Review Article

超顺磁氧化铁纳米粒子的制备及其在新型给药系统中的应用综述

卷 28, 期 4, 2021

发表于: 23 January, 2020

页: [777 - 799] 页: 23

弟呕挨: 10.2174/0929867327666200123152006

价格: $65

Open Access Journals Promotions 2
摘要

纳米载体作为药物传递框架,已被用于增强传统药物的药理和恢复性能。医学原子作为纳米载体的整合可以作为反腐所需的药物,并在靶向和控制释放方面提供预期的潜在结果。本文就磁性纳米粒子(MNPs)在药物输送中的应用作一综述。由于它们的生物相容性——低毒性质量,以及在磁场中处理的能力,MNPs增加了人们的兴奋感,这使得它们可以用作载药载体。这些颗粒表面修饰的简单性为靶向与颗粒表面相连的部分提供了机会。我们相信,在不久的将来,这些有趣的粒子将获得更多的关注,与目前的成果一起。

关键词: 磁性纳米粒子,大小,形状,表面修饰,功能化,药物传递,生物相容性,生物医学应用

[1]
Sabouri, Z.; Akbari, A.; Hosseini, H.A.; Darroudi, M. Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J. Mol. Struct., 2018, 1173, 931-936.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.063]
[2]
Gholoobi, A.; Abnous, K.; Ramezani, M.; Shandiz, F.H.; Darroudi, M.; Ghayour-Mobarhan, M.; Meshkat, Z. Synthesis of γ-Fe2O3 nanoparticles capped with oleic acid and their magnetic characterization. Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(4), 1889-1893.
[http://dx.doi.org/10.1007/s40995-017-0147-7]
[3]
Rasouli, E.; Basirun, W.J.; Johan, M.R.; Rezayi, M.; Darroudi, M.; Shameli, K.; Shanavaz, Z.; Akbarzadeh, O.; Izadiyan, Z. Facile and greener hydrothermal honey‐based synthesis of Fe3O 4/Au core/shell nanoparticles for drug delivery applications. J. Cell. Biochem., 2019, 120(4), 6624-6631.
[http://dx.doi.org/10.1002/jcb.27958 ] [PMID: 30368873]
[4]
Darroudi, M.; Hakimi, M.; Goodarzi, E.; Oskuee, R.K. Superparamagnetic iron oxide nanoparticles (SPIONs): green preparation, characterization and their cytotoxicity effects. Ceram. Int., 2014, 40(9), 14641-14645.
[http://dx.doi.org/10.1016/j.ceramint.2014.06.051]
[5]
Gholoobi, A.; Meshkat, Z.; Abnous, K.; Ghayour-Mobarhan, M.; Ramezani, M.; Shandiz, F.H.; Verma, K.; Darroudi, M. Biopolymer-mediated synthesis of Fe3O4 nanoparticles and investigation of their in vitro cytotoxicity effects. J. Mol. Struct., 2017, 1141, 594-599.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.024]
[6]
Gholami, L.; Tafaghodi, M.; Abbasi, B.; Daroudi, M.; Kazemi Oskuee, R. Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J. Cell. Physiol., 2019, 234(2), 1547-1559.
[http://dx.doi.org/10.1002/jcp.27019] [PMID: 30145790]
[7]
Caruntu, D.; Caruntu, G.; O’Connor, C.J. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys., 2007, 40(19), 5801.
[http://dx.doi.org/10.1088/0022-3727/40/19/001]
[8]
Cao, Q.; Han, X.; Li, L. Enhancement of the efficiency of magnetic targeting for drug delivery: Development and evaluation of magnet system. J. Magn. Magn. Mater., 2011, 323(15), 1919-1924.
[http://dx.doi.org/10.1016/j.jmmm.2010.11.058]
[9]
Meng, X.; Seton, H.C.; Lu, T.; Prior, I.A.; Thanh, N.T.; Song, B. Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale, 2011, 3(3), 977-984.
[http://dx.doi.org/10.1039/c0nr00846j] [PMID: 21293831]
[10]
Kale, S.N.; Jadhav, A.D.; Verma, S.; Koppikar, S.J.; Kaul-Ghanekar, R.; Dhole, S.D.; Ogale, S.B. Characterization of biocompatible NiCo2O4 nanoparticles for applications in hyperthermia and drug delivery. Nanomedicine (Lond.), 2012, 8(4), 452-459.
[http://dx.doi.org/10.1016/j.nano.2011.07.010] [PMID: 21839056]
[11]
Sayed, F.N.; Jayakumar, O.D.; Sudakar, C.; Naik, R.; Tyagi, A.K. Possible weak ferromagnetism in pure and M (Mn, Cu, Co, Fe and Tb) doped NiGa2O4 nanoparticles. J. Nanosci. Nanotechnol., 2011, 11(4), 3363-3369.
[http://dx.doi.org/10.1166/jnn.2011.3731] [PMID: 21776710]
[12]
Smolensky, E.D.; Park, H.Y.E.; Berquó, T.S.; Pierre, V.C. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications - effect of anchoring group and ligand exchange protocol. Contrast Media Mol. Imaging, 2011, 6(4), 189-199.
[http://dx.doi.org/10.1002/cmmi.417 ] [PMID: 21861279]
[13]
Bao, Y.; Wen, T.; Samia, A.C.S.; Khandhar, A.; Krishnan, K.M. Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J. Mater. Sci., 2016, 51(1), 513-553.
[http://dx.doi.org/10.1007/s10853-015-9324-2] [PMID: 26586919]
[14]
Figuerola, A.; Di Corato, R.; Manna, L.; Pellegrino, T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol. Res., 2010, 62(2), 126-143.
[http://dx.doi.org/10.1016/j.phrs.2009.12.012] [PMID: 20044004]
[15]
Tamer, U.; Gündoğdu, Y.; Boyacı, İ.H.; Pekmez, K. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J. Nanopart. Res., 2010, 12(4), 1187-1196.
[http://dx.doi.org/10.1007/s11051-009-9749-0]
[16]
Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 2010, 62(2), 144-149.
[http://dx.doi.org/10.1016/j.phrs.2010.01.014] [PMID: 20149874]
[17]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials, 2011, 32(7), 1890-1905.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.028] [PMID: 21167595]
[18]
Wu, W.; Chen, B.; Cheng, J.; Wang, J.; Xu, W.; Liu, L.; Xia, G.; Wei, H.; Wang, X.; Yang, M.; Yang, L.; Zhang, Y.; Xu, C.; Li, J. Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. Int. J. Nanomedicine, 2010, 5, 1079-1084.
[http://dx.doi.org/10.2147/IJN.S15660 ] [PMID: 21170355]
[19]
Kempe, M.; Kempe, H.; Snowball, I.; Wallén, R.; Arza, C.R.; Götberg, M.; Olsson, T. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials, 2010, 31(36), 9499-9510.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.107] [PMID: 20732712]
[20]
Chen, J-P.; Yang, P-C.; Ma, Y-H.; Wu, T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr. Polym., 2011, 84(1), 364-372.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.052]
[21]
Cole, A.J.; Yang, V.C.; David, A.E. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol., 2011, 29(7), 323-332.
[http://dx.doi.org/10.1016/j.tibtech.2011.03.001] [PMID: 21489647]
[22]
Yoo, J-W.; Chambers, E.; Mitragotri, S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des., 2010, 16(21), 2298-2307.
[http://dx.doi.org/10.2174/138161210791920496] [PMID: 20618151]
[23]
Wang, J.; Chen, Y.; Chen, B.; Ding, J.; Xia, G.; Gao, C.; Cheng, J.; Jin, N.; Zhou, Y.; Li, X.; Tang, M.; Wang, X.M. Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice. Int. J. Nanomedicine, 2010, 5, 861-866.
[http://dx.doi.org/10.2147/IJN.S13662] [PMID: 21042548]
[24]
Naqvi, S.; Samim, M.; Abdin, M.; Ahmed, F.J.; Maitra, A.; Prashant, C.; Dinda, A.K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine, 2010, 5, 983-989.
[http://dx.doi.org/10.2147/IJN.S13244] [PMID: 21187917]
[25]
Martínez-Mera, I.; Espinosa-Pesqueira, M.; Pérez-Hernández, R.; Arenas-Alatorre, J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater. Lett., 2007, 61(23-24), 4447-4451.
[http://dx.doi.org/10.1016/j.matlet.2007.02.018]
[26]
He, F.; Zhao, D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol., 2005, 39(9), 3314-3320.
[http://dx.doi.org/10.1021/es048743y] [PMID: 15926584]
[27]
Ramasubbu, A.; Saravanan, S.; Vasanthkumar, S. One-pot synthesis and characterization of biopolymer-Iron oxide nanocomposite. Int. J. Nanodimens., 2011, 2(2), 105-110.
[28]
Dorniani, D.; Hussein, M.Z.B.; Kura, A.U.; Fakurazi, S.; Shaari, A.H.; Ahmad, Z. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int. J. Nanomedicine, 2012, 7, 5745-5756.
[http://dx.doi.org/10.2147/IJN.S35746] [PMID: 23166439]
[29]
Yan, Q.; Street, J.; Yu, F. Synthesis of carbon-encapsulated iron nanoparticles from wood derived sugars by hydrothermal carbonization (HTC) and their application to convert bio-syngas into liquid hydrocarbons. Biomass Bioenergy, 2015, 83, 85-95.
[http://dx.doi.org/10.1016/j.biombioe.2015.09.002]
[30]
Krishna, R.; Titus, E.; Krishna, R.; Bardhan, N.; Bahadur, D.; Gracio, J. Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles. J. Nanosci. Nanotechnol., 2012, 12(8), 6645-6651.
[http://dx.doi.org/10.1166/jnn.2012.4571] [PMID: 22962801]
[31]
Uson, L.; Arruebo, M.; Sebastian, V.; Santamaria, J. Single phase microreactor for the continuous, high-temperature synthesis of< 4 Nm superparamagnetic iron oxide nanoparticles. Chem. Eng. J., 2018, 340, 66-72.
[http://dx.doi.org/10.1016/j.cej.2017.12.024]
[32]
Ding, S.; Attia, M.F.; Wallyn, J.; Taddei, C.; Serra, C.A.; Anton, N.; Kassem, M.; Schmutz, M.; Er-Rafik, M.; Messaddeq, N.; Collard, A.; Yu, W.; Giordano, M.; Vandamme, T.F. Microfluidic-assisted production of size-controlled superparamagnetic iron oxide nanoparticles-loaded poly(methyl methacrylate) nanohybrids. Langmuir, 2018, 34(5), 1981-1991.
[http://dx.doi.org/10.1021/acs.langmuir.7b01928] [PMID: 29334739]
[33]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond.), 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[34]
Zhu, H.; Yang, D.; Zhu, L. Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf. Coat. Tech., 2007, 201(12), 5870-5874.
[http://dx.doi.org/10.1016/j.surfcoat.2006.10.037]
[35]
Dai, Z.; Meiser, F.; Möhwald, H. Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol-gel process. J. Colloid Interface Sci., 2005, 288(1), 298-300.
[http://dx.doi.org/10.1016/j.jcis.2005.02.076] [PMID: 15927590]
[36]
Joseyphus, R.J.; Kodama, D.; Matsumoto, T.; Sato, Y.; Jeyadevan, B.; Tohji, K. Role of polyol in the synthesis of Fe particles. J. Magn. Magn. Mater., 2007, 310(2), 2393-2395.
[http://dx.doi.org/10.1016/j.jmmm.2006.10.1132]
[37]
Salazar-Alvarez, G.; Muhammed, M.; Zagorodni, A.A. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci., 2006, 61(14), 4625-4633.
[http://dx.doi.org/10.1016/j.ces.2006.02.032]
[38]
Khan, H.; Petrikowski, K. Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. J. Magn. Magn. Mater., 2000, 215, 526-528.
[http://dx.doi.org/10.1016/S0304-8853(00)00209-2]
[39]
Julián-López, B.; Boissière, C.; Chanéac, C.; Grosso, D.; Vasseur, S.; Miraux, S.; Duguet, E.; Sanchez, C. Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. J. Mater. Chem., 2007, 17(16), 1563-1569.
[http://dx.doi.org/10.1039/B615951F]
[40]
Ebrahimi, M. A short review on Ferrofluids surface modification by natural and biocompatible polymers. Nanomed. J., 2016, 3(3), 155-158.
[41]
Lisy, M-R.; Hartung, A.; Lang, C.; Schüler, D.; Richter, W.; Reichenbach, J.R.; Kaiser, W.A.; Hilger, I. Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest. Radiol., 2007, 42(4), 235-241.
[http://dx.doi.org/10.1097/01.rli.0000255832.44443.e7] [PMID: 17351430]
[42]
Waseem, S.; Ali, Z.; Bibi, M.; Usman, Z. Magnetic nanobeads: synthesis and application in biomedicine. Nanomed. J., 2016, 3(3), 147-154.
[43]
Muthiah, M.; Park, I-K.; Cho, C-S. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol. Adv., 2013, 31(8), 1224-1236.
[http://dx.doi.org/10.1016/j.biotechadv.2013.03.005] [PMID: 23528431]
[44]
Shubayev, V.I.; Pisanic, T.R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev., 2009, 61(6), 467-477.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[45]
Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B.; Chen, X. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci., 2016, 60, 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[46]
Ling, D.; Lee, N.; Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res., 2015, 48(5), 1276-1285.
[http://dx.doi.org/10.1021/acs.accounts.5b00038] [PMID: 25922976]
[47]
Skaat, H.; Sorci, M.; Belfort, G.; Margel, S. Effect of maghemite nanoparticles on insulin amyloid fibril formation: selective labeling, kinetics, and fibril removal by a magnetic field. J. Biomed. Mater. Res. A, 2009, 91(2), 342-351.
[http://dx.doi.org/10.1002/jbm.a.32232] [PMID: 18980178]
[48]
Xu, L.; Kim, M-J.; Kim, K-D.; Choa, Y-H.; Kim, H-T. Surface modified Fe3O4 nanoparticles as a protein delivery vehicle. Colloids Surf. A Physicochem. Eng. Asp., 2009, 350(1-3), 8-12.
[http://dx.doi.org/10.1016/j.colsurfa.2009.08.022]
[49]
Huang, W-C.; Hu, S-H.; Liu, K-H.; Chen, S-Y.; Liu, D-M. A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs. J. Control. Release, 2009, 139(3), 221-228.
[http://dx.doi.org/10.1016/j.jconrel.2009.07.002] [PMID: 19607866]
[50]
Zhang, R.; Wu, C.; Wang, X.; Sun, Q.; Chen, B.; Li, X.; Gutmann, S.; Lv, G. Enhancement effect of nano Fe3O4 to the drug accumulation of doxorubicin in cancer cells. Mater. Sci. Eng. C, 2009, 29(5), 1697-1701.
[http://dx.doi.org/10.1016/j.msec.2009.01.021]
[51]
Rivera Gil, P.; Hühn, D.; del Mercato, L.L.; Sasse, D.; Parak, W.J. Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res., 2010, 62(2), 115-125.
[http://dx.doi.org/10.1016/j.phrs.2010.01.009] [PMID: 20097288]
[52]
Schweiger, C.; Pietzonka, C.; Heverhagen, J.; Kissel, T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int. J. Pharm., 2011, 408(1-2), 130-137.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.046] [PMID: 21315813]
[53]
Lee, K-J.; An, J-H.; Shin, J-S.; Kim, D-H.; Yoo, H-S.; Cho, C-K. Biostability of γ-Fe2O3 nano particles evaluated using an in vitro cytotoxicity assays on various tumor cell lines. Curr. Appl. Phys., 2011, 11(3), 467-471.
[http://dx.doi.org/10.1016/j.cap.2010.08.022]
[54]
Zhou, H.; Tao, K.; Ding, J.; Zhang, Z.; Sun, K.; Shi, W. A general approach for providing nanoparticles water-dispersibility by grinding with poly (ethylene glycol). Colloids Surf. A Physicochem. Eng. Asp., 2011, 389(1-3), 18-26.
[http://dx.doi.org/10.1016/j.colsurfa.2011.08.055]
[55]
Singh, N.; Jenkins, G.J.; Nelson, B.C.; Marquis, B.J.; Maffeis, T.G.; Brown, A.P.; Williams, P.M.; Wright, C.J.; Doak, S.H. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials, 2012, 33(1), 163-170.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.087] [PMID: 22027595]
[56]
Ding, J.; Tao, K.; Li, J.; Song, S.; Sun, K. Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles. Colloids Surf. B Biointerfaces, 2010, 79(1), 184-190.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.053] [PMID: 20427159]
[57]
Chen, A-Z.; Lin, X-F.; Wang, S-B.; Li, L.; Liu, Y-G.; Ye, L.; Wang, G-Y. Biological evaluation of Fe3O4-poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) magnetic microspheres prepared in supercritical CO2. Toxicol. Lett., 2012, 212(1), 75-82.
[http://dx.doi.org/10.1016/j.toxlet.2012.05.009] [PMID: 22609093]
[58]
Ding, G.; Guo, Y.; Lv, Y.; Liu, X.; Xu, L.; Zhang, X. A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery. Colloids Surf. B Biointerfaces, 2012, 91, 68-76.
[http://dx.doi.org/10.1016/j.colsurfb.2011.10.036] [PMID: 22088760]
[59]
Raju, H.B.; Hu, Y.; Vedula, A.; Dubovy, S.R.; Goldberg, J.L. Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS One, 2011, 6(5)e17452
[http://dx.doi.org/10.1371/journal.pone.0017452] [PMID: 21637340]
[60]
Shundo, C.; Zhang, H.; Nakanishi, T.; Osaka, T. Cytotoxicity evaluation of magnetite (Fe3O4) nanoparticles in mouse embryonic stem cells. Colloids Surf. B Biointerfaces, 2012, 97, 221-225.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.003] [PMID: 22609607]
[61]
Bae, J-E.; Huh, M-I.; Ryu, B-K.; Do, J-Y.; Jin, S-U.; Moon, M-J.; Jung, J-C.; Chang, Y.; Kim, E.; Chi, S-G.; Lee, G.H.; Chae, K.S. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials, 2011, 32(35), 9401-9414.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.075] [PMID: 21911251]
[62]
Yildirimer, L.; Thanh, N.T.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today, 2011, 6(6), 585-607.
[http://dx.doi.org/10.1016/j.nantod.2011.10.001] [PMID: 23293661]
[63]
Wan, S.; Huang, J.; Yan, H.; Liu, K. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem., 2006, 16(3), 298-303.
[http://dx.doi.org/10.1039/B512605C]
[64]
Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry, 1990, 11(2), 231-238.
[http://dx.doi.org/10.1002/cyto.990110203] [PMID: 1690625]
[65]
Son, S.J.; Reichel, J.; He, B.; Schuchman, M.; Lee, S.B. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc., 2005, 127(20), 7316-7317.
[http://dx.doi.org/10.1021/ja0517365] [PMID: 15898772]
[66]
Taylor, J.I.; Hurst, C.D.; Davies, M.J.; Sachsinger, N.; Bruce, I.J. Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A, 2000, 890(1), 159-166.
[http://dx.doi.org/10.1016/S0021-9673(00)00107-2] [PMID: 10976803]
[67]
Chiang, C-L.; Sung, C-S.; Chen, C-Y. Application of silica-magnetite nanocomposites to the isolation of ultrapure plasmid DNA from bacterial cells. J. Magn. Magn. Mater., 2006, 305(2), 483-490.
[http://dx.doi.org/10.1016/j.jmmm.2006.02.088]
[68]
Sebastianelli, A.; Sen, T.; Bruce, I.J. Extraction of DNA from soil using nanoparticles by magnetic bioseparation. Lett. Appl. Microbiol., 2008, 46(4), 488-491.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02343.x] [PMID: 18346135]
[69]
Yu, L.M.; Kazazian, K.; Shoichet, M.S. Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J. Biomed. Mater. Res. A, 2007, 82(1), 243-255.
[http://dx.doi.org/10.1002/jbm.a.31069] [PMID: 17295228]
[70]
Juang, J-H. Wang, J.-J.; Shen, C.-R.; Kuo, C.-H.; Chien, Y.-W.; Kuo, H.-Y.; Tsai, Z.-T.; Yen, T.-C. Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles. Transplant. Proc., 2010, 42(6), 2104-2108.
[http://dx.doi.org/10.1016/j.transproceed.2010.05.103] [PMID: 20692419]
[71]
Lacava, L.M.; Lacava, Z.G.; Da Silva, M.F.; Silva, O.; Chaves, S.B.; Azevedo, R.B.; Pelegrini, F.; Gansau, C.; Buske, N.; Sabolovic, D.; Morais, P.C. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophys. J., 2001, 80(5), 2483-2486.
[http://dx.doi.org/10.1016/S0006-3495(01)76217-0] [PMID: 11325747]
[72]
Jarrett, B.R.; Frendo, M.; Vogan, J.; Louie, A.Y. Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology, 2007, 18(3)035603
[http://dx.doi.org/10.1088/0957-4484/18/3/035603] [PMID: 19636126]
[73]
Brähler, M.; Georgieva, R.; Buske, N.; Müller, A.; Müller, S.; Pinkernelle, J.; Teichgräber, U.; Voigt, A.; Bäumler, H. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett., 2006, 6(11), 2505-2509.
[http://dx.doi.org/10.1021/nl0618501] [PMID: 17090081]
[74]
Antonelli, A.; Sfara, C.; Mosca, L.; Manuali, E.; Magnani, M. New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles. J. Nanosci. Nanotechnol., 2008, 8(5), 2270-2278.
[http://dx.doi.org/10.1166/jnn.2008.190] [PMID: 18572637]
[75]
Ma, D.; Wasylaschuk, W.R.; Beasley, C.; Zhao, Z.Z.; Harmon, P.A.; Ballard, J.M.; Pitzenberger, S.M.; Varga, S.L.; Reed, R.A. Identification and quantitation of extractables from cellulose acetate butyrate (CAB) and estimation of their in vivo exposure levels. J. Pharm. Biomed. Anal., 2004, 35(4), 779-788.
[http://dx.doi.org/10.1016/j.jpba.2004.03.004] [PMID: 15193722]
[76]
Gaihre, B.; Khil, M.S.; Lee, D.R.; Kim, H.Y. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int. J. Pharm., 2009, 365(1-2), 180-189.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.020] [PMID: 18790029]
[77]
Intorasoot, S.; Srirung, R.; Intorasoot, A.; Ngamratanapaiboon, S. Application of gelatin-coated magnetic particles for isolation of genomic DNA from bacterial cells. Anal. Biochem., 2009, 386(2), 291-292.
[http://dx.doi.org/10.1016/j.ab.2008.12.032] [PMID: 19167338]
[78]
Meincke, M.; Schlorf, T.; Kossel, E.; Jansen, O.; Glueer, C-C.; Mentlein, R. Iron oxide-loaded liposomes for MR imaging. Front. Biosci., 2008, 13, 4002-4008.
[http://dx.doi.org/10.2741/2987] [PMID: 18508493]
[79]
Sato, T.; Sunamoto, J. Recent aspects in the use of liposomes in biotechnology and medicine. Prog. Lipid Res., 1992, 31(4), 345-372.
[http://dx.doi.org/10.1016/0163-7827(92)90001-Y] [PMID: 1304048]
[80]
Torchilin, V.P.; Trubetskoy, V.S. In vivo visualizing of organs and tissues with liposomes. J. Liposome Res., 1995, 5(4), 795-812.
[http://dx.doi.org/10.3109/08982109509012682]
[81]
Sen, T.; Sebastianelli, A.; Bruce, I.J. Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations. J. Am. Chem. Soc., 2006, 128(22), 7130-7131.
[http://dx.doi.org/10.1021/ja061393q] [PMID: 16734444]
[82]
Kim, J.; Kim, H.S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I.C.; Moon, W.K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. Engl., 2008, 47(44), 8438-8441.
[http://dx.doi.org/10.1002/anie.200802469] [PMID: 18726979]
[83]
Sen, T.; Bruce, I.J. Mesoporous silica-magnetite nanocomposites: fabrication, characterisation and applications in biosciences. Microporous Mesoporous Mater., 2009, 120(3), 246-251.
[http://dx.doi.org/10.1016/j.micromeso.2008.11.012]
[84]
Souza, K.C.; Ardisson, J.D.; Sousa, E.M. Study of mesoporous silica/magnetite systems in drug controlled release. J. Mater. Sci. Mater. Med., 2009, 20(2), 507-512.
[http://dx.doi.org/10.1007/s10856-008-3592-1] [PMID: 18839283]
[85]
Yang, P.; Quan, Z.; Hou, Z.; Li, C.; Kang, X.; Cheng, Z.; Lin, J. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials, 2009, 30(27), 4786-4795.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.038] [PMID: 19520428]
[86]
Ma, Y-H.; Wu, S-Y.; Wu, T.; Chang, Y-J.; Hua, M-Y.; Chen, J-P. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials, 2009, 30(19), 3343-3351.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.034] [PMID: 19299010]
[87]
Lellouche, J-P.; Senthil, G.; Joseph, A.; Buzhansky, L.; Bruce, I.; Bauminger, E.R.; Schlesinger, J. Magnetically responsive carboxylated magnetite-polydipyrrole/poly-dicarbazole nanocomposites of core-shell morphology. Preparation, characterization, and use in DNA hybridization. J. Am. Chem. Soc., 2005, 127(34), 11998-12006.
[http://dx.doi.org/10.1021/ja050285l] [PMID: 16117539]
[88]
Sun, C.; Veiseh, O.; Gunn, J.; Fang, C.; Hansen, S.; Lee, D.; Sze, R.; Ellenbogen, R.G.; Olson, J.; Zhang, M. In vivo MRI detection of gliomas by chlorotoxin‐conjugated superparamagnetic nanoprobes. Small, 2008, 4(3), 372-379.
[http://dx.doi.org/10.1002/smll.200700784] [PMID: 18232053]
[89]
Lee, H.; Yu, M.K.; Park, S.; Moon, S.; Min, J.J.; Jeong, Y.Y.; Kang, H-W.; Jon, S. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc., 2007, 129(42), 12739-12745.
[http://dx.doi.org/10.1021/ja072210i] [PMID: 17892287]
[90]
Suzuki, M.; Shimizu, W.; Kosugi, Y.; Honda, H.; Kobayashi, T. Magnetic characterization of magnetite particles for MR contrast agents. Bull. Chem. Soc. Jpn., 1996, 69(4), 1143-1148.
[http://dx.doi.org/10.1246/bcsj.69.1143]]
[91]
He, L.; Li, Z.; Fu, J.; Wang, F.; Ma, C.; Deng, Y.; Shi, Z.; Wang, H.; He, N. Preparation of SiO2/(PMMA/Fe3O4) nanoparticles using linolenic acid as crosslink agent for nucleic acid detection using chemiluminescent method. J. Nanosci. Nanotechnol., 2011, 11(3), 2256-2262.
[http://dx.doi.org/10.1166/jnn.2011.3149] [PMID: 21449377]
[92]
Mahmoudi, M.; Simchi, A.; Imani, M.; Milani, A.S.; Stroeve, P. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J. Phys. Chem. B, 2008, 112(46), 14470-14481.
[http://dx.doi.org/10.1021/jp803016n]] [PMID: 18729404]
[93]
Chastellain, M.; Petri, A.; Hofmann, H. Superparamagnetic Iron Oxide Nanoarticles for Biomedical Applications: a focus on PVA as a coating. MRS Online Proceedings Library (OPL), , 2003. 789, N11.21
[http://dx.doi.org/10.1557/PROC-789-N11.21]
[94]
Lee, H.Y.; Lim, N.H.; Seo, J.A.; Khang, G.; Kim, J.; Lee, H.B.; Cho, S.H. Preparation of poly (vinylpyrrolidone) coated iron oxide nanoparticles for contrast agent. Polymer Korea, 2005, 29(3), 266-270.
[95]
Liu, H-L.; Ko, S.P.; Wu, J-H.; Jung, M-H.; Min, J.H.; Lee, J.H.; An, B.H.; Kim, Y.K. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater., 2007, 310(2), e815-e817.
[http://dx.doi.org/10.1016/j.jmmm.2006.10.776]
[96]
Xu, F.; Cheng, C.; Xu, F.; Zhang, C.; Xu, H.; Xie, X.; Yin, D.; Gu, H. Superparamagnetic magnetite nanocrystal clusters: a sensitive tool for MR cellular imaging. Nanotechnology, 2009, 20(40)405102
[http://dx.doi.org/10.1088/0957-4484/20/40/405102] [PMID: 19752494]
[97]
Saboktakin, M.R.; Maharramov, A.; Ramazanov, M.A. Synthesis and characterization of superparamagnetic nanoparticles coated with carboxymethyl starch (CMS) for magnetic resonance imaging technique. Carbohydr. Polym., 2009, 78(2), 292-295.
[http://dx.doi.org/10.1016/j.carbpol.2009.03.042]
[98]
Kim, D.K.; Mikhaylova, M.; Wang, F.H.; Kehr, J.; Bjelke, B.; Zhang, Y.; Tsakalakos, T.; Muhammed, M. Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater., 2003, 15(23), 4343-4351.
[http://dx.doi.org/10.1021/cm031104m]
[99]
Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv., 2015, 33(6 Pt 2), 1162-1176.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.003] [PMID: 25689073]
[100]
Lee, Y-C.; Chen, C.; Tsai, X-T. Visualizing the knowledge domain of nanoparticle drug delivery technologies: a scientometric review. Appl. Sci. (Basel), 2016, 6(1), 11.
[http://dx.doi.org/10.3390/app6010011]
[101]
Chen, B.; Liang, Y.; Wu, W.; Cheng, J.; Xia, G.; Gao, F.; Ding, J.; Gao, C.; Shao, Z.; Li, G.; Chen, W.; Xu, W.; Sun, X.; Liu, L.; Li, X.; Wang, X. Synergistic effect of magnetic nanoparticles of Fe(3)O(4) with gambogic acid on apoptosis of K562 leukemia cells. Int. J. Nanomedicine, 2009, 4, 251-259.
[http://dx.doi.org/10.2147/IJN.S7932] [PMID: 20011242]
[102]
Berry, C.C. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2009, 42(22)224003
[http://dx.doi.org/10.1088/0022-3727/42/22/224003]
[103]
Bellova, A.; Bystrenova, E.; Koneracka, M.; Kopcansky, P.; Valle, F.; Tomasovicova, N.; Timko, M.; Bagelova, J.; Biscarini, F.; Gazova, Z. Effect of Fe(3)O(4) magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology, 2010, 21(6)065103
[http://dx.doi.org/10.1088/0957-4484/21/6/065103] [PMID: 20061598]
[104]
He, C.; Jiang, S.; Jin, H.; Chen, S.; Lin, G.; Yao, H.; Wang, X.; Mi, P.; Ji, Z.; Lin, Y.; Lin, Z.; Liu, G. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials, 2016, 83, 102-114.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.010] [PMID: 26773667]
[105]
Kell, A.J.; Stewart, G.; Ryan, S.; Peytavi, R.; Boissinot, M.; Huletsky, A.; Bergeron, M.G.; Simard, B. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. ACS Nano, 2008, 2(9), 1777-1788.
[http://dx.doi.org/10.1021/nn700183g] [PMID: 19206416]
[106]
Huang, Y-F.; Wang, Y-F.; Yan, X-P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ. Sci. Technol., 2010, 44(20), 7908-7913.
[http://dx.doi.org/10.1021/es102285n] [PMID: 20866050]
[107]
Leroux, J.C. Injectable nanocarriers for biodetoxification. Nat. Nanotechnol., 2007, 2(11), 679-684.
[http://dx.doi.org/10.1038/nnano.2007.339] [PMID: 18654405]
[108]
Jin, J.; Yang, F.; Zhang, F.; Hu, W.; Sun, S.B.; Ma, J. 2, 2′-(Phenylazanediyl) diacetic acid modified Fe3O4@PEI for selective removal of cadmium ions from blood. Nanoscale, 2012, 4(3), 733-736.
[http://dx.doi.org/10.1039/C2NR11481J] [PMID: 22189502]
[109]
Gomez-Roman, N.; Stevenson, K.; Gilmour, L.; Hamilton, G.; Chalmers, A.J. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-oncol., 2017, 19(2), 229-241.
[PMID: 27576873]
[110]
Nair, R.; Padhee, S.; Das, T.; Green, R.; Howell, M.; Mohapatra, S.S.; Mohapatra, S. Three-and four-dimensional spheroid and FiSS tumoroid cultures: platforms for drug discovery and development and translational research. Crit. Rev. Ther. Drug Carrier Syst., 2017, 34(3), 185-208.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018042] [PMID: 28845759]
[111]
Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; Hodi, F.S.; Therasse, P.; Hoekstra, O.S.; Shankar, L.K.; Wolchok, J.D.; Ballinger, M.; Caramella, C.; de Vries, E.G.E. RECIST working group. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol., 2017, 18(3), e143-e152.
[http://dx.doi.org/10.1016/S1470-2045(17)30074-8] [PMID: 28271869]
[112]
Sant, S.; Johnston, P.A. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov. Today. Technol., 2017, 23, 27-36.
[http://dx.doi.org/10.1016/j.ddtec.2017.03.002] [PMID: 28647083]
[113]
Peters, G.; Govaerts, A-S.; Hendriks, H. The role of pharmacology in anticancer drug development. ADMET DMPK, 2018, 6(1), 4-14.
[http://dx.doi.org/10.5599/admet.6.1.496]
[114]
Lage, O.M.; Ramos, M.C.; Calisto, R.; Almeida, E.; Vasconcelos, V.; Vicente, F. Current screening methodologies in drug discovery for selected human diseases. Mar. Drugs, 2018, 16(8), 279.
[http://dx.doi.org/10.3390/md16080279] [PMID: 30110923]
[115]
Vallamkondu, J.; Corgiat, E.B.; Buchaiah, G.; Kandimalla, R.; Reddy, P.H. Liquid crystals: a novel approach for cancer detection and treatment. Cancers (Basel), 2018, 10(11), 462.
[http://dx.doi.org/10.3390/cancers10110462] [PMID: 30469457]
[116]
Hooshmand, S.; Es’haghi, Z. Hydrophilic modified magnetic multi-walled carbon nanotube for dispersive solid/liquid phase microextraction of sunitinib in human samples. Anal. Biochem., 2018, 542, 76-83.
[http://dx.doi.org/10.1016/j.ab.2017.11.019] [PMID: 29191385]
[117]
Es’haghi, Z.; Hooshmand, S. Dispersive solid-liquid phase microextraction based on nanomagnetic Preyssler heteropolyacid: A novel method for the preconcentration of nortriptyline. J. Sep. Sci., 2015, 38(9), 1610-1617.
[http://dx.doi.org/10.1002/jssc.201401487] [PMID: 25707462]
[118]
Es’haghi, Z.; Vafaeinezhad, F.; Hooshmand, S. Green synthesis of magnetic iron nanoparticles coated by olive oil and verifying its efficiency in extraction of nickel from environmental samples via UV-vis spectrophotometry. Process Saf. Environ. Prot., 2016, 102, 403-409.
[http://dx.doi.org/10.1016/j.psep.2016.04.011]
[119]
Naqvi, S.; Samim, M.; Dinda, A.K.; Iqbal, Z.; Telagoanker, S.; Ahmed, F.J.; Maitra, A. Impact of magnetic nanoparticles in biomedical applications. Recent Pat. Drug Deliv. Formul., 2009, 3(2), 153-161.
[http://dx.doi.org/10.2174/187221109788452249] [PMID: 19519575]
[120]
Senbanjo, L.T.; Chellaiah, M.A. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol., 2017, 5, 18.
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[121]
Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel), 2019, 12(4), 617.
[http://dx.doi.org/10.3390/ma12040617] [PMID: 30791358]
[122]
Reshmi, G.; Kumar, P.M.; Malathi, M. Preparation, characterization and dielectric studies on carbonyl iron/cellulose acetate hydrogen phthalate core/shell nanoparticles for drug delivery applications. Int. J. Pharm., 2009, 365(1), 131-135.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.006] [PMID: 18775769]
[123]
Wang, L.; Yang, Z.; Gao, J.; Xu, K.; Gu, H.; Zhang, B.; Zhang, X.; Xu, B. A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc., 2006, 128(41), 13358-13359.
[http://dx.doi.org/10.1021/ja0651355] [PMID: 17031939]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy