[http://dx.doi.org/10.1146/annurev.biophys.37.032807.125817] [PMID: 18573087]
[18]
(a)Rochette, S.; Diss, G.; Filteau, M.; Leducq, J.B.; Dube, A.K.; Landry, C.R. J. Vis. Exp., 2015, 97, 52255.
(b)Michnick, S.W.; Levy, E.D.; Landry, C.R.; Kowarzyk, J.; Messier, V. Cold Spring Harb. Protoc., 2016, 2016(11)
[http://dx.doi.org/10.1101/pdb.top083543]
[19]
Michnick, S.W.; Remy, I.; Campbell-Valois, F.X.; Vallée-Bélisle, A.; Pelletier, J.N. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol., 2000, 328, 208-230.
[http://dx.doi.org/10.1016/S0076-6879(00)28399-7] [PMID: 11075347]
[20]
Maveyraud, L.; Pratt, R.F.; Samama, J.P. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases. Biochemistry, 1998, 37(8), 2622-2628.
[http://dx.doi.org/10.1021/bi972501b] [PMID: 9485412]
[21]
Galarneau, A.; Primeau, M.; Trudeau, L.E.; Michnick, S.W. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol., 2002, 20(6), 619-622.
[http://dx.doi.org/10.1038/nbt0602-619] [PMID: 12042868]
[22]
(a)Huang, W.; Palzkill, T. A natural polymorphism in beta-lactamase is a global suppressor. Proc. Natl. Acad. Sci. USA,, 1997, 94(16), 8801-8806..
[http://dx.doi.org/10.1073/pnas.94.16.8801 ] [PMID: 9238058]
(b)Sideraki, V.; Huang, W.; Palzkill, T.; Gilbert, H.F. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc. Natl. Acad. Sci. USA, 2001, 98(1), 283-288.
[http://dx.doi.org/10.1073/pnas.011454198] [PMID: 11114163]
[23]
Zlokarnik, G.; Negulescu, P.A.; Knapp, T.E.; Mere, L.; Burres, N.; Feng, L.; Whitney, M.; Roemer, K.; Tsien, R.Y. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science, 1998, 279(5347), 84-88.
[http://dx.doi.org/10.1126/science.279.5347.84] [PMID: 9417030]
[24]
Foit, L.; Morgan, G.J.; Kern, M.J.; Steimer, L.R.; von Hacht, A.A.; Titchmarsh, J.; Warriner, S.L.; Radford, S.E.; Bardwell, J.C. Optimizing protein stability in vivo. Mol. Cell, 2009, 36(5), 861-871.
[http://dx.doi.org/10.1016/j.molcel.2009.11.022] [PMID: 20005848]
[25]
Remy, I.; Ghaddar, G.; Michnick, S.W. Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. Nat. Protoc., 2007, 2(9), 2302-2306.
[http://dx.doi.org/10.1038/nprot.2007.356] [PMID: 17853887]
[26]
Wehr, M.C.; Laage, R.; Bolz, U.; Fischer, T.M.; Grünewald, S.; Scheek, S.; Bach, A.; Nave, K.A.; Rossner, M.J. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods, 2006, 3(12), 985-993.
[http://dx.doi.org/10.1038/nmeth967] [PMID: 17072307]
[27]
Djannatian, M.S.; Galinski, S.; Fischer, T.M.; Rossner, M.J. Studying G protein-coupled receptor activation using split-tobacco etch virus assays. Anal. Biochem., 2011, 412(2), 141-152.
[http://dx.doi.org/10.1016/j.ab.2011.01.042] [PMID: 21295005]
[28]
Wehr, M.C.; Reinecke, L.; Botvinnik, A.; Rossner, M.J. Analysis of transient phosphorylation-dependent protein-protein interactions in living mammalian cells using split-TEV. BMC Biotechnol., 2008, 8, 55.
[http://dx.doi.org/10.1186/1472-6750-8-55] [PMID: 18620601]
[29]
Remy, I.; Michnick, S.W. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat. Methods, 2006, 3(12), 977-979.
[http://dx.doi.org/10.1038/nmeth979] [PMID: 17099704]
[30]
Tannous, B.A.; Kim, D.E.; Fernandez, J.L.; Weissleder, R.; Breakefield, X.O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther., 2005, 11(3), 435-443.
[http://dx.doi.org/10.1016/j.ymthe.2004.10.016] [PMID: 15727940]
[31]
Cassonnet, P.; Rolloy, C.; Neveu, G.; Vidalain, P.O.; Chantier, T.; Pellet, J.; Jones, L.; Muller, M.; Demeret, C.; Gaud, G.; Vuillier, F.; Lotteau, V.; Tangy, F.; Favre, M.; Jacob, Y. Benchmarking a luciferase complementation assay for detecting protein complexes. Nat. Methods, 2011, 8(12), 990-992.
[http://dx.doi.org/10.1038/nmeth.1773] [PMID: 22127214]
[32]
(a)Ko, M.S.; Nakauchi, H.; Takahashi, N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J., 1990, 9(9), 2835-2842.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07472.x] [PMID: 2167833]
(b)Guo, Y.; Hui, C.Y.; Liu, L.; Zheng, H.Q.; Wu, H.M. Improved Monitoring of Low-Level Transcription in Escherichia coli by a β-Galactosidase α-Complementation System. Front. Microbiol., 2019, 10, 1454.
[http://dx.doi.org/10.3389/fmicb.2019.01454] [PMID: 31297105]
[33]
Ullmann, A.; Jacob, F.; Monod, J. Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli. J. Mol. Biol., 1967, 24(2), 339-343.
[http://dx.doi.org/10.1016/0022-2836(67)90341-5] [PMID: 5339877]
[34]
Jacobson, R.H.; Zhang, X.J.; DuBose, R.F.; Matthews, B.W. Three dimensional structure of beta-galactosidase from E. coli. Nature, 1994, 369(6483), 761-766.
[http://dx.doi.org/10.1038/369761a0] [PMID: 8008071]
[35]
Zeilstra-Ryalls, J.H.; Somerville, R.L. Protein-protein interaction in the alpha-complementation system of beta-galactosidase. Curr. Top. Cell. Regul., 1992, 33, 81-104.
[http://dx.doi.org/10.1016/B978-0-12-152833-1.50011-3] [PMID: 1499345]
[36]
(a)Mohler, W.A.; Blau, H.M. Gene expression and cell fusion analyzed by lacZ complementation in mammalian cells. Proc. Natl. Acad.Sci. USA,, 1996, 93(22), 12423-12427..
[http://dx.doi.org/10.1073/pnas.93.22.12423 ] [PMID: 8901597]
(b)Moosmann, P.; Rusconi, S. Alpha complementation of LacZ in mammalian cells. Nucleic Acids Res., 1996, 24(6), 1171-1172.
[http://dx.doi.org/10.1093/nar/24.6.1171] [PMID: 8604354]
[37]
Abbas-Terki, T.; Picard, D. Alpha-complemented beta-galactosidase. An in vivo model substrate for the molecular chaperone heat-shock protein 90 in yeast. Eur. J. Biochem., 1999, 266(2), 517-523.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00881.x] [PMID: 10561593]
[38]
Rossi, F.; Charlton, C.A.; Blau, H.M. Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl. Acad. Sci. USA, 1997, 94(16), 8405-8410.
[http://dx.doi.org/10.1073/pnas.94.16.8405] [PMID: 9237989]
[39]
Broome, A.M.; Bhavsar, N.; Ramamurthy, G.; Newton, G.; Basilion, J.P. Expanding the utility of beta-galactosidase complementation: piece by piece. Mol. Pharm., 2010, 7(1), 60-74.
[http://dx.doi.org/10.1021/mp900188e] [PMID: 19899815]
[40]
Keegan, L.; Gill, G.; Ptashne, M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science, 1986, 231(4739), 699-704.
[http://dx.doi.org/10.1126/science.3080805] [PMID: 3080805]
[41]
Fields, S.; Song, O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230), 245-246.
[http://dx.doi.org/10.1038/340245a0] [PMID: 2547163]
[42]
(a)Yang, M.; Wu, Z.; Fields, S. Protein-peptide interactions analyzed with the yeast two-hybrid system. Nucleic Acids Res., 1995, 23(7), 1152-1156..
[http://dx.doi.org/10.1093/nar/23.7.1152] [PMID: 7739893]
(b)Rodríguez-Negrete, E.; Bejarano, E.R.; Castillo, A.G. Using the yeast two-hybrid system to identify protein-protein interactions. Methods Mol. Biol., 2014, 1072, 241-258.
[http://dx.doi.org/10.1007/978-1-62703-631-3_18] [PMID: 24136527]
(c) Vidal, M.; Fields, S. The yeast two-hybrid assay: still finding connections after 25 years. Nat. Methods, 2014, 11(12), 1203-1206.
[http://dx.doi.org/10.1038/nmeth.3182] [PMID: 25584376]
[43]
Connolly, C.N.; Futter, C.E.; Gibson, A.; Hopkins, C.R.; Cutler, D.F. Transport into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J. Cell Biol., 1994, 127(3), 641-652.
[http://dx.doi.org/10.1083/jcb.127.3.641] [PMID: 7962049]
[44]
Li, J.; Wang, Y.; Chiu, S.L.; Cline, H.T. Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies. Front. Neural Circuits, 2010, 4, 6.
[http://dx.doi.org/10.3389/neuro.04.006.2010] [PMID: 20204144]
[45]
Rhee, H.W.; Zou, P.; Udeshi, N.D.; Martell, J.D.; Mootha, V.K.; Carr, S.A.; Ting, A.Y. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 2013, 339(6125), 1328-1331.
[http://dx.doi.org/10.1126/science.1230593] [PMID: 23371551]
[46]
Martell, J.D.; Yamagata, M.; Deerinck, T.J.; Phan, S.; Kwa, C.G.; Ellisman, M.H.; Sanes, J.R.; Ting, A.Y. A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses. Nat. Biotechnol., 2016, 34(7), 774-780.
[http://dx.doi.org/10.1038/nbt.3563] [PMID: 27240195]
[47]
Cruz-Lopez, D.; Ramos, D.; Castilloveitia, G.; Schikorski, T. Quintuple labeling in the electron microscope with genetically encoded enhanced horseradish peroxidase. PLoS One, 2018, 13(7) e0200693
[http://dx.doi.org/10.1371/journal.pone.0200693] [PMID: 30011315]
[48]
Xue, M.; Hou, J.; Wang, L.; Cheng, D.; Lu, J.; Zheng, L.; Xu, T. Optimizing the fragment complementation of APEX2 for detection of specific protein-protein interactions in live cells. Sci. Rep., 2017, 7(1), 12039.
[http://dx.doi.org/10.1038/s41598-017-12365-9] [PMID: 28955036]
[49]
Frame, M.C.; Patel, H.; Serrels, B.; Lietha, D.; Eck, M.J. The FERM domain: organizing the structure and function of FAK. Nat. Rev. Mol. Cell Biol., 2010, 11(11), 802-814.
[http://dx.doi.org/10.1038/nrm2996] [PMID: 20966971]
[50]
Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem., 1998, 67, 509-544.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.509] [PMID: 9759496]
[51]
Shimomura, O.; Johnson, F.H.; Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea. J. Cell. Comp. Physiol., 1962, 59, 223-239.
[http://dx.doi.org/10.1002/jcp.1030590302] [PMID: 13911999]
[52]
(a)Prasher, D.C.; Eckenrode, V.K.; Ward, W.W.; Prendergast, F.G.; Cormier, M.J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, 111(2), 229-233.
[http://dx.doi.org/10.1016/0378-1119(92)90691-H] [PMID: 1347277]
(b)Cody, C.W.; Prasher, D.C.; Westler, W.M.; Prendergast, F.G.; Ward, W.W. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry, 1993, 32(5), 1212-1218.
[http://dx.doi.org/10.1021/bi00056a003] [PMID: 8448132]
[53]
Baird, G.S.; Zacharias, D.A.; Tsien, R.Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 11241-11246.
[http://dx.doi.org/10.1073/pnas.96.20.11241] [PMID: 10500161]
[54]
Wang, L.; Jackson, W.C.; Steinbach, P.A.; Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA, 2004, 101(48), 16745-16749.
[http://dx.doi.org/10.1073/pnas.0407752101] [PMID: 15556995]
[55]
Romei, M.G.; Boxer, S.G. Split Green Fluorescent Proteins: Scope, Limitations, and Outlook. Annu. Rev. Biophys., 2019, 48, 19-44.
[http://dx.doi.org/10.1146/annurev-biophys-051013-022846] [PMID: 30786230]
[56]
Ghosh, I.; Hamilton, A.D.; Regan, L. J. Am. Chem. Soc., 2000, 122(23), 5658-5659.
[http://dx.doi.org/10.1021/ja994421w]
[57]
Ong, W.J.; Alvarez, S.; Leroux, I.E.; Shahid, R.S.; Samma, A.A.; Peshkepija, P.; Morgan, A.L.; Mulcahy, S.; Zimmer, M. Function and structure of GFP-like proteins in the protein data bank. Mol. Biosyst., 2011, 7(4), 984-992.
[http://dx.doi.org/10.1039/c1mb05012e] [PMID: 21298165]
[58]
(a)Cabantous, S.; Nguyen, H.B.; Pedelacq, J.D.; Koraïchi, F.; Chaudhary, A.; Ganguly, K.; Lockard, M.A.; Favre, G.; Terwilliger, T.C.; Waldo, G.S. A new protein-protein interaction sensor based on tripartite split-GFP association. Sci. Rep.,, 2013, 3, 2854.
[http://dx.doi.org/10.1038/srep02854] [PMID: 24092409]
(b)Cabantous, S.; Terwilliger, T.C.; Waldo, G.S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol., 2005, 23(1), 102-107.
[http://dx.doi.org/10.1038/nbt1044] [PMID: 15580262]
[59]
Blakeley, B.D.; Chapman, A.M.; McNaughton, B.R. Split-superpositive GFP reassembly is a fast, efficient, and robust method for detecting protein-protein interactions in vivo. Mol. Biosyst., 2012, 8(8), 2036-2040.
[http://dx.doi.org/10.1039/c2mb25130b] [PMID: 22692102]
[60]
Pédelacq, J.D.; Cabantous, S.; Tran, T.; Terwilliger, T.C.; Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol., 2006, 24(1), 79-88.
[http://dx.doi.org/10.1038/nbt1172] [PMID: 16369541]
[61]
Pedelacq, J.D.; Cabantous, S. Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology. Int. J. Mol. Sci., 2019, 20(14) E3479
[http://dx.doi.org/10.3390/ijms20143479] [PMID: 31311175]
[62]
Shekhawat, S.S.; Ghosh, I. Split-protein systems: beyond binary protein-protein interactions. Curr. Opin. Chem. Biol., 2011, 15(6), 789-797.
[http://dx.doi.org/10.1016/j.cbpa.2011.10.014] [PMID: 22070901]
[63]
Tchekanda, E.; Sivanesan, D.; Michnick, S.W. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat. Methods, 2014, 11(6), 641-644.
[http://dx.doi.org/10.1038/nmeth.2934] [PMID: 24747815]
[64]
Jentsch, S. The ubiquitin-conjugation system. Annu. Rev. Genet., 1992, 26, 179-207.
[http://dx.doi.org/10.1146/annurev.ge.26.120192.001143] [PMID: 1336336]
[65]
Johnsson, N.; Varshavsky, A. Ubiquitin-assisted dissection of protein transport across membranes. EMBO J., 1994, 13(11), 2686-2698.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06559.x] [PMID: 8013467]
[66]
Johnsson, N.; Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA, 1994, 91(22), 10340-10344.
[http://dx.doi.org/10.1073/pnas.91.22.10340] [PMID: 7937952]
[67]
Müller, M.M.; Kries, H.; Csuhai, E.; Kast, P.; Hilvert, D. Design, selection, and characterization of a split chorismate mutase. Protein Sci., 2010, 19(5), 1000-1010.
[http://dx.doi.org/10.1002/pro.377] [PMID: 20306491]
[68]
Massoud, T.F.; Paulmurugan, R.; Gambhir, S.S. A molecularly engineered split reporter for imaging protein-protein interactions with positron emission tomography. Nat. Med., 2010, 16(8), 921-926.
[http://dx.doi.org/10.1038/nm.2185] [PMID: 20639890]
[69]
Zetsche, B.; Volz, S.E.; Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol., 2015, 33(2), 139-142.
[http://dx.doi.org/10.1038/nbt.3149] [PMID: 25643054]
[70]
(a)Pu, J.; Dewey, J.A.; Hadji, A.; LaBelle, J.L.; Dickinson, B.C. RNA Polymerase Tags To Monitor Multidimensional Protein-Protein Interactions Reveal Pharmacological Engagement of Bcl-2 Proteins. J. Am.Chem. Soc.,, 2017, 139(34), 11964-11972..
[http://dx.doi.org/10.1021/jacs.7b06152] [PMID: 28767232]
(b)Pu, J.; Disare, M.; Dickinson, B.C. Evolution of C-Terminal Modification Tolerance in Full-Length and Split T7 RNA Polymerase Biosensors. ChemBioChem, 2019, 20(12), 1547-1553.
[PMID: 30694596]
[71]
Thomas, E.E.; Pandey, N.; Knudsen, S.; Ball, Z.T.; Silberg, J.J. Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid. ACS Synth. Biol., 2017, 6(8), 1572-1583.
[http://dx.doi.org/10.1021/acssynbio.7b00100] [PMID: 28419802]
[72]
(a)Ng, A.H.; Nguyen, T.H.; Gómez-Schiavon, M.; Dods, G.; Langan, R.A.; Boyken, S.E.; Samson, J.A.; Waldburger, L.M.; Dueber, J.E.; Baker, D.; El-Samad, H. Modular and tunable biological feedback control using a de novo protein switch. Nature, 2019, 572(7768), 265-269.
[http://dx.doi.org/10.1038/s41586-019-1425-7] [PMID: 31341280]
(b)Chen, Z.; Boyken, S.E.; Jia, M.; Busch, F.; Flores-Solis, D.; Bick, M.J.; Lu, P.; VanAernum, Z.L.; Sahasrabuddhe, A.; Langan, R.A.; Bermeo, S.; Brunette, T.J.; Mulligan, V.K.; Carter, L.P.; DiMaio, F.; Sgourakis, N.G.; Wysocki, V.H.; Baker, D. Programmable design of orthogonal protein heterodimers. Nature,, 2019, 565(7737), 106-111.
[http://dx.doi.org/10.1038/s41586-018-0802-y] [PMID: 30568301]
(c) Dou, J.; Vorobieva, A.A.; Sheffler, W.; Doyle, L.A.; Park, H.; Bick, M.J.; Mao, B.; Foight, G.W.; Lee, M.Y.; Gagnon, L.A.; Carter, L.; Sankaran, B.; Ovchinnikov, S.; Marcos, E.; Huang, P.S.; Vaughan, J.C.; Stoddard, B.L.; Baker, D. De novo design of a fluorescence-activating β-barrel. Nature, 2018, 561(7724), 485-491.
[http://dx.doi.org/10.1038/s41586-018-0509-0] [PMID: 30209393]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy