Title:The Noncoding Side of Cardiac Differentiation and Regeneration
Volume: 15
Issue: 8
Author(s): Francesca Pagano*, Alessandro Calicchio, Vittorio Picchio and Monica Ballarino*
Affiliation:
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina,Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome,Italy
Keywords:
ncRNA, miRNA, lncRNA, circRNA, cardiogenesis, cardiac regeneration.
Abstract:
Large scale projects such as FANTOM and ENCODE led to a revolution in our comprehension
of the mammalian transcriptomes by revealing that ~53% of the produced RNAs do not encode
for proteins. These transcripts, defined as noncoding RNAs (ncRNAs), constitute a heterogeneous
group of molecules which can be categorized in two main classes, namely small and long, according to
their length. In animals, the first-class includes Piwi-interacting RNAs (piRNAs), small interfering
RNAs (siRNAs) and microRNAs (miRNAs). Among them, the best-characterized subgroup is represented
by miRNAs, which are known to regulate gene expression largely at the post-transcriptional
level. In contrast, long noncoding RNAs (lncRNAs) represent a more heterogeneous group of > 200
nucleotides long transcripts, that act through a variety of mechanisms at both transcriptional and posttranscriptional
level.
Here, we discuss how miRNAs and lncRNAs are emerging as pivotal regulators of cardiac muscle
development and how the alteration of ncRNA expression was seen to disturb the physiology of all the
different cell types forming the cardiac tissue. Particular emphasis is given to those species that are
expressed and are known to regulate the capacity of cardiac progenitor cells (CPCs), currently used in
regenerative medicine protocols, to proliferate and differentiate. Understanding how the ncRNAmediated
circuitries regulate heart homeostasis is one of the research areas expected to have a high
impact, improving the therapeutic efficacy of stem/progenitor-cells treatments for translation into
clinical applications.