Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Pine Bark Phenolic Extracts, Current Uses, and Potential Food Applications: A Review

Author(s): Wafa Dridi and Nicolas Bordenave*

Volume 26, Issue 16, 2020

Page: [1866 - 1879] Pages: 14

DOI: 10.2174/1381612826666200212113903

Price: $65

Open Access Journals Promotions 2
Abstract

Purpose: To summarize the main findings from research on food uses of Pine Bark Phenolic Extracts (PBPE), their origin, methods of extraction, composition, health effects, and incorporation into food products.

Methods: A narrative review of all the relevant papers known to the authors was conducted.

Results: PBPE are mainly extracted from the bark Pinus pinaster. They are generally rich in procyanidins and their effects on health in the form of nutritional supplements include effect on some forms of cancer, on diabetes, on eye and skin health. Their method of extraction influences greatly their composition and yield, and commercially suitable methods are still to be developed. Incorporation into food products raises challenges related to bioavailability and subsequent bioactivity and sensory properties of the final products.

Conclusion: PBPE represent an opportunity for the development of functional foods with phenolic-rich bioactive compounds.

Keywords: Procyanidins, polyphenols, health benefit, food product development, pine bark, extraction, antioxidant.

[1]
Seabra IJ, Dias AMA, Braga MEM, de Sousa HC. High pressure solvent extraction of maritime pine bark: Study of fractionation, solvent flow rate and solvent composition. J Supercrit Fluids 2012; 62: 135-48.
[http://dx.doi.org/10.1016/j.supflu.2011.10.016]
[2]
Rohdewald P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharmacol Therapeut 2002; 40(4): 158-68.
[http://dx.doi.org/10.5414/CPP40158]
[3]
Braga MEM, Santos RMS, Seabra IJ, Facanali R, Marques MOM, de Sousa HC. Fractioned SFE of antioxidants from maritime pine bark. J Supercrit Fluids 2008; 47(1): 37-48.
[http://dx.doi.org/10.1016/j.supflu.2008.05.005]
[4]
Jerez M, Selga A, Sineiro J, Torres JL, Núñez MJ. A comparison between bark extracts from Pinus pinaster and Pinus radiata: Antioxidant activity and procyanidin composition. Food Chem 2007; 100(2): 439-44.
[http://dx.doi.org/10.1016/j.foodchem.2005.09.064]
[5]
Zhang L, Wang Y, Li D, Ho C-T, Li J, Wan X. The absorption, distribution, metabolism and excretion of procyanidins. Food Funct 2016; 7(3): 1273-81.
[http://dx.doi.org/10.1039/C5FO01244A] [PMID: 26814915]
[6]
Wood JE, Senthilmohan ST, Peskin AV. Antioxidant activity of procyanidin-containing plant extracts at different pHs. Food Chem 2002; 77(2): 155-61.
[http://dx.doi.org/10.1016/S0308-8146(01)00329-6]
[7]
Vázquez G, González-Alvarez J, Freire S, López-Suevos F, Antorrena G. Characteristics of Pinus pinaster bark extracts obtained under various extraction conditions. Holz Roh- Werkst 2001; 59(6): 451-6.
[http://dx.doi.org/10.1007/s00107-001-0246-0]
[8]
Yazaki Y, Collins PJ. Wood adhesives based on tannin extracts from barks of some pine and spruce species. Holz Roh- Werkst 1994; 52(5): 307.
[http://dx.doi.org/10.1007/BF02621420]
[9]
Chupin L, Motillon C, Charrier-El Bouhtoury F, Pizzi A, Charrier B. Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Ind Crops Prod 2013; 49: 897-903.
[http://dx.doi.org/10.1016/j.indcrop.2013.06.045]
[10]
Vieito C, Fernandes E, Vaz Velho M, Pires P. The effect of different solvents on extraction yield, total phenolic content and antioxidant activity of extracts from pine bark (pinus pinaster subsp. atlantica). Chem Eng Trans 2018; 64: 127-32.
[11]
Bonilla F, Mayen M, Merida J, Medina M. Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem 1999; 66(2): 209-15.
[http://dx.doi.org/10.1016/S0308-8146(99)00046-1]
[12]
Thorat ID, Jagtap DD, Mohapatra D, Joshi DC, Sutar RF, Kapdi SS. Antioxidants, their properties, uses in food products and their legal implications. Int J Food Stud 2013; 2(1)Available at: . https://www.iseki-food-ejournal.com/ojs/index.php/e-journal/article/view/134
[http://dx.doi.org/10.7455/ijfs/2.1.2013.a7]
[13]
Aspé E, Fernández K. The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind Crops Prod 2011; 34(1): 838-44.
[http://dx.doi.org/10.1016/j.indcrop.2011.02.002]
[14]
Ku CS, Jang JP, Mun SP. Exploitation of polyphenol-rich pine barks for potent antioxidant activity. J Wood Sci 2007; 53(6): 524-8.
[http://dx.doi.org/10.1007/s10086-007-0896-6]
[15]
Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction - an innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev 2006; 1: 7-18.
[16]
Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006; 17(6): 300-12.
[http://dx.doi.org/10.1016/j.tifs.2005.12.004]
[17]
Chupin L, Maunu SL, Reynaud S, et al. Microwave assisted extraction of maritime pine (Pinus pinaster) bark: Impact of particle size and characterization. Ind Crops Prod 2015; 65: 142-9.
[http://dx.doi.org/10.1016/j.indcrop.2014.11.052]
[18]
Vinatoru M, Toma M, Radu O, Filip PI, Lazurca D, Mason TJ. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason Sonochem 1997; 4(2): 135-9.
[http://dx.doi.org/10.1016/S1350-4177(97)83207-5] [PMID: 11237031]
[19]
Diouf PN, Stevanovic T, Boutin Y. The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts. Ind Crops Prod 2009; 30(2): 297-303.
[http://dx.doi.org/10.1016/j.indcrop.2009.05.008]
[20]
Díaz-Reinoso B, Moure A, Domínguez H, Parajó JC. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agric Food Chem 2006; 54(7): 2441-69.
[http://dx.doi.org/10.1021/jf052858j] [PMID: 16569029]
[21]
Romani A, Ieri F, Turchetti B, Mulinacci N, Vincieri FF, Buzzini P. Analysis of condensed and hydrolysable tannins from commercial plant extracts. J Pharm Biomed Anal 2006; 41(2): 415-20.
[http://dx.doi.org/10.1016/j.jpba.2005.11.031] [PMID: 16406441]
[22]
Sarikaki V, Rallis M, Tanojo H, Panteri I, Dotsikas Y, Loukas YL, et al. In Vitro Percutaneous absorption of pine bark extract (pycnogenol) in human Skin. J Toxicol Cutaneous Ocul Toxicol 2005; 23(3): 149-58.
[http://dx.doi.org/10.1081/CUS-200035353]
[23]
Dobbs JM, Wong JM, Lahiere RJ, Johnston KP. Modification of supercritical fluid phase behavior using polar cosolvents. Ind Eng Chem Res 1987; 26(1): 56-65.
[http://dx.doi.org/10.1021/ie00061a011]
[24]
Yesil-Celiktas O, Otto F, Gruener S, Parlar H. Determination of extractability of pine bark using supercritical CO(2) extraction and different solvents: optimization and prediction. J Agric Food Chem 2009; 57(2): 341-7.
[http://dx.doi.org/10.1021/jf8026414] [PMID: 19113873]
[25]
Andújar I, Recio MC, Giner RM, Ríos JL. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 2012; 2012906252
[http://dx.doi.org/10.1155/2012/906252] [PMID: 23150750]
[26]
Lorenzo JM, Munekata PES. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac J Trop Biomed 2016; 6(8): 709-19.
[http://dx.doi.org/10.1016/j.apjtb.2016.06.010]
[27]
Câmara JS, Ed. Grapes: production, phenolic composition and potential biomedical effects. New York: Nova Biomedical 2014; p. 467.
[28]
Tsuda T. Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants 2016; 5(2): 13.
[http://dx.doi.org/10.3390/antiox5020013] [PMID: 27058561]
[29]
Zengin G, Mocan R, Uysal S, Ceylan R, Crișan G, Aktumsek A. A review of phenolic compounds from medicinal plants and nutraceuticals, and their characterization by different antioxidant assays. In: Locatelli M, Celia C, editors Analytical chemistry: developments, applications and challenges in food analysis New York. Nova Science Publishers 2017; pp. 77-102.
[30]
Fraga CG, Galleano M, Verstraeten SV, Oteiza PI. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 2010; 31(6): 435-45.
[http://dx.doi.org/10.1016/j.mam.2010.09.006] [PMID: 20854840]
[31]
Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013; 5(10): 3779-827.
[http://dx.doi.org/10.3390/nu5103779] [PMID: 24077237]
[32]
Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The Potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 2016; 17(2): 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[33]
Den Hartogh DJ, Tsiani E. Health benefits of resveratrol in kidney disease: evidence from in vitro and in vivo studies. Nutrients 2019; 11(7): 1624.
[http://dx.doi.org/10.3390/nu11071624] [PMID: 31319485]
[34]
Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012; 11(2): 329-45.
[http://dx.doi.org/10.1016/j.arr.2012.01.006] [PMID: 22336470]
[35]
Rothwell JA, Knaze V, Zamora-Ros R. Polyphenols: dietary assessment and role in the prevention of cancers. Curr Opin Clin Nutr Metab Care 2017; 20(6): 512-21.
[http://dx.doi.org/10.1097/MCO.0000000000000424] [PMID: 28915128]
[36]
Mihaylova D, Popova A, Alexieva I, Krastanov A, Lante A. Polyphenols as suitable control for obesity and diabetes. Open Biotechnol J 2018; 12(1): 219-28.
[http://dx.doi.org/10.2174/1874070701812010219]
[37]
Meydani M, Hasan ST. Dietary polyphenols and obesity. Nutrients 2010; 2(7): 737-51.
[http://dx.doi.org/10.3390/nu2070737] [PMID: 22254051]
[38]
Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 2013; 24(8): 1415-22.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[39]
Farid R, Mirfeizi Z, Mirheidari M, et al. Pycnogenol supplementation reduces pain and stiffness and improves physical function in adults with knee osteoarthritis. Nutr Res 2007; 27(11): 692-7.
[http://dx.doi.org/10.1016/j.nutres.2007.09.007]
[40]
Zibadi S, Rohdewald PJ, Park D, Watson RR. Reduction of cardiovascular risk factors in subjects with type 2 diabetes by Pycnogenol supplementation. Nutr Res 2008; 28(5): 315-20.
[http://dx.doi.org/10.1016/j.nutres.2008.03.003] [PMID: 19083426]
[41]
Nishioka K, Hidaka T, Nakamura S, et al. Pycnogenol, French maritime pine bark extract, augments endothelium-dependent vasodilation in humans. Hypertens Res 2007; 30(9): 775-80.
[http://dx.doi.org/10.1291/hypres.30.775] [PMID: 18037769]
[42]
Moini H, Guo Q, Packer L. Enzyme inhibition and protein-binding action of the procyanidin-rich french maritime pine bark extract, pycnogenol: effect on xanthine oxidase. J Agric Food Chem 2000; 48(11): 5630-9.
[http://dx.doi.org/10.1021/jf000618s] [PMID: 11087530]
[43]
Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic Biol Med 1999; 27(5-6): 704-24.
[http://dx.doi.org/10.1016/S0891-5849(99)00090-8] [PMID: 10490291]
[44]
Aydın S, Bacanlı M, Anlar HG, et al. Preventive role of Pycnogenol® against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats. Food Chem Toxicol 2019; 124: 54-63.
[http://dx.doi.org/10.1016/j.fct.2018.11.038] [PMID: 30465898]
[45]
Cui Y-Y, Xie H, Qi K-B, He Y-M, Wang J-F. Effects of Pinus massoniana bark extract on cell proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol 2005; 11(34): 5277-82.
[http://dx.doi.org/10.3748/wjg.v11.i34.5277] [PMID: 16149132]
[46]
Jo JR, Park JS, Park YK, et al. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Int J Oncol 2012; 40(4): 1238-45.
[http://dx.doi.org/10.3892/ijo.2011.1263] [PMID: 22086183]
[47]
Mao P, Zhang E, Chen Y, et al. Pinus massoniana bark extract inhibits migration of the lung cancer A549 cell line. Oncol Lett 2017; 13(2): 1019-23.
[http://dx.doi.org/10.3892/ol.2016.5509] [PMID: 28356994]
[48]
Wu D-C, Li S, Yang D-Q, Cui Y-Y. Effects of Pinus massoniana bark extract on the adhesion and migration capabilities of HeLa cells. Fitoterapia 2011; 82(8): 1202-5.
[http://dx.doi.org/10.1016/j.fitote.2011.08.008] [PMID: 21888955]
[49]
Feng WH, Wei HL, Liu GT. Effect of PYCNOGENOL on the toxicity of heart, bone marrow and immune organs as induced by antitumor drugs. Phytomedicine 2002; 9(5): 414-8.
[http://dx.doi.org/10.1078/09447110260571652] [PMID: 12222661]
[50]
Ozoner B, Yuceli S, Aydin S, et al. Effects of pycnogenol on ischemia/reperfusion-induced inflammatory and oxidative brain injury in rats. Neurosci Lett 2019; 704: 169-75.
[http://dx.doi.org/10.1016/j.neulet.2019.04.010] [PMID: 30965107]
[51]
Saliou C, Rimbach G, Moini H, et al. Solar ultraviolet-induced erythema in human skin and nuclear factor-kappa-B-dependent gene expression in keratinocytes are modulated by a French maritime pine bark extract. Free Radic Biol Med 2001; 30(2): 154-60.
[http://dx.doi.org/10.1016/S0891-5849(00)00445-7] [PMID: 11163532]
[52]
Blazsó G, Gábor M, Schönlau F, Rohdewald P. Pycnogenol accelerates wound healing and reduces scar formation. Phytother Res 2004; 18(7): 579-81.
[http://dx.doi.org/10.1002/ptr.1477] [PMID: 15305320]
[53]
Sime S, Reeve VE. Protection from inflammation, immunosuppression and carcinogenesis induced by UV radiation in mice by topical Pycnogenol. Photochem Photobiol 2004; 79(2): 193-8.
[http://dx.doi.org/10.1562/0031-8655(2004)079<0193:PFIIAC>2.0.CO;2] [PMID: 15068032]
[54]
Mármol I, Quero J, Jiménez-Moreno N, Rodríguez-Yoldi MJ, Ancín-Azpilicueta C. A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci Technol 2019; 88: 558-66.
[http://dx.doi.org/10.1016/j.tifs.2018.07.007]
[55]
Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 2016; 15(1): 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2]
[56]
Carocho M, Ferreira ICFR. The role of phenolic compounds in the fight against cancer--a review. Anticancer Agents Med Chem 2013; 13(8): 1236-58.
[http://dx.doi.org/10.2174/18715206113139990301] [PMID: 23796249]
[57]
Ruggeri S, Straniero R, Pacifico S, Aguzzi A, Virgili F. French marine bark extract pycnogenol as a possible enrichment ingredient for yogurt. J Dairy Sci 2008; 91(12): 4484-91.
[http://dx.doi.org/10.3168/jds.2008-1250] [PMID: 19038923]
[58]
Marini A, Grether-Beck S, Jaenicke T, et al. Pycnogenol® effects on skin elasticity and hydration coincide with increased gene expressions of collagen type I and hyaluronic acid synthase in women. Skin Pharmacol Physiol 2012; 25(2): 86-92.
[http://dx.doi.org/10.1159/000335261] [PMID: 22270036]
[59]
Furumura M, Sato N, Kusaba N, Takagaki K, Nakayama J. Oral administration of French maritime pine bark extract (Flavangenol(®)) improves clinical symptoms in photoaged facial skin. Clin Interv Aging 2012; 7: 275-86.
[http://dx.doi.org/10.2147/CIA.S33165] [PMID: 22956863]
[60]
Grether-Beck S, Marini A, Jaenicke T, Krutmann J. French Maritime pine bark extract (Pycnogenol®) effects on human skin: clinical and molecular evidence. Skin Pharmacol Physiol 2016; 29(1): 13-7.
[http://dx.doi.org/10.1159/000441039] [PMID: 26492562]
[61]
Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology Academic Press; 1990; 186: 343-55.http://www.sciencedirect.com/science/article/pii/007668799086128
[62]
Zhou B, Wu L-M, Yang L, Liu Z-L. Evidence for alpha-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radic Biol Med 2005; 38(1): 78-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.09.023] [PMID: 15589374]
[63]
de Deckere EA, Korver O, Verschuren PM, Katan MB. Health aspects of fish and n-3 polyunsaturated fatty acids from plant and marine origin. Eur J Clin Nutr 1998; 52(10): 749-53.
[http://dx.doi.org/10.1038/sj.ejcn.1600641] [PMID: 9805223]
[64]
Iglesias J, Pazos M, Lois S, Medina I. Contribution of galloylation and polymerization to the antioxidant activity of polyphenols in fish lipid systems. J Agric Food Chem 2010; 58(12): 7423-31.
[http://dx.doi.org/10.1021/jf100832z] [PMID: 20550219]
[65]
Pazos M, Gallardo JM, Torres JL, Medina I. Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chem 2005; 92(3): 547-57.
[http://dx.doi.org/10.1016/j.foodchem.2004.07.036]
[66]
Ahn J, Grün IU, Fernando LN. Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 2002; 67(4): 1364-9.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb10290.x]
[67]
Vuorela S, Salminen H, Mäkelä M, Kivikari R, Karonen M, Heinonen M. Effect of plant phenolics on protein and lipid oxidation in cooked pork meat patties. J Agric Food Chem 2005; 53(22): 8492-7.
[http://dx.doi.org/10.1021/jf050995a] [PMID: 16248543]
[68]
Salta FN, Mylona A, Chiou A, Boskou G, Andrikopoulos NK. Oxidative stability of edible vegetable oils enriched in polyphenols with olive leaf extract. Food Sci Technol Int 2007; 13(6): 413-21.
[http://dx.doi.org/10.1177/1082013208089563]
[69]
Venturi F, Sanmartin C, Taglieri I, et al. Development of phenol-enriched olive oil with phenolic compounds extracted from wastewater produced by physical refining. Nutrients 2017; 9(8)E916
[http://dx.doi.org/10.3390/nu9080916] [PMID: 28829365]
[70]
Galanakis CM, Tsatalas P, Charalambous Z, Galanakis IM. Polyphenols recovered from olive mill wastewater as natural preservatives in extra virgin olive oils and refined olive kernel oils. Environ Technol Innov 2018; 10: 62-70.
[http://dx.doi.org/10.1016/j.eti.2018.01.012]
[71]
Ramalho VC, Jorge N. Antioxidant action of Rosemary extract in soybean oil submitted to thermoxidation. Grasas Aceites 2008; 59(2): 128-31.
[http://dx.doi.org/10.3989/gya.2008.v59.i2.500]
[72]
Yang Y, Song X, Sui X, et al. Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Ind Crops Prod 2016; 80: 141-7.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.044]
[73]
Carocho M, Morales P, Ferreira ICFR. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Technol 2018; 71: 107-20.
[http://dx.doi.org/10.1016/j.tifs.2017.11.008]
[74]
US4698360A. Masquelier Jack. Plant extract with a proanthocyanidins content as therapeutic agent having radical scavenger effect and use thereof. 1987.Available at: . https://patents.google.com/ patent/US4698360A/en
[75]
D’Andrea G. Pycnogenol: a blend of procyanidins with multifaceted therapeutic applications? Fitoterapia 2010; 81(7): 724-36.
[http://dx.doi.org/10.1016/j.fitote.2010.06.011] [PMID: 20598812]
[76]
Ustun O, Senol FS, Kurkcuoglu M, Orhan IE, Kartal M, Baser KHC. Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind Crops Prod 2012; 38: 115-23.
[http://dx.doi.org/10.1016/j.indcrop.2012.01.016]
[77]
Segal L, Penman MG, Piriou Y. Evaluation of the systemic toxicity and mutagenicity of OLIGOPIN®, procyanidolic oligomers (OPC) extracted from French Maritime Pine Bark extract. Toxicol Rep 2018; 5: 531-41.
[http://dx.doi.org/10.1016/j.toxrep.2018.03.013] [PMID: 29725583]
[78]
Valls R-M, Llauradó E, Fernández-Castillejo S, et al. Effects of low molecular weight procyanidin rich extract from french maritime pine bark on cardiovascular disease risk factors in stage-1 hypertensive subjects: Randomized, double-blind, crossover, placebo-controlled intervention trial. Phytomedicine 2016; 23(12): 1451-61.
[http://dx.doi.org/10.1016/j.phymed.2016.08.007] [PMID: 27765365]
[79]
Shimada T, Tokuhara D, Tsubata M, et al. Flavangenol (pine bark extract) and its major component procyanidin B1 enhance fatty acid oxidation in fat-loaded models. Eur J Pharmacol 2012; 677(1-3): 147-53.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.034] [PMID: 22227333]
[80]
Awaisheh SS, Haddadin MSY, Robinson RK. Incorporation of selected nutraceuticals and probiotic bacteria into a fermented milk. Int Dairy J 2005; 15(11): 1184-90.
[http://dx.doi.org/10.1016/j.idairyj.2004.11.003]
[81]
Öztürk BA, Öner MD. Production and evaluation of yogurt with concentrated grape juice. J Food Sci 1999; 64(3): 530-2.
[http://dx.doi.org/10.1111/j.1365-2621.1999.tb15077.x]
[82]
Yesil Celiktas O, Isleten M, Vardar‐Sukan F, Oyku Cetin E. In vitro release kinetics of pine bark extract enriched orange juice and the shelf stability. Br Food J 2010; 112(10): 1063-76.
[http://dx.doi.org/10.1108/00070701011080203]
[83]
Frontela C, Ros G, Martínez C, Sánchez-Siles LM, Canali R, Virgili F. Stability of Pycnogenol® as an ingredient in fruit juices subjected to in vitro gastrointestinal digestion. J Sci Food Agric 2011; 91(2): 286-92.
[http://dx.doi.org/10.1002/jsfa.4183] [PMID: 20872816]
[84]
Frontela-Saseta C, López-Nicolás R, González-Bermúdez CA, et al. Evaluation of antioxidant activity and antiproliferative effect of fruit juices enriched with Pycnogenol® in colon carcinoma cells. The effect of in vitro gastrointestinal digestion. Phytother Res 2011; 25(12): 1870-5.
[http://dx.doi.org/10.1002/ptr.3625] [PMID: 21887808]
[85]
Frontela-Saseta C, López-Nicolás R, González-Bermúdez CA, Martínez-Graciá C, Ros-Berruezo G. Anti-inflammatory properties of fruit juices enriched with pine bark extract in an in vitro model of inflamed human intestinal epithelium: the effect of gastrointestinal digestion. Food Chem Toxicol 2013; 53: 94-9.
[http://dx.doi.org/10.1016/j.fct.2012.11.024] [PMID: 23220608]
[86]
López-Nicolás R, González-Bermúdez CA, Ros-Berruezo G, Frontela-Saseta C. Influence of in vitro gastrointestinal digestion of fruit juices enriched with pine bark extract on intestinal microflora. Food Chem 2014; 157: 14-9.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.126] [PMID: 24679746]
[87]
Kimbrough C, Chun M, dela Roca G, Lau BHS. Pycnogenol chewing gum minimizes gingival bleeding and plaque formation. Phytomedicine 2002; 9(5): 410-3.
[http://dx.doi.org/10.1078/09447110260571643] [PMID: 12222660]
[88]
Troesch B, Biesalski HK, Bos R, et al. Increased intake of foods with high nutrient density can help to break the intergenerational cycle of malnutrition and obesity. Nutrients 2015; 7(7): 6016-37.
[http://dx.doi.org/10.3390/nu7075266] [PMID: 26197337]
[89]
Cedola A, Cardinali A, Del Nobile MA, Conte A. . Enrichment of bread with olive oil industrial by-product. J Agric Sci Technol B; 9(2)http://www.davidpublisher.org/index.php/Home/Article/index?id=40760.html
[90]
Mateos R, Martínez-López S, Baeza Arévalo G, Amigo-Benavent M, Sarriá B, Bravo-Clemente L. Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chem 2016; 205: 248-56.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.011] [PMID: 27006237]
[91]
Difonzo G, Pasqualone A, Silletti R, et al. Use of olive leaf extract to reduce lipid oxidation of baked snacks. Food Res Int 2018; 108: 48-56.
[http://dx.doi.org/10.1016/j.foodres.2018.03.034] [PMID: 29735082]
[92]
Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev 2014; 72(7): 429-52.
[http://dx.doi.org/10.1111/nure.12114] [PMID: 24828476]
[93]
Deprez S, Mila I, Huneau JF, Tome D, Scalbert A. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid Redox Signal 2001; 3(6): 957-67.
[http://dx.doi.org/10.1089/152308601317203503] [PMID: 11813991]
[94]
Ou K, Gu L. Absorption and metabolism of proanthocyanidins. J Funct Foods 2014; 7: 43-53.
[http://dx.doi.org/10.1016/j.jff.2013.08.004]
[95]
Richelle M, Tavazzi I, Enslen M, Offord EA. Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr 1999; 53(1): 22-6.
[http://dx.doi.org/10.1038/sj.ejcn.1600673] [PMID: 10048796]
[96]
Appeldoorn MM, Vincken J-P, Gruppen H, Hollman PCH. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J Nutr 2009; 139(8): 1469-73.
[http://dx.doi.org/10.3945/jn.109.106765] [PMID: 19494022]
[97]
Spencer JPE, Chaudry F, Pannala AS, Srai SK, Debnam E, Rice-Evans C. Decomposition of cocoa procyanidins in the gastric milieu. Biochem Biophys Res Commun 2000; 272(1): 236-41.
[http://dx.doi.org/10.1006/bbrc.2000.2749] [PMID: 10872833]
[98]
Baba S, Osakabe N, Natsume M, Terao J. Absorption and urinary excretion of procyanidin B2 [epicatechin-(4beta-8)-epicatechin] in rats. Free Radic Biol Med 2002; 33(1): 142-8.
[http://dx.doi.org/10.1016/S0891-5849(02)00871-7] [PMID: 12086692]
[99]
Rios LY, Bennett RN, Lazarus SA, Rémésy C, Scalbert A, Williamson G. Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr 2002; 76(5): 1106-10.
[http://dx.doi.org/10.1093/ajcn/76.5.1106] [PMID: 12399286]
[100]
Neilson AP, Hopf AS, Cooper BR, Pereira MA, Bomser JA, Ferruzzi MG. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion. J Agric Food Chem 2007; 55(22): 8941-9.
[http://dx.doi.org/10.1021/jf071645m] [PMID: 17924707]
[101]
Serra A, Macià A, Romero M-P, et al. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br J Nutr 2010; 103(7): 944-52.
[http://dx.doi.org/10.1017/S0007114509992741] [PMID: 20003617]
[102]
Gu L, House SE, Rooney L, Prior RL. Sorghum bran in the diet dose dependently increased the excretion of catechins and microbial-derived phenolic acids in female rats. J Agric Food Chem 2007; 55(13): 5326-34.
[http://dx.doi.org/10.1021/jf070100p] [PMID: 17536823]
[103]
Tsang C, Auger C, Mullen W, et al. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr 2005; 94(2): 170-81.
[http://dx.doi.org/10.1079/BJN20051480] [PMID: 16115350]
[104]
Ottaviani JI, Kwik-Uribe C, Keen CL, Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012; 95(4): 851-8.
[http://dx.doi.org/10.3945/ajcn.111.028340] [PMID: 22378733]
[105]
Neilson AP, Ferruzzi MG. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa. Annu Rev Food Sci Technol 2011; 2: 125-51.
[http://dx.doi.org/10.1146/annurev-food-022510-133725] [PMID: 22129378]
[106]
Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature 2003; 424(6952): 1013.
[http://dx.doi.org/10.1038/4241013a] [PMID: 12944955]
[107]
Chen F, Wen Q, Jiang J, et al. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? J Ethnopharmacol 2016; 179: 253-64.
[http://dx.doi.org/10.1016/j.jep.2015.12.031] [PMID: 26723469]
[108]
Ou K, Sarnoski P, Schneider KR, Song K, Khoo C, Gu L. Microbial catabolism of procyanidins by human gut microbiota. Mol Nutr Food Res 2014; 58(11): 2196-205.
[http://dx.doi.org/10.1002/mnfr.201400243] [PMID: 25045165]
[109]
Stoupi S, Williamson G, Viton F, et al. In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats. Drug Metab Dispos 2010; 38(2): 287-91.
[http://dx.doi.org/10.1124/dmd.109.030304] [PMID: 19910517]
[110]
Li S, Chen L, Yang T, et al. Increasing antioxidant activity of procyanidin extracts from the pericarp of Litchi chinensis processing waste by two probiotic bacteria bioconversions. J Agric Food Chem 2013; 61(10): 2506-12.
[http://dx.doi.org/10.1021/jf305213e] [PMID: 23330597]
[111]
Ferruzzi MG, Bordenave N, Hamaker BR. Does flavor impact function? Potential consequences of polyphenol-protein interactions in delivery and bioactivity of flavan-3-ols from foods. Physiol Behav 2012; 107(4): 591-7.
[http://dx.doi.org/10.1016/j.physbeh.2012.02.020] [PMID: 22387574]
[112]
Bertelsen AS, Laursen A, Knudsen TA, Møller S, Kidmose U. Bitter taste masking of enzyme-treated soy protein in water and bread. J Sci Food Agric 2018; 98(10): 3860-9.
[http://dx.doi.org/10.1002/jsfa.8903] [PMID: 29363768]
[113]
Gaudette NJ, Pickering GJ. Modifying bitterness in functional food systems. Crit Rev Food Sci Nutr 2013; 53(5): 464-81.
[http://dx.doi.org/10.1080/10408398.2010.542511] [PMID: 23391014]
[114]
Kelanne N, Laaksonen O, Seppälä T, et al. Impact of cyclodextrin treatment on composition and sensory properties of lingonberry (Vaccinium vitis-idaea) juice. LWT 2019; 113108295
[http://dx.doi.org/10.1016/j.lwt.2019.108295]
[115]
Faridi Esfanjani A, Jafari SM, Assadpour E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem 2017; 221: 1962-9.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.149] [PMID: 27979187]
[116]
Frank K, Walz E, Gräf V, Greiner R, Köhler K, Schuchmann HP. Stability of anthocyanin-rich w/o/w-emulsions designed for intestinal release in gastrointestinal environment. J Food Sci 2012; 77(12): N50-7.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02982.x] [PMID: 23240975]
[117]
Hemar Y, Cheng LJ, Oliver CM, Sanguansri L, Augustin M. Encapsulation of resveratrol using water-in-oil-in-water double emulsions. Food Biophys 2010; 5(2): 120-7.
[http://dx.doi.org/10.1007/s11483-010-9152-5]
[118]
Lamba H, Sathish K, Sabikhi L. Double emulsions: emerging delivery system for plant bioactives. Food Bioprocess Technol 2015; 8(4): 709-28.
[http://dx.doi.org/10.1007/s11947-014-1468-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy