Review Article

ACE2 /血管紧张素-(1-7)/ Mas受体轴在人类癌症中:小儿肿瘤的潜在作用。

卷 21, 期 9, 2020

页: [892 - 901] 页: 10

弟呕挨: 10.2174/1389450121666200210124217

价格: $65

摘要

背景:小儿肿瘤仍然是发达国家的最高死亡原因。研究具有较小副作用的新型治疗策略至关重要。在这种情况下,肾素-血管紧张素系统(RAS)轴的作用是由血管紧张素转化酶(ACE),血管紧张素II和AT1受体形成的经典轴,而由ACE2,血管紧张素-(1-7)和Mas受体组成的替代轴,已经在癌症中进行了调查。 目的:本综述旨在概述RAS在癌症中的病理生理作用,ACE2 /血管紧张素-(1-7)/ Mas受体轴抗肿瘤作用的证据以及小儿癌症的未来治疗前景。 方法:对Pubmed,Scopus和Scielo进行人类癌症和儿童患者的RAS分子搜索。搜索词为“ RAS”,“ ACE”,“血管紧张素-(1-7)”,“ ACE2”,“血管紧张素II”,“ AT1受体”,“ Mas受体”,“儿科”,“癌症”。 结果:实验研究表明,血管紧张素(1-7)抑制几种类型的癌症中的肿瘤细胞生长并减少局部炎症和血管生成。天然存在的肽的药物级制剂血管紧张素-(1-7)或TXA127的临床试验报告了令人鼓舞的发现,但不足以推荐用于人类癌症的医学用途。关于小儿癌症,仅发现了三篇对RAS成分进行了少量研究的文章,而没有一篇文章对替代RAS轴的分子进行了评估。 结论:尽管血管紧张素-(1-7)在儿童肿瘤中具有潜在的适用性,但从未测试过该分子的作用。必须进行进一步的临床试验,包括儿童患者,以确认安全性和有效性并确定治疗靶标。

关键词: 肾素-血管紧张素系统,癌症,小儿肿瘤,血管紧张素II,血管紧张素-(1-7),血管紧张素转化酶,ACE2,血管生成。

图形摘要
[1]
World Health Organization. Definition of key terms: Age groups and populations. who.int/hiv/pub/guidelines/arv2013/intro/key terms/en/ (Accessed September 15, 2019)
[2]
Jeanquartier F, Jean-Quartier C, Holzinger A. Use case driven evaluation of open databases for pediatric cancer research BioData Min 2019 12(1): 2.
[http://dx.doi.org/10.1186/s13040-018-0190-8] [PMID: 30675185]
[3]
Martins HTG, Balmant NV, de Paula Silva N, Santos MO, Reis RS, de Camargo B. Who cares for adolescents and young adults with cancer in Brazil? J Pediatr (Rio J) 2018; 94(4): 440-5.
[http://dx.doi.org/10.1016/j.jped.2017.07.008] [PMID: 28888615]
[4]
Burdach SEG, Westhoff MA, Steinhauser MF, Debatin KM. Precision medicine in pediatric oncology. Mol Cell Pediatr 2018; 5(1): 6.
[http://dx.doi.org/10.1186/s40348-018-0084-3] [PMID: 30171420]
[5]
Jankowski M, Dresse MF, Forget P, Piette C, Florkin B, Hoyoux C. [Epidemiology of childhood cancer, a single-center study (1985- 2016)]. Rev Med Liege 2019 74(3): 146-51.
[PMID: 30897314]
[6]
Downing JR, Wilson RK, Zhang J, et al. The Pediatric Cancer Genome Project. Nat Genet 2012; 44(6): 619-22.
[http://dx.doi.org/10.1038/ng.2287] [PMID: 22641210]
[7]
Wedekind MF, Denton NL, Chen CY, Cripe TP. Pediatric Cancer Immunotherapy: Opportunities and Challenges. Paediatr Drugs 2018; 20(5): 395-408.
[http://dx.doi.org/10.1007/s40272-018-0297-x] [PMID: 29948928]
[8]
Lam CG, Howard SC, Bouffet E, Pritchard-Jones K. Science and health for all children with cancer. Science 2019; 15(363(6432)): 1182-6.
[http://dx.doi.org/10.1126/science.aaw4892]
[9]
LeBaron S, Zeltzer LK, LeBaron C, Scott SE, Zeltzer PM. Chemotherapy side effects in pediatric oncology patients: drugs, age, and sex as risk factors. Med Pediatr Oncol 1988; 16(4): 263-8.
[http://dx.doi.org/10.1002/mpo.2950160408] [PMID: 3419392]
[10]
Ruggiero A, Ferrara P, Attinà G, Rizzo D, Riccardi R. Renal toxicity and chemotherapy in children with cancer. Br J Clin Pharmacol 2017; 83(12): 2605-14.
[http://dx.doi.org/10.1111/bcp.13388] [PMID: 28758697]
[11]
Gallagher PE, Arter AL, Deng G, Tallant EA. Angiotensin-(1-7): a peptide hormone with anti-cancer activity. Curr Med Chem 2014; 21(21): 2417-23.
[http://dx.doi.org/10.2174/0929867321666140205133357] [PMID: 24524765]
[12]
Simões E Silva AC, Flynn JT. The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol 2012; 27(10): 1835-45.
[http://dx.doi.org/10.1007/s00467-011-2002-y] [PMID: 21947887]
[13]
Simões E Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107: 154-62.
[http://dx.doi.org/10.1016/j.phrs.2016.03.018] [PMID: 26995300]
[14]
Fountain JH, Lappin SL. Physiology, Renin Angiotensin System. [Updated 2019 May 5] StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2019.Available from:. https:// www.ncbi.nlm.nih.gov/books/NBK470410/
[15]
Sanjuliani AF, Torres MRSG, Paula LV, Bassan FB. Eixo Renina-Angiotensina-Aldosterona: Fisiolóficas e Fisiopatológicas. Brazilian Journal of Health and Biomedical Sciences 2011; 10(3): 20-30.
[16]
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275(43): 33238-43.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[17]
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[18]
Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[19]
Lever AF, Hole DJ, Gillis CR, et al. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 1998; 352(9123): 179-84.
[http://dx.doi.org/10.1016/S0140-6736(98)03228-0] [PMID: 9683206]
[20]
Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens 1996; 14(6): 799-805.
[http://dx.doi.org/10.1097/00004872-199606000-00017] [PMID: 8793704]
[21]
Simões e Silva AC, Diniz JS, Pereira RM, Pinheiro SV, Santos RAS. Circulating renin Angiotensin system in childhood chronic renal failure: marked increase of Angiotensin-(1-7) in end-stage renal disease. Pediatr Res 2006; 60(6): 734-9.
[http://dx.doi.org/10.1203/01.pdr.0000246100.14061.bc] [PMID: 17065573]
[22]
Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simoes E-Silva AC. The anti-inflammatory potential of ACE2/ angiotensin-(1-7)/Mas receptor axis: evidence from basic and clinical research. Curr Drug Targets 2017; 18(11): 1301-13.
[http://dx.doi.org/10.2174/1389450117666160727142401] [PMID: 27469342]
[23]
Machado RDP, Santos RAS, Andrade SP. Opposing actions of angiotensins on angiogenesis. Life Sci 2000; 66(1): 67-76.
[http://dx.doi.org/10.1016/S0024-3205(99)00562-7] [PMID: 10658925]
[24]
Simões e Silva AC, Sampaio WO. The Role of Angiotensin–(1-7) in Cancer.Angiotensin-. 219-29.
[http://dx.doi.org/10.1007/978-3-030-22696-1_14]
[25]
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23(5): 1011-27.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754]
[26]
Ma TK, Kam KK, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 2010; 160(6): 1273-92.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00750.x] [PMID: 20590619]
[27]
Xie X, Liu Y, Perkovic V, et al. Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients With CKD: A Bayesian Network Meta-analysis of Randomized Clinical Trials. Am J Kidney Dis 2016; 67(5): 728-41.
[http://dx.doi.org/10.1053/j.ajkd.2015.10.011] [PMID: 26597926]
[28]
Sobczuk P, Szczylik C, Porta C, Czarnecka AM. Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett 2017 14(5): 5059-68. [Review]
[http://dx.doi.org/10.3892/ol.2017.6826] [PMID: 29098020]
[29]
Hallas J, Christensen R, Andersen M, Friis S, Bjerrum L. Long term use of drugs affecting the renin-angiotensin system and the risk of cancer: a population-based case-control study. Br J Clin Pharmacol 2012; 74(1): 180-8.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04170.x] [PMID: 22243442]
[30]
Shen J, Huang Y-M, Wang M, et al. Zhu. M-H.; Zhang, X-X.; Sui, Y.; Zhao, H-L. Renin–angiotensin system blockade for the risk of cancer and death. J Renin Angiotensin Aldosterone Syst 2016; 1-14.
[31]
Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98(3): 1627-738.
[http://dx.doi.org/10.1152/physrev.00038.2017] [PMID: 29873596]
[32]
Escobar E, Rodríguez-Reyna TS, Arrieta O, Sotelo J, Angiotensin II. Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr Vasc Pharmacol 2004; 2(4): 385-99.
[http://dx.doi.org/10.2174/1570161043385556] [PMID: 15320819]
[33]
Pupilli C, Lasagni L, Romagnani P, et al. Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J Am Soc Nephrol 1999; 10(2): 245-55.
[PMID: 10215323]
[34]
Fernandez LA, Twickler J, Mead A. Neovascularization produced by angiotensin II. J Lab Clin Med 1985; 105(2): 141-5.
[PMID: 2579174]
[35]
Amaral SL, Linderman JR, Morse MM, Greene AS. Angiogenesis Induced by Electrical Stimulation Is Mediated by Angiotensin II and VEGF. Microcirculation (New York, NY : 1994) 2001; 8: 57-67.
[36]
Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91(3): 1071-121.
[http://dx.doi.org/10.1152/physrev.00038.2010] [PMID: 21742796]
[37]
Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20(4): 409-26.
[http://dx.doi.org/10.1007/s10456-017-9562-9] [PMID: 28660302]
[38]
Kohara K, Brosnihan KB, Ferrario CM. Angiotensin(1-7) in the spontaneously hypertensive rat. Peptides 1993; 14(5): 883-91.
[http://dx.doi.org/10.1016/0196-9781(93)90063-M] [PMID: 8284265]
[39]
Montana V, Sontheimer H. Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 2011; 31(13): 4858-67.
[http://dx.doi.org/10.1523/JNEUROSCI.3825-10.2011] [PMID: 21451024]
[40]
Domińska K, Okła P, Kowalska K, et al. Influence and mechanism of Angiotensin 1-7 on biological properties of normal prostate epithelial cells. Biochem Biophys Res Commun 2018; 502(1): 152-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.138] [PMID: 29802847]
[41]
Gallagher PE, Tallant EA. Inhibition of human lung cancer cell growth by angiotensin-(1-7). Carcinogenesis 2004; 25(11): 2045-52.
[http://dx.doi.org/10.1093/carcin/bgh236] [PMID: 15284177]
[42]
Forte BL, Slosky LM, Zhang H, Arnold MR, Staatz WD. Hay. M.; Largent-Milnes, T.M.; Vanderah, T.W. Angiotensin-(1-7)/Mas receptor as an anti nociceptive agent in cancer-induced bone pain. Pain 2016; 157: 2709-21.
[http://dx.doi.org/10.1097/j.pain.0000000000000690] [PMID: 27541850]
[43]
Willey JS, Bracey DN, Gallagher PE, et al. Angiotensin-(1-7) Attenuates Skeletal Muscle Fibrosis and Stiffening in a Mouse Model of Extremity Sarcoma Radiation Therapy. J Bone Joint Surg Am 2016; 98(1): 48-55.
[http://dx.doi.org/10.2106/JBJS.O.00545] [PMID: 26738903]
[44]
Ahmad I, Ahmed MM, Ahsraf MF, et al. Pain Management in Metastatic Bone Disease: A Literature Review. Cureus 2018 10(9) e3286
[http://dx.doi.org/10.7759/cureus.3286] [PMID: 30443456]
[45]
Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 2015; 141(11): 1985-94.
[http://dx.doi.org/10.1007/s00432-015-1974-6] [PMID: 25910988]
[46]
George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer 2010; 10(11): 745-59.
[http://dx.doi.org/10.1038/nrc2945] [PMID: 20966920]
[47]
Rodgers KE, Xiong S, diZerega GS. Accelerated recovery from irradiation injury by angiotensin peptides. Cancer Chemother Pharmacol 2002; 49(5): 403-11.
[http://dx.doi.org/10.1007/s00280-002-0434-6] [PMID: 11976835]
[48]
Rodgers K, Xiong S, DiZerega GS. Effect of angiotensin II and angiotensin(1-7) on hematopoietic recovery after intravenous chemotherapy. Cancer Chemother Pharmacol 2003; 51(2): 97-106.
[http://dx.doi.org/10.1007/s00280-002-0509-4] [PMID: 12647010]
[49]
Menon J, Soto-Pantoja DR, Callahan MF, et al. Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res 2007; 67(6): 2809-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3614] [PMID: 17363603]
[50]
Hida T, Yatabe Y, Achiwa H, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 1998; 58(17): 3761-4.
[PMID: 9731479]
[51]
Lee EO, Lee HJ, Hwang HS, et al. Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities. Carcinogenesis 2006; 27(10): 2059-69.
[http://dx.doi.org/10.1093/carcin/bgl055] [PMID: 16675471]
[52]
Harris RE, Beebe-Donk J, Schuller HM. Chemoprevention of lung cancer by non-steroidal anti-inflammatory drugs among cigarette smokers. Oncol Rep 2002; 9(4): 693-5.
[http://dx.doi.org/10.3892/or.9.4.693] [PMID: 12066194]
[53]
Mukherjee D, Topol EJ. Cox-2: where are we in 2003? - Cardiovascular risk and Cox-2 inhibitors. Arthritis Res Ther 2003; 5(1): 8-11.
[http://dx.doi.org/10.1186/ar609] [PMID: 12716442]
[54]
Soto-Pantoja DR, Menon J, Gallagher PE, Tallant EA. Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol Cancer Ther 2009; 8(6): 1676-83.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0161] [PMID: 19509262]
[55]
Silva BOD, Lima KF, Gonçalves LR, Silveira MBD, Moraes KCM. MicroRNA profiling of the effect of the heptapeptide Angiotensin-( 1-7) in A549 lung tumor cells reveals a role for miRNA149- 3p in cellular migration processes. PLoS One 2017 12(12) e0190204
[http://dx.doi.org/10.1371/journal.pone.0190204] [PMID: 29261785]
[56]
da Silveira MB, Lima KF, da Silva AR, Dos Santos RAS, Moraes KCM. Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression. Mol Cell Biochem 2018 444(1-2): 43-52.
[http://dx.doi.org/10.1007/s11010-017-3229-0] [PMID: 29204818]
[57]
Cook KL, Metheny-Barlow LJ, Tallant EA, Gallagher PE. Angiotensin-(1-7) reduces fibrosis in orthotopic breast tumors. Cancer Res 2010; 70(21): 8319-28.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1136] [PMID: 20837666]
[58]
Yu C, Tang W, Wang Y, et al. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett 2016; 376(2): 268-77.
[http://dx.doi.org/10.1016/j.canlet.2016.04.006] [PMID: 27063099]
[59]
Cambados N, Walther T, Nahmod K, et al. Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells. Oncotarget 2017; 8(51): 88475-87.
[http://dx.doi.org/10.18632/oncotarget.19290] [PMID: 29179450]
[60]
Krishnan B, Torti FM, Gallagher PE, Tallant EA. Angiotensin-(1-7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1. Prostate 2013; 73(1): 60-70.
[http://dx.doi.org/10.1002/pros.22540] [PMID: 22644934]
[61]
Krishnan B, Smith TL, Dubey P, et al. Angiotensin-(1-7) attenuates metastatic prostate cancer and reduces osteoclastogenesis. Prostate 2013; 73(1): 71-82.
[http://dx.doi.org/10.1002/pros.22542] [PMID: 22644942]
[62]
Liu Y, Li B, Wang X, et al. Angiotensin-(1-7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor. Mol Med 2015; 21: 626-36.
[http://dx.doi.org/10.2119/molmed.2015.00022] [PMID: 26225830]
[63]
Mao Y, Pei N, Chen X, et al. Angiotensin 1-7 Overexpression Mediated by a Capsid-optimized AAV8 Vector Leads to Significant Growth Inhibition of Hepatocellular Carcinoma In vivo. Int J Biol Sci 2018; 14(1): 57-68.
[http://dx.doi.org/10.7150/ijbs.22235] [PMID: 29483825]
[64]
Liu B, Liu Y, Jiang Y. Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation by inhibiting angiotensin-(1-7)/Mas signaling. Oncol Rep 2015; 33(5): 2583-91.
[http://dx.doi.org/10.3892/or.2015.3813] [PMID: 25708368]
[65]
Li X, Wang X, Xie J, Liang B, Wu J. Suppression of Angiotensin-(1-7) on the Disruption of Blood-Brain Barrier in Rat of Brain Glioma. Pathol Oncol Res 2019; 25(1): 429-35.
[http://dx.doi.org/10.1007/s12253-018-0471-z] [PMID: 30229380]
[66]
Petty WJ, Miller AA, McCoy TP, Gallagher PE, Tallant EA, Torti FM. Phase I and pharmacokinetic study of angiotensin-(1-7), an endogenous antiangiogenic hormone. Clin Cancer Res 2009; 15(23): 7398-404.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1957] [PMID: 19920106]
[67]
Rodgers KE, Oliver J, diZerega GS. Phase I/II dose escalation study of angiotensin 1-7 [A(1-7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol 2006; 57(5): 559-68.
[http://dx.doi.org/10.1007/s00280-005-0078-4] [PMID: 16096787]
[68]
Pham H, Schwartz BM, Delmore JE, et al. Pharmacodynamic stimulation of thrombogenesis by angiotensin (1-7) in recurrent ovarian cancer patients receiving gemcitabine and platinum-based chemotherapy. Cancer Chemother Pharmacol 2013; 71(4): 965-72.
[http://dx.doi.org/10.1007/s00280-013-2089-x] [PMID: 23370663]
[69]
Maas MH, Cransberg K, van Grotel M, Pieters R, van den Heuvel-Eibrink MM. Renin-induced hypertension in Wilms tumor patients. Pediatr Blood Cancer 2007; 48(5): 500-3.
[http://dx.doi.org/10.1002/pbc.20938] [PMID: 16794999]
[70]
Zaher H, Rasheed H, El-Komy MM, et al. Propranolol versus captopril in the treatment of infantile hemangioma (IH): A randomized controlled trial. J Am Acad Dermatol 2016; 74(3): 499-505.
[http://dx.doi.org/10.1016/j.jaad.2015.09.061] [PMID: 26685718]
[71]
Kaslow AM, Riquier-Brison A, Peti-Peterdi J, et al. An ectopic renin-secreting adrenal corticoadenoma in a child with malignant hypertension. Physiol Rep 2016; 4(5): 1-5.
[http://dx.doi.org/10.14814/phy2.12728] [PMID: 26997629]
[72]
Sukarochana K, Tolentino W, Kiesewetter WB. Wilms’ tumor and hypertension. J Pediatr Surg 1972; 7(5): 573-6.
[http://dx.doi.org/10.1016/0022-3468(72)90215-1] [PMID: 4343314]
[73]
Bradley J, Pincoffs M. The association of adeno-sarcoma of the kidney (Wilms’ tumor) with arterial hypertension. Ann Intern Med 1938; 11(9): 1613-28.
[http://dx.doi.org/10.7326/0003-4819-11-9-1613]
[74]
Galambos C. Vasculogenesis in infantile hemangioma. Yearbook of Pathology and Laboratory Medicine 2010 234-5.
[75]
Itinteang T, Brasch HD, Tan ST, Day DJ. Expression of components of the renin-angiotensin system in proliferating infantile haemangioma may account for the propranolol-induced accelerated involution. J Plast Reconstr Aesthet Surg 2011; 64(6): 759-65.
[http://dx.doi.org/10.1016/j.bjps.2010.08.039] [PMID: 20870476]
[76]
Tan ST, Itinteang T, Day DJ, O’Donnell C, Mathy JA, Leadbitter P. Treatment of infantile haemangioma with captopril. Br J Dermatol 2012; 167(3): 619-24.
[http://dx.doi.org/10.1111/j.1365-2133.2012.11016.x] [PMID: 22533490]
[77]
Ji Y, Chen S, Xu C, Li L, Xiang B. The use of propranolol in the treatment of infantile haemangiomas: An update on potential mechanisms of action. Br J Dermatol 2014; 172-6.
[PMID: 25196392]
[78]
Kurtz A. Renin release: sites, mechanisms, and control. Annu Rev Physiol 2011; 73: 377-99.
[http://dx.doi.org/10.1146/annurev-physiol-012110-142238] [PMID: 20936939]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy