Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Analysis of the Clinical Diagnostic Value of GMFB in Cerebral Infarction

Author(s): Zhaohu Yuan*, Zhiwu Yu, Yiyu Zhang and Huikuan Yang

Volume 21, Issue 10, 2020

Page: [955 - 963] Pages: 9

DOI: 10.2174/1389201021666200210102425

open access plus

Abstract

Background: Glial Maturation Factor Beta (GMFB) is a highly conserved brain-enriched protein implicated in immunoregulation, neuroplasticity and apoptosis, processes central to neural injury and repair following cerebral ischaemia. Therefore, we examined if changes in neurocellular GMFB expression and release can be used to assess brain injury following ischaemia.

Methods and Results: Immunofluorescence staining, Western blotting, immunohistochemistry and ELISA were used to measure GMFB in cultured neurons and astrocytes, rat brain tissues and plasma samples from stroke model rats and stroke patients, while cell viability assays, TTC staining and micro- PET were used to assess neural cell death and infarct severity. Immunofluorescence and immunohistochemistry revealed GMFB expression mainly in astrocyte and neuronal nuclei but also in neuronal axons and dendrites. Free GMFB concentration increased progressively in the culture medium during hypoxia-hypoglycaemia treatment. Plasma GMFB concentration increased in rats subjected to middle cerebral artery occlusion (MCAO, a model of stroke-reperfusion) and in stroke patients. Plasma GMFB in MCAO model rats was strongly correlated with infarct size (R2=0.9582). Plasma GMFB concentration was also markedly elevated in stroke patients within 24 h of onset and remained elevated for more than one week. Conversely, plasma GMFB elevations were not significant in myocardial infarct patients and stroke patients without infarction.

Conclusion: GMFB has the prerequisite stability, expression specificity and response dynamics to serve as a reliable indicator of ischaemic injury in animal models and stroke patients. Plasma GMFB may be a convenient non-invasive adjunct to neuroimaging for stroke diagnosis and prognosis.

Keywords: Stroke, cerebral infarction, ischaemia-reperfusion injury, biomarker, Glia Maturation Factor Beta (GMFB), MCAO.

Graphical Abstract
[1]
Maheshwari, D.; Shukla, V.K.; Jain, A.; Tripathi, S.; Kumar, D.; Arora, A. Solution structure and dynamics of glia maturation factor from Caenorhabditis elegans. Biochim. Biophys. Acta. Proteins Proteomics, 2018, 1866(10), 1008-1020.
[http://dx.doi.org/10.1016/j.bbapap.2018.06.007] [PMID: 29981887]
[2]
Goode, B.L.; Sweeney, M.O.; Eskin, J.A. GMF as an actin network remodeling factor. trends cell biol 2018, pii, s0962-8924(18)30072-2
[http://dx.doi.org/10.1016/j.tcb.2018.04.008]
[3]
Yin, G.; Du, M.; Li, R.; Li, K.; Huang, X.; Duan, D.; Ai, X.; Yao, F.; Zhang, L.; Hu, Z.; Wu, B. Glia maturation factor beta is required for reactive gliosis after traumatic brain injury in zebrafish. Exp. Neurol., 2018, 305, 129-138.
[http://dx.doi.org/10.1016/j.expneurol.2018.04.008] [PMID: 29655639]
[4]
Fan, J.; Fong, T.; Chen, X.; Chen, C.; Luo, P.; Xie, H. Glia maturation factor-β: A potential therapeutic target in neurodegeneration and neuroinflammation. Neuropsychiatr. Dis. Treat., 2018, 14, 495-504.
[http://dx.doi.org/10.2147/NDT.S157099] [PMID: 29445286]
[5]
Selvakumar, G.P.; Iyer, S.S.; Kempuraj, D.; Raju, M.; Thangavel, R.; Saeed, D.; Ahmed, M.E.; Zahoor, H.; Raikwar, S.P.; Zaheer, S.; Zaheer, A. Glia maturation factor dependent inhibition of mitochondrial PGC-1α triggers oxidative stress-mediated apoptosis in N27 rat dopaminergic neuronal cells. Mol. Neurobiol., 2018, 55(9), 7132-7152.
[http://dx.doi.org/10.1007/s12035-018-0882-6] [PMID: 29383690]
[6]
Popinako, A.; Antonov, M.; Dibrova, D.; Chemeris, A.; Sokolova, O.S. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation. Biochem. Biophys. Res. Commun., 2018, 496(2), 529-535.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.080] [PMID: 29339159]
[7]
Thangavel, R.; Bhagavan, S.M.; Ramaswamy, S.B.; Surpur, S.; Govindarajan, R.; Kempuraj, D.; Zaheer, S.; Raikwar, S.; Ahmed, M.E.; Selvakumar, G.P.; Iyer, S.S.; Zaheer, A. Co-expression of glia maturation factor and apolipoprotein E4 in Alzheimer’s disease brain. J. Alzheimers Dis., 2018, 61(2), 553-560.
[http://dx.doi.org/10.3233/JAD-170777] [PMID: 29172001]
[8]
Ahmed, M.E.; Iyer, S.; Thangavel, R.; Kempuraj, D.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.; Zaheer, A. Co-localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J. Alzheimers Dis., 2017, 60(3), 1143-1160.
[http://dx.doi.org/10.3233/JAD-170634] [PMID: 28984607]
[9]
Inagaki, M.; Aoyama, M.; Sobue, K.; Yamamoto, N.; Morishima, T.; Moriyama, A.; Katsuya, H.; Asai, K. Sensitive immunoassays for human and rat GMFB and GMFG, tissue distribution and age-related changes. Biochim. Biophys. Acta, 2004, 1670(3), 208-216.
[http://dx.doi.org/10.1016/j.bbagen.2003.12.006] [PMID: 14980447]
[10]
Iadecola, C.; Anrather, J. The immunology of stroke: From mechanisms to translation. Nat. Med., 2011, 17(7), 796-808.
[http://dx.doi.org/10.1038/nm.2399] [PMID: 21738161]
[11]
Jiang, Y.; Li, X.Y.; Hu, N.; Huang, Z.J.; Wu, F. Epidemiologic characteristics of cerebrovascular disease mortality in China, 2004-2005. Zhonghua Yu Fang Yi Xue Za Zhi, 2010, 44(4), 293-297.
[PMID: 20654139]
[12]
Larsson, S.C.; Virtamo, J.; Wolk, A. Dietary protein intake and risk of stroke in women. Atherosclerosis, 2012, 224(1), 247-251.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.07.009] [PMID: 22854187]
[13]
Larsson, S.C.; Virtamo, J.; Wolk, A. Dairy consumption and risk of stroke in Swedish women and men. Stroke, 2012, 43(7), 1775-1780.
[http://dx.doi.org/10.1161/STROKEAHA.111.641944] [PMID: 22517598]
[14]
Irmak, K.; Tüten, N.; Karaoglu, G.; Madazli, R.; Tüten, A.; Malik, E.; Güralp, O. Evaluation of cord blood Creatine Kinase (CK), cardiac troponin T (cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), and s100B levels in nonreassuring foetal heart rate. J. Matern. Fetal Neonatal Med., 2019, 25, 1-6.
[http://dx.doi.org/10.1080/14767058.2019.1632285] [PMID: 31195859]
[15]
Dincel, G.C. First description of enhanced expression of glia maturation factor-beta in experimental toxoplasmic encephalitis. J. Int. Med. Res., 2017, 45(6), 1670-1679.
[http://dx.doi.org/10.1177/0300060517700320] [PMID: 28774213]
[16]
Kopanke, J.H.; Chen, A.V.; Brune, J.E.; Brenna, A.C.; Thomovsky, S.A. Reference intervals for the activity of lactate dehydrogenase and its isoenzymes in the serum and cerebrospinal fluid of healthy canines. Vet. Clin. Pathol., 2018, 47(2), 267-274.
[http://dx.doi.org/10.1111/vcp.12595] [PMID: 29505118]
[17]
Lin, C.S.; Chang, C.S.; Yang, S.S.; Yeh, H.Z.; Lin, C.W. Retrospective evaluation of serum markers APRI and AST/ALT for assessing liver fibrosis and cirrhosis in chronic hepatitis B and C patients with hepatocellular carcinoma. Intern. Med., 2008, 47(7), 569-575.
[http://dx.doi.org/10.2169/internalmedicine.47.0595] [PMID: 18379139]
[18]
Takami, T.; Terai, S.; Sakaida, I. Stem cell therapy in chronic liver disease. Curr. Opin. Gastroenterol., 2012, 28(3), 203-208.
[http://dx.doi.org/10.1097/MOG.0b013e3283521d6a] [PMID: 22395569]
[19]
Constantinescu, R.; Zetterberg, H.; Holmberg, B.; Rosengren, L. Levels of brain related proteins in cerebrospinal fluid: An aid in the differential diagnosis of parkinsonian disorders. Parkinsonism Relat. Disord., 2009, 15(3), 205-212.
[http://dx.doi.org/10.1016/j.parkreldis.2008.05.001] [PMID: 18562238]
[20]
Lotosh, N.G.; Savel’eva, E.K.; Selishcheva, A.A.; Savel’ev, S.V. Autoantibodies to neuron-specific proteins S100, GFAP, MBP and NGF in the serum of rats with streptozotocin-induced diabetes. Bull. Exp. Biol. Med., 2013, 155(1), 48-51.
[http://dx.doi.org/10.1007/s10517-013-2077-5] [PMID: 23667870]
[21]
Lian, T.; Qu, D.; Zhao, X.; Yu, L.; Gao, B. Identification of site-specific stroke biomarker candidates by laser capture microdissection and labeled reference peptide. Int. J. Mol. Sci., 2015, 16(6), 13427-13441.
[http://dx.doi.org/10.3390/ijms160613427] [PMID: 26110384]
[22]
Lv, M.N.; Zhang, H.; Shu, Y.; Chen, S.; Hu, Y.Y.; Zhou, M. The neonatal levels of TSB, NSE and CK-BB in autism spectrum disorder from Southern China. Transl. Neurosci., 2016, 7(1), 6-11.
[http://dx.doi.org/10.1515/tnsci-2016-0002] [PMID: 28123815]
[23]
Wang, J.; Jiang, W.; Zhang, T.; Liu, L.; Bi, N.; Wang, X.; Hui, Z.; Liang, J.; Lv, J.; Zhou, Z.; Xiao, Z.; Feng, Q.; Chen, D.; Yin, W.; Wang, L. Increased CYFRA 21-1, CEA and NSE are prognostic of poor outcome for locally advanced squamous cell carcinoma in lung: A nomogram and recursive partitioning risk stratification analysis. Transl. Oncol., 2018, 11(4), 999-1006.
[http://dx.doi.org/10.1016/j.tranon.2018.05.008] [PMID: 29958123]
[24]
Yu, D.; Du, K.; Liu, T.; Chen, G. Prognostic value of tumor markers, NSE, CA125 and SCC, in operable NSCLC Patients. Int. J. Mol. Sci., 2013, 14(6), 11145-11156.
[http://dx.doi.org/10.3390/ijms140611145] [PMID: 23712355]
[25]
Bayo, J.; Castaño, M.A.; Rivera, F.; Navarro, F. Analysis of blood markers for early breast cancer diagnosis. Clin. Transl. Oncol., 2018, 20(4), 467-475.
[http://dx.doi.org/10.1007/s12094-017-1731-1] [PMID: 28808872]
[26]
Trettel, F.; Di Castro, M.A.; Limatola, C. chemokines: key molecules that orchestrate communication among neurons, microglia and astrocytes to preserve brain function. neuroscience, 2019, pii, s0306-4522(19)30519-6.
[27]
Nishiwaki, A.; Asai, K.; Tada, T.; Ueda, T.; Shimada, S.; Ogura, Y.; Kato, T. Expression of glia maturation factor during retinal development in the rat. Brain Res. Mol. Brain Res., 2001, 95(1-2), 103-109.
[http://dx.doi.org/10.1016/S0169-328X(01)00252-2] [PMID: 11687281]
[28]
Lim, R.; Hicklin, D.J.; Ryken, T.C.; Miller, J.F.; Bosch, E.P. Endogenous immunoreactive glia maturation factor-like molecule in cultured rat Schwann cells. Brain Res., 1988, 468(2), 277-284.
[http://dx.doi.org/10.1016/0165-3806(88)90140-X] [PMID: 3382960]
[29]
Tingley, D.; Buzsáki, G. Transformation of a spatial map across the hippocampal-lateral septal circuit. Neuron, 2018, 98(6), 1229-1242.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.04.028] [PMID: 29779942]
[30]
Harvey, C.D.; Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature, 2007, 450(7173), 1195-1200.
[http://dx.doi.org/10.1038/nature06416] [PMID: 18097401]
[31]
Dupret, D.; O’Neill, J.; Csicsvari, J. Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning. Neuron, 2013, 78(1), 166-180.
[http://dx.doi.org/10.1016/j.neuron.2013.01.033] [PMID: 23523593]
[32]
Manns, J.R.; Eichenbaum, H. A cognitive map for object memory in the hippocampus. Learn. Mem., 2009, 16(10), 616-624.
[http://dx.doi.org/10.1101/lm.1484509] [PMID: 19794187]
[33]
Rahman, A.; Khan, K.M.; Al-Khaledi, G.; Khan, I.; Al-Shemary, T. Over activation of hippocampal serine/threonine protein phosphatases PP1 and PP2A is involved in lead-induced deficits in learning and memory in young rats. Neurotoxicology, 2012, 33(3), 370-383.
[http://dx.doi.org/10.1016/j.neuro.2012.02.014] [PMID: 22387731]
[34]
Rahman, A.; Khan, K.M.; Al-Khaledi, G.; Khan, I.; Attur, S. Early postnatal lead exposure induces tau phosphorylation in the brain of young rats. Acta Biol. Hung., 2012, 63(4), 411-425.
[http://dx.doi.org/10.1556/ABiol.63.2012.4.1] [PMID: 23134599]
[35]
Huerta-Rivas, A.; López-Rubalcava, C.; Sánchez-Serrano, S.L.; Valdez-Tapia, M.; Lamas, M.; Cruz, S.L. Toluene impairs learning and memory, has antinociceptive effects, and modifies histone acetylation in the dentate gyrus of adolescent and adult rats. Pharmacol. Biochem. Behav., 2012, 102(1), 48-57.
[http://dx.doi.org/10.1016/j.pbb.2012.03.018] [PMID: 22497993]
[36]
Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The science of stroke: Mechanisms in search of treatments. Neuron, 2010, 67(2), 181-198.
[http://dx.doi.org/10.1016/j.neuron.2010.07.002] [PMID: 20670828]
[37]
Li, W.; Liu, J.; Chen, J.R.; Zhu, Y.M.; Gao, X.; Ni, Y.; Lin, B.; Li, H.; Qiao, S.G.; Wang, C.; Zhang, H.L.; Ao, G.Z. Neuroprotective Effects of DTIO, a novel analog of Nec-1, in acute and chronic stages after ischemic stroke. neurosciencepii, 2018, s0306-4522(18), 30519-0,
[38]
Lehmpfuhl, M.C.; Hess, A.; Gaudnek, M.A.; Sibila, M. Fluid dynamic simulation of rat brain vessels, geometrically reconstructed from MR-angiography and validated using phase contrast angiography. Phys. Med., 2011, 27(3), 169-176.
[http://dx.doi.org/10.1016/j.ejmp.2010.07.002] [PMID: 20696607]
[39]
Haorah, J.; Heilman, D.; Knipe, B.; Chrastil, J.; Leibhart, J.; Ghorpade, A.; Miller, D.W.; Persidsky, Y. Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood-brain barrier compromise. alcohol. clin. exp. res., 2005, 29(6), 999-1009.,
[http://dx.doi.org/10.1097/01.alc.0000166944.79914.0a] [PMID: 15976526,]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy