Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Molecular Mechanism of Autophagy: Its Role in the Therapy of Alzheimer’s Disease

Author(s): Yuan Zhao, Yidan Zhang, Jian Zhang, Xiangjian Zhang and Guofeng Yang*

Volume 18, Issue 8, 2020

Page: [720 - 739] Pages: 20

DOI: 10.2174/1570159X18666200114163636

Price: $65

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder of progressive dementia that is characterized by the accumulation of beta-amyloid (Aβ)-containing neuritic plaques and intracellular Tau protein tangles. This distinctive pathology indicates that the protein quality control is compromised in AD. Autophagy functions as a “neuronal housekeeper” that eliminates aberrant protein aggregates by wrapping then into autophagosomes and delivering them to lysosomes for degradation. Several studies have suggested that autophagy deficits in autophagy participate in the accumulation and propagation of misfolded proteins (including Aβ and Tau). In this review, we summarize current knowledge of autophagy in the pathogenesis of AD, as well as some pathways targeting the restoration of autophagy. Moreover, we discuss how these aspects can contribute to the development of disease-modifying therapies in AD.

Keywords: Alzheimer`s disease, autophagy, amyloid beta, tau, propagation of amyloid beta and tau, mTOR-dependent pathway, mTOR-independent pathway, autophagy-related interventions.

Graphical Abstract
[1]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[2]
Bastin, M.E.; Muñoz, M.S.; Ferguson, K.J.; Brown, L.J.; Wardlaw, J.M.; MacLullich, A.M.; Clayden, J.D. Quantifying the effects of normal ageing on white matter structure using unsupervised tract shape modelling. Neuroimage, 2010, 51(1), 1-10.
[http://dx.doi.org/10.1016/j.neuroimage.2010.02.036] [PMID: 20171285]
[3]
Vassar, R.; Kovacs, D.M.; Yan, R.; Wong, P.C. The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J. Neurosci., 2009, 29(41), 12787-12794.
[http://dx.doi.org/10.1523/JNEUROSCI.3657-09.2009] [PMID: 19828790]
[4]
De Matteis, M.A.; Luini, A. Exiting the golgi complex. Nat. Rev. Mol. Cell Biol., 2008, 9(4), 273-284.
[http://dx.doi.org/10.1038/nrm2378] [PMID: 18354421]
[5]
Polito, V.A.; Li, H.; Martini-Stoica, H.; Wang, B.; Yang, L.; Xu, Y.; Swartzlander, D.B.; Palmieri, M.; di Ronza, A.; Lee, V.M.; Sardiello, M.; Ballabio, A.; Zheng, H. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med., 2014, 6(9), 1142-1160.
[http://dx.doi.org/10.15252/emmm.201303671] [PMID: 25069841]
[6]
Giannakopoulos, P.; Herrmann, F.R.; Bussière, T.; Bouras, C.; Kövari, E.; Perl, D.P.; Morrison, J.H.; Gold, G.; Hof, P.R. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology, 2003, 60(9), 1495-1500.
[http://dx.doi.org/10.1212/01.WNL.0000063311.58879.01] [PMID: 12743238]
[7]
Meyer-Luehmann, M.; Coomaraswamy, J.; Bolmont, T.; Kaeser, S.; Schaefer, C.; Kilger, E.; Neuenschwander, A.; Abramowski, D.; Frey, P.; Jaton, A.L.; Vigouret, J.M.; Paganetti, P.; Walsh, D.M.; Mathews, P.M.; Ghiso, J.; Staufenbiel, M.; Walker, L.C.; Jucker, M. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science, 2006, 313(5794), 1781-1784.
[http://dx.doi.org/10.1126/science.1131864] [PMID: 16990547]
[8]
Clavaguera, F.; Bolmont, T.; Crowther, R.A.; Abramowski, D.; Frank, S.; Probst, A.; Fraser, G.; Stalder, A.K.; Beibel, M.; Staufenbiel, M.; Jucker, M.; Goedert, M.; Tolnay, M. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol., 2009, 11(7), 909-913.
[http://dx.doi.org/10.1038/ncb1901] [PMID: 19503072]
[9]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[10]
Papandreou, M.E.; Tavernarakis, N. Autophagy and the endo/exosomal pathways in health and disease. Biotechnol. J., 2017, 12(1)
[http://dx.doi.org/10.1002/biot.201600175] [PMID: 27976834]
[11]
Miranda, A.M.; Lasiecka, Z.M.; Xu, Y.; Neufeld, J.; Shahriar, S.; Simoes, S.; Chan, R.B.; Oliveira, T.G.; Small, S.A.; Di Paolo, G. Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat. Commun., 2018, 9(1), 291.
[http://dx.doi.org/10.1038/s41467-017-02533-w] [PMID: 29348617]
[12]
Goetzl, E.J.; Boxer, A.; Schwartz, J.B.; Abner, E.L.; Petersen, R.C.; Miller, B.L.; Kapogiannis, D. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology, 2015, 85(1), 40-47.
[http://dx.doi.org/10.1212/WNL.0000000000001702] [PMID: 26062630]
[13]
Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 931-937.
[http://dx.doi.org/10.1038/nrm2245] [PMID: 17712358]
[14]
Ostertag, M.; Stammler, J.; Douchkov, D.; Eichmann, R.; Hückelhoven, R. The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. Mol. Plant Pathol., 2013, 14(3), 230-240.
[http://dx.doi.org/10.1111/j.1364-3703.2012.00846.x] [PMID: 23145810]
[15]
Yen, W.L.; Shintani, T.; Nair, U.; Cao, Y.; Richardson, B.C.; Li, Z.; Hughson, F.M.; Baba, M.; Klionsky, D.J. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol., 2010, 188(1), 101-114.
[http://dx.doi.org/10.1083/jcb.200904075] [PMID: 20065092]
[16]
Eskelinen, E.L.; Saftig, P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta, 2009, 1793(4), 664-673.
[http://dx.doi.org/10.1016/j.bbamcr.2008.07.014] [PMID: 18706940]
[17]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[18]
Zare-Shahabadi, A.; Masliah, E.; Johnson, G.V.; Rezaei, N. Autophagy in Alzheimer’s disease. Rev. Neurosci., 2015, 26(4), 385-395.
[http://dx.doi.org/10.1515/revneuro-2014-0076] [PMID: 25870960]
[19]
Xu, J.; Camfield, R.; Gorski, S.M. The interplay between exosomes and autophagy - partners in crime. J. Cell Sci., 2018, 131(15), jcs215210.
[http://dx.doi.org/10.1242/jcs.215210] [PMID: 30076239]
[20]
Kuang, H.; Tan, C.Y.; Tian, H.Z.; Liu, L.H.; Yang, M.W.; Hong, F.F.; Yang, S.L. Exploring the bi-directional relationship between autophagy and Alzheimer’s disease. CNS Neurosci. Ther., 2019.
[PMID: 31503421]
[21]
Menzies, F.M.; Fleming, A.; Rubinsztein, D.C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci., 2015, 16(6), 345-357.
[http://dx.doi.org/10.1038/nrn3961] [PMID: 25991442]
[22]
Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov., 2012, 11(9), 709-730.
[http://dx.doi.org/10.1038/nrd3802] [PMID: 22935804]
[23]
Korolchuk, V.I.; Menzies, F.M.; Rubinsztein, D.C. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett., 2010, 584(7), 1393-1398.
[http://dx.doi.org/10.1016/j.febslet.2009.12.047] [PMID: 20040365]
[24]
Agarwal, S.; Tiwari, S.K.; Seth, B.; Yadav, A.; Singh, A.; Mudawal, A.; Chauhan, L.K.; Gupta, S.K.; Choubey, V.; Tripathi, A.; Kumar, A.; Ray, R.S.; Shukla, S.; Parmar, D.; Chaturvedi, R.K. Activation of autophagic flux against Xenoestrogen Bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/Mammalian target of rapamycin (mTOR) pathways. J. Biol. Chem., 2015, 290(34), 21163-21184.
[http://dx.doi.org/10.1074/jbc.M115.648998] [PMID: 26139607]
[25]
Alers, S.; Löffler, A.S.; Wesselborg, S.; Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol., 2012, 32(1), 2-11.
[http://dx.doi.org/10.1128/MCB.06159-11] [PMID: 22025673]
[26]
Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med., 2013, 19(8), 983-997.
[http://dx.doi.org/10.1038/nm.3232] [PMID: 23921753]
[27]
Füllgrabe, J.; Klionsky, D.J.; Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 65-74.
[http://dx.doi.org/10.1038/nrm3716] [PMID: 24326622]
[28]
Obara, K.; Ohsumi, Y. Dynamics and function of PtdIns(3)P in autophagy. Autophagy, 2008, 4(7), 952-954.
[http://dx.doi.org/10.4161/auto.6790] [PMID: 18769109]
[29]
Puri, C.; Renna, M.; Bento, C.F.; Moreau, K.; Rubinsztein, D.C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 2013, 154(6), 1285-1299.
[http://dx.doi.org/10.1016/j.cell.2013.08.044] [PMID: 24034251]
[30]
Zhou, L.; Wang, H.F.; Ren, H.G.; Chen, D.; Gao, F.; Hu, Q.S.; Fu, C.; Xu, R.J.; Ying, Z.; Wang, G.H. Bcl-2-dependent upregulation of autophagy by sequestosome 1/p62 in vitro. Acta Pharmacol. Sin., 2013, 34(5), 651-656.
[http://dx.doi.org/10.1038/aps.2013.12] [PMID: 23564079]
[31]
Lee, S.; Sato, Y.; Nixon, R.A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J. Neurosci., 2011, 31(21), 7817-7830.
[http://dx.doi.org/10.1523/JNEUROSCI.6412-10.2011] [PMID: 21613495]
[32]
Nilsson, P.; Loganathan, K.; Sekiguchi, M.; Matsuba, Y.; Hui, K.; Tsubuki, S.; Tanaka, M.; Iwata, N.; Saito, T.; Saido, T.C. Aβ secretion and plaque formation depend on autophagy. Cell Rep., 2013, 5(1), 61-69.
[http://dx.doi.org/10.1016/j.celrep.2013.08.042] [PMID: 24095740]
[33]
Rocchi, A.; Yamamoto, S.; Ting, T.; Fan, Y.; Sadleir, K.; Wang, Y.; Zhang, W.; Huang, S.; Levine, B.; Vassar, R.; He, C.A. Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer’s disease. PLoS Genet., 2017, 13(8), e1006962.
[http://dx.doi.org/10.1371/journal.pgen.1006962] [PMID: 28806762]
[34]
Leissring, M.A. Aβ-degrading proteases: Therapeutic Potential in Alzheimer disease. CNS Drugs, 2016, 30(8), 667-675.
[http://dx.doi.org/10.1007/s40263-016-0364-1] [PMID: 27349988]
[35]
Cho, M.H.; Cho, K.; Kang, H.J.; Jeon, E.Y.; Kim, H.S.; Kwon, H.J.; Kim, H.M.; Kim, D.H.; Yoon, S.Y. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy, 2014, 10(10), 1761-1775.
[http://dx.doi.org/10.4161/auto.29647] [PMID: 25126727]
[36]
Tian, Y.; Bustos, V.; Flajolet, M.; Greengard, P. A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J., 2011, 25(6), 1934-1942.
[http://dx.doi.org/10.1096/fj.10-175158] [PMID: 21368103]
[37]
Nilsson, P.; Saido, T.C. Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Aβ peptide. BioEssays, 2014, 36(6), 570-578.
[http://dx.doi.org/10.1002/bies.201400002] [PMID: 24711225]
[38]
Pickford, F.; Masliah, E.; Britschgi, M.; Lucin, K.; Narasimhan, R.; Jaeger, P.A.; Small, S.; Spencer, B.; Rockenstein, E.; Levine, B.; Wyss-Coray, T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest., 2008, 118(6), 2190-2199.
[PMID: 18497889]
[39]
Guerreiro, R.J.; Gustafson, D.R.; Hardy, J. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol. Aging, 2012, 33(3), 437-456.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.025] [PMID: 20594621]
[40]
Lee, J.H.; Yu, W.H.; Kumar, A.; Lee, S.; Mohan, P.S.; Peterhoff, C.M.; Wolfe, D.M.; Martinez-Vicente, M.; Massey, A.C.; Sovak, G.; Uchiyama, Y.; Westaway, D.; Cuervo, A.M.; Nixon, R.A. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell, 2010, 141(7), 1146-1158.
[http://dx.doi.org/10.1016/j.cell.2010.05.008] [PMID: 20541250]
[41]
Belinson, H.; Lev, D.; Masliah, E.; Michaelson, D.M. Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J. Neurosci., 2008, 28(18), 4690-4701.
[http://dx.doi.org/10.1523/JNEUROSCI.5633-07.2008] [PMID: 18448646]
[42]
Ji, Z.S.; Müllendorff, K.; Cheng, I.H.; Miranda, R.D.; Huang, Y.; Mahley, R.W. Reactivity of apolipoprotein E4 and amyloid beta peptide: lysosomal stability and neurodegeneration. J. Biol. Chem., 2006, 281(5), 2683-2692.
[http://dx.doi.org/10.1074/jbc.M506646200] [PMID: 16298992]
[43]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[44]
Bednarski, E.; Lynch, G. Cytosolic proteolysis of tau by cathepsin D in hippocampus following suppression of cathepsins B and L. J. Neurochem., 1996, 67(5), 1846-1855.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67051846.x] [PMID: 8863489]
[45]
Hamano, T.; Gendron, T.F.; Causevic, E.; Yen, S.H.; Lin, W.L.; Isidoro, C.; Deture, M.; Ko, L.W. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur. J. Neurosci., 2008, 27(5), 1119-1130.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06084.x] [PMID: 18294209]
[46]
Lee, M.J.; Lee, J.H.; Rubinsztein, D.C. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol., 2013, 105, 49-59.
[http://dx.doi.org/10.1016/j.pneurobio.2013.03.001] [PMID: 23528736]
[47]
Hanger, D.P.; Hughes, K.; Woodgett, J.R.; Brion, J.P.; Anderton, B.H. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett., 1992, 147(1), 58-62.
[http://dx.doi.org/10.1016/0304-3940(92)90774-2] [PMID: 1336152]
[48]
Zhou, Y.; Hayashi, I.; Wong, J.; Tugusheva, K.; Renger, J.J.; Zerbinatti, C. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer’s disease. PLoS One, 2014, 9(7), e103187.
[http://dx.doi.org/10.1371/journal.pone.0103187] [PMID: 25051234]
[49]
Lee, S.J.; Desplats, P.; Sigurdson, C.; Tsigelny, I.; Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nat. Rev. Neurol., 2010, 6(12), 702-706.
[http://dx.doi.org/10.1038/nrneurol.2010.145] [PMID: 21045796]
[50]
Sardar Sinha, M.; Ansell-Schultz, A.; Civitelli, L.; Hildesjö, C.; Larsson, M.; Lannfelt, L.; Ingelsson, M.; Hallbeck, M. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol., 2018, 136(1), 41-56.
[http://dx.doi.org/10.1007/s00401-018-1868-1] [PMID: 29934873]
[51]
Eisele, Y.S.; Bolmont, T.; Heikenwalder, M.; Langer, F.; Jacobson, L.H.; Yan, Z.X.; Roth, K.; Aguzzi, A.; Staufenbiel, M.; Walker, L.C.; Jucker, M. Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12926-12931.
[http://dx.doi.org/10.1073/pnas.0903200106] [PMID: 19622727]
[52]
Asai, H.; Ikezu, S.; Tsunoda, S.; Medalla, M.; Luebke, J.; Haydar, T.; Wolozin, B.; Butovsky, O.; Kügler, S.; Ikezu, T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci., 2015, 18(11), 1584-1593.
[http://dx.doi.org/10.1038/nn.4132] [PMID: 26436904]
[53]
Rajendran, L.; Honsho, M.; Zahn, T.R.; Keller, P.; Geiger, K.D.; Verkade, P.; Simons, K. Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA, 2006, 103(30), 11172-11177.
[http://dx.doi.org/10.1073/pnas.0603838103] [PMID: 16837572]
[54]
Codogno, P.; Meijer, A.J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ., 2005, 12(Suppl. 2), 1509-1518.
[http://dx.doi.org/10.1038/sj.cdd.4401751] [PMID: 16247498]
[55]
Ma, T.; Hoeffer, C.A.; Capetillo-Zarate, E.; Yu, F.; Wong, H.; Lin, M.T.; Tampellini, D.; Klann, E.; Blitzer, R.D.; Gouras, G.K. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PLoS One, 2010, 5(9), e12845.
[http://dx.doi.org/10.1371/journal.pone.0012845] [PMID: 20862226]
[56]
Paccalin, M.; Pain-Barc, S.; Pluchon, C.; Paul, C.; Besson, M.N.; Carret-Rebillat, A.S.; Rioux-Bilan, A.; Gil, R.; Hugon, J. Activated mTOR and PKR kinases in lymphocytes correlate with memory and cognitive decline in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2006, 22(4), 320-326.
[http://dx.doi.org/10.1159/000095562] [PMID: 16954686]
[57]
Lafay-Chebassier, C.; Paccalin, M.; Page, G.; Barc-Pain, S.; Perault-Pochat, M.C.; Gil, R.; Pradier, L.; Hugon, J. mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer’s disease. J. Neurochem., 2005, 94(1), 215-225.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03187.x] [PMID: 15953364]
[58]
Cai, Z.; Chen, G.; He, W.; Xiao, M.; Yan, L.J. Activation of mTOR: a culprit of Alzheimer’s disease? Neuropsychiatr. Dis. Treat., 2015, 11, 1015-1030.
[http://dx.doi.org/10.2147/NDT.S75717] [PMID: 25914534]
[59]
Caccamo, A.; Magrì, A.; Medina, D.X.; Wisely, E.V.; López-Aranda, M.F.; Silva, A.J.; Oddo, S. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell, 2013, 12(3), 370-380.
[http://dx.doi.org/10.1111/acel.12057] [PMID: 23425014]
[60]
Congdon, E.E.; Wu, J.W.; Myeku, N.; Figueroa, Y.H.; Herman, M.; Marinec, P.S.; Gestwicki, J.E.; Dickey, C.A.; Yu, W.H.; Duff, K.E. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy, 2012, 8(4), 609-622.
[http://dx.doi.org/10.4161/auto.19048] [PMID: 22361619]
[61]
Spilman, P.; Podlutskaya, N.; Hart, M.J.; Debnath, J.; Gorostiza, O.; Bredesen, D.; Richardson, A.; Strong, R.; Galvan, V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One, 2010, 5(4), e9979.
[http://dx.doi.org/10.1371/journal.pone.0009979] [PMID: 20376313]
[62]
Maiese, K.; Chong, Z.Z.; Shang, Y.C.; Wang, S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol. Med., 2013, 19(1), 51-60.
[http://dx.doi.org/10.1016/j.molmed.2012.11.001] [PMID: 23265840]
[63]
Cai, Z.; Yan, L.J.; Li, K.; Quazi, S.H.; Zhao, B. Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromolecular Med., 2012, 14(1), 1-14.
[http://dx.doi.org/10.1007/s12017-012-8173-2] [PMID: 22367557]
[64]
O’Neill, C.; Kiely, A.P.; Coakley, M.F.; Manning, S.; Long-Smith, C.M. Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer’s disease. Biochem. Soc. Trans., 2012, 40(4), 721-727.
[http://dx.doi.org/10.1042/BST20120080] [PMID: 22817723]
[65]
Dibble, C.C.; Cantley, L.C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol., 2015, 25(9), 545-555.
[http://dx.doi.org/10.1016/j.tcb.2015.06.002] [PMID: 26159692]
[66]
Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol., 2015, 137(1), 173-179.
[http://dx.doi.org/10.1016/j.ygyno.2015.02.003] [PMID: 25677064]
[67]
Tanida, I. Autophagosome formation and molecular mechanism of autophagy. Antioxid. Redox Signal., 2011, 14(11), 2201-2214.
[http://dx.doi.org/10.1089/ars.2010.3482] [PMID: 20712405]
[68]
Perluigi, M.; Pupo, G.; Tramutola, A.; Cini, C.; Coccia, R.; Barone, E.; Head, E.; Butterfield, D.A.; Di Domenico, F. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim. Biophys. Acta, 2014, 1842(7), 1144-1153.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.007] [PMID: 24735980]
[69]
Griffin, R.J.; Moloney, A.; Kelliher, M.; Johnston, J.A.; Ravid, R.; Dockery, P.; O’Connor, R.; O’Neill, C. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J. Neurochem., 2005, 93(1), 105-117.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02949.x] [PMID: 15773910]
[70]
Rickle, A.; Bogdanovic, N.; Volkmann, I.; Zhou, X.; Pei, J.J.; Winblad, B.; Cowburn, R.F. PTEN levels in Alzheimer’s disease medial temporal cortex. Neurochem. Int., 2006, 48(2), 114-123.
[http://dx.doi.org/10.1016/j.neuint.2005.08.014] [PMID: 16239049]
[71]
Sonoda, Y.; Mukai, H.; Matsuo, K.; Takahashi, M.; Ono, Y.; Maeda, K.; Akiyama, H.; Kawamata, T. Accumulation of tumor-suppressor PTEN in Alzheimer neurofibrillary tangles. Neurosci. Lett., 2010, 471(1), 20-24.
[http://dx.doi.org/10.1016/j.neulet.2009.12.078] [PMID: 20056128]
[72]
Wani, A.; Gupta, M.; Ahmad, M.; Shah, A.M.; Ahsan, A.U.; Qazi, P.H.; Malik, F.; Singh, G.; Sharma, P.R.; Kaddoumi, A.; Bharate, S.B.; Vishwakarma, R.A.; Kumar, A. Alborixin clears amyloid-β by inducing autophagy through PTEN-mediated inhibition of the AKT pathway. Autophagy, 2019, 15(10), 1810-1828.
[http://dx.doi.org/10.1080/15548627.2019.1596476] [PMID: 30894052]
[73]
Zhang, X.; Li, F.; Bulloj, A.; Zhang, Y.W.; Tong, G.; Zhang, Z.; Liao, F.F.; Xu, H. Tumor-suppressor PTEN affects tau phosphorylation, aggregation, and binding to microtubules. FASEB J., 2006, 20(8), 1272-1274.
[http://dx.doi.org/10.1096/fj.06-5721fje] [PMID: 16645045]
[74]
Stretton, C.; Hoffmann, T.M.; Munson, M.J.; Prescott, A.; Taylor, P.M.; Ganley, I.G.; Hundal, H.S. GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling. Biochem. J., 2015, 470(2), 207-221.
[http://dx.doi.org/10.1042/BJ20150404] [PMID: 26348909]
[75]
Kirouac, L.; Rajic, A.J.; Cribbs, D.H.; Padmanabhan, J. Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s Disease. eNeuro, 2017, 4(2) ENEURO.0149-16.2017.
[http://dx.doi.org/10.1523/ENEURO.0149-16.2017] [PMID: 28374012]
[76]
Terwel, D.; Muyllaert, D.; Dewachter, I.; Borghgraef, P.; Croes, S.; Devijver, H.; Van Leuven, F. Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am. J. Pathol., 2008, 172(3), 786-798.
[http://dx.doi.org/10.2353/ajpath.2008.070904] [PMID: 18258852]
[77]
Shi, X.L.; Wu, J.D.; Liu, P.; Liu, Z.P. Synthesis and evaluation of novel GSK-3β inhibitors as multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem., 2019, 167, 211-225.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.001] [PMID: 30772605]
[78]
Gavilán, E.; Pintado, C.; Gavilan, M.P.; Daza, P.; Sánchez-Aguayo, I.; Castaño, A.; Ruano, D. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiol. Aging, 2015, 36(5), 1953-1963.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.02.025] [PMID: 25817083]
[79]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[80]
Shang, L.; Chen, S.; Du, F.; Li, S.; Zhao, L.; Wang, X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 4788-4793.
[http://dx.doi.org/10.1073/pnas.1100844108] [PMID: 21383122]
[81]
Danielpour, D.; Gao, Z.; Zmina, P.M.; Shankar, E.; Shultes, B.C.; Jobava, R.; Welford, S.M.; Hatzoglou, M. Early cellular responses of prostate carcinoma cells to sepantronium bromide (YM155) Involve suppression of mTORC1 by AMPK. Sci. Rep., 2019, 9(1), 11541.
[http://dx.doi.org/10.1038/s41598-019-47573-y] [PMID: 31395901]
[82]
Löffler, A.S.; Alers, S.; Dieterle, A.M.; Keppeler, H.; Franz-Wachtel, M.; Kundu, M.; Campbell, D.G.; Wesselborg, S.; Alessi, D.R.; Stork, B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy, 2011, 7(7), 696-706.
[http://dx.doi.org/10.4161/auto.7.7.15451] [PMID: 21460634]
[83]
Vingtdeux, V.; Chandakkar, P.; Zhao, H.; d’Abramo, C.; Davies, P.; Marambaud, P. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J., 2011, 25(1), 219-231.
[http://dx.doi.org/10.1096/fj.10-167361] [PMID: 20852062]
[84]
Vingtdeux, V.; Davies, P.; Dickson, D.W.; Marambaud, P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol., 2011, 121(3), 337-349.
[http://dx.doi.org/10.1007/s00401-010-0759-x] [PMID: 20957377]
[85]
Avgerinos, K.I.; Kalaitzidis, G.; Malli, A.; Kalaitzoglou, D.; Myserlis, P.G.; Lioutas, V.A. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J. Neurol., 2018, 265(7), 1497-1510.
[http://dx.doi.org/10.1007/s00415-018-8768-0] [PMID: 29392460]
[86]
Bains, M.; Florez-McClure, M.L.; Heidenreich, K.A. Insulin-like growth factor-I prevents the accumulation of autophagic vesicles and cell death in Purkinje neurons by increasing the rate of autophagosome-to-lysosome fusion and degradation. J. Biol. Chem., 2009, 284(30), 20398-20407.
[http://dx.doi.org/10.1074/jbc.M109.011791] [PMID: 19509289]
[87]
Liu, Q.; Guan, J.Z.; Sun, Y.; Le, Z.; Zhang, P.; Yu, D.; Liu, Y. Insulin-like growth factor 1 receptor-mediated cell survival in hypoxia depends on the promotion of autophagy via suppression of the PI3K/Akt/mTOR signaling pathway. Mol. Med. Rep., 2017, 15(4), 2136-2142.
[http://dx.doi.org/10.3892/mmr.2017.6265] [PMID: 28260056]
[88]
Kim, B.; Elzinga, S.E.; Henn, R.E.; McGinley, L.M.; Feldman, E.L. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol. Dis., 2019, 132, 104541.
[http://dx.doi.org/10.1016/j.nbd.2019.104541] [PMID: 31349033]
[89]
Carro, E.; Trejo, J.L.; Gomez-Isla, T.; LeRoith, D.; Torres-Aleman, I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat. Med., 2002, 8(12), 1390-1397.
[http://dx.doi.org/10.1038/nm1202-793] [PMID: 12415260]
[90]
Lesort, M.; Jope, R.S.; Johnson, G.V. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J. Neurochem., 1999, 72(2), 576-584.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720576.x] [PMID: 9930729]
[91]
Settembre, C.; Di Malta, C.; Polito, V.A.; Garcia Arencibia, M.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; Sardiello, M.; Rubinsztein, D.C.; Ballabio, A. TFEB links autophagy to lysosomal biogenesis. Science, 2011, 332(6036), 1429-1433.
[http://dx.doi.org/10.1126/science.1204592] [PMID: 21617040]
[92]
Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal., 2012, 5(228), ra42.
[http://dx.doi.org/10.1126/scisignal.2002790] [PMID: 22692423]
[93]
Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; Facchinetti, V.; Sabatini, D.M.; Ballabio, A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J., 2012, 31(5), 1095-1108.
[http://dx.doi.org/10.1038/emboj.2012.32] [PMID: 22343943]
[94]
Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; Banfi, S.; Parenti, G.; Cattaneo, E.; Ballabio, A. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477.
[http://dx.doi.org/10.1126/science.1174447] [PMID: 19556463]
[95]
Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; Settembre, C.; Wang, W.; Gao, Q.; Xu, H.; Sandri, M.; Rizzuto, R.; De Matteis, M.A.; Ballabio, A. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol., 2015, 17(3), 288-299.
[http://dx.doi.org/10.1038/ncb3114] [PMID: 25720963]
[96]
Xiao, Q.; Yan, P.; Ma, X.; Liu, H.; Perez, R.; Zhu, A.; Gonzales, E.; Burchett, J.M.; Schuler, D.R.; Cirrito, J.R.; Diwan, A.; Lee, J.M. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci., 2014, 34(29), 9607-9620.
[http://dx.doi.org/10.1523/JNEUROSCI.3788-13.2014] [PMID: 25031402]
[97]
Zhang, Y.D.; Zhao, J.J. TFEB Participates in the Aβ-Induced Pathogenesis of Alzheimer’s Disease by Regulating the Autophagy-Lysosome Pathway. DNA Cell Biol., 2015, 34(11), 661-668.
[http://dx.doi.org/10.1089/dna.2014.2738] [PMID: 26368054]
[98]
Chong, C.M.; Ke, M.; Tan, Y.; Huang, Z.; Zhang, K.; Ai, N.; Ge, W.; Qin, D.; Lu, J.H.; Su, H. Presenilin 1 deficiency suppresses autophagy in human neural stem cells through reducing γ-secretase-independent ERK/CREB signaling. Cell Death Dis., 2018, 9(9), 879.
[http://dx.doi.org/10.1038/s41419-018-0945-7] [PMID: 30158533]
[99]
Ohashi, Y.; Soler, N.; García Ortegón, M.; Zhang, L.; Kirsten, M.L.; Perisic, O.; Masson, G.R.; Burke, J.E.; Jakobi, A.J.; Apostolakis, A.A.; Johnson, C.M.; Ohashi, M.; Ktistakis, N.T.; Sachse, C.; Williams, R.L. Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIK3C3 complex. Autophagy, 2016, 12(11), 2129-2144.
[http://dx.doi.org/10.1080/15548627.2016.1226736] [PMID: 27630019]
[100]
Ma, X.; Zhang, S.; He, L.; Rong, Y.; Brier, L.W.; Sun, Q.; Liu, R.; Fan, W.; Chen, S.; Yue, Z.; Kim, J.; Guan, K.L.; Li, D.; Zhong, Q. MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy, 2017, 13(3), 592-607.
[http://dx.doi.org/10.1080/15548627.2016.1269988] [PMID: 28059666]
[101]
Yang, C.; Cai, C.Z.; Song, J.X.; Tan, J.Q.; Durairajan, S.S.K.; Iyaswamy, A.; Wu, M.Y.; Chen, L.L.; Yue, Z.; Li, M.; Lu, J.H. NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models. Autophagy, 2017, 13(12), 2028-2040.
[http://dx.doi.org/10.1080/15548627.2017.1379633] [PMID: 28980867]
[102]
Saitoh, Y.; Fujikake, N.; Okamoto, Y.; Popiel, H.A.; Hatanaka, Y.; Ueyama, M.; Suzuki, M.; Gaumer, S.; Murata, M.; Wada, K.; Nagai, Y. p62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies. J. Biol. Chem., 2015, 290(3), 1442-1453.
[http://dx.doi.org/10.1074/jbc.M114.590281] [PMID: 25480790]
[103]
Perez, S.E.; He, B.; Nadeem, M.; Wuu, J.; Ginsberg, S.D.; Ikonomovic, M.D.; Mufson, E.J. Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with aβ and tau pathology. J. Neuropathol. Exp. Neurol., 2015, 74(4), 345-358.
[http://dx.doi.org/10.1097/NEN.0000000000000179] [PMID: 25756588]
[104]
Seibenhener, M.L.; Babu, J.R.; Geetha, T.; Wong, H.C.; Krishna, N.R.; Wooten, M.W. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol., 2004, 24(18), 8055-8068.
[http://dx.doi.org/10.1128/MCB.24.18.8055-8068.2004] [PMID: 15340068]
[105]
Babu, J.R.; Geetha, T.; Wooten, M.W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem., 2005, 94(1), 192-203.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03181.x] [PMID: 15953362]
[106]
Song, P.; Li, S.; Wu, H.; Gao, R.; Rao, G.; Wang, D.; Chen, Z.; Ma, B.; Wang, H.; Sui, N.; Deng, H.; Zhang, Z.; Tang, T.; Tan, Z.; Han, Z.; Lu, T.; Zhu, Y.; Chen, Q. Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson’s disease. Protein Cell, 2016, 7(2), 114-129.
[http://dx.doi.org/10.1007/s13238-015-0230-9] [PMID: 26746706]
[107]
Du, Y.; Wooten, M.C.; Gearing, M.; Wooten, M.W. Age-associated oxidative damage to the p62 promoter: implications for Alzheimer disease. Free Radic. Biol. Med., 2009, 46(4), 492-501.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.003] [PMID: 19071211]
[108]
Caccamo, A.; Ferreira, E.; Branca, C.; Oddo, S. p62 improves AD-like pathology by increasing autophagy. Mol. Psychiatry, 2017, 22(6), 865-873.
[http://dx.doi.org/10.1038/mp.2016.139] [PMID: 27573878]
[109]
Ramesh Babu, J.; Lamar Seibenhener, M.; Peng, J.; Strom, A.L.; Kemppainen, R.; Cox, N.; Zhu, H.; Wooten, M.C.; Diaz-Meco, M.T.; Moscat, J.; Wooten, M.W. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J. Neurochem., 2008, 106(1), 107-120.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05340.x] [PMID: 18346206]
[110]
Wu, C.L.; Chen, C.H.; Hwang, C.S.; Chen, S.D.; Hwang, W.C.; Yang, D.I. Roles of p62 in BDNF-dependent autophagy suppression and neuroprotection against mitochondrial dysfunction in rat cortical neurons. J. Neurochem., 2017, 140(6), 845-861.
[http://dx.doi.org/10.1111/jnc.13937] [PMID: 28027414]
[111]
Johnson, R.; Shabalala, S.; Louw, J.; Kappo, A.P.; Muller, C.J.F. Aspalathin reverts doxorubicin-induced cardiotoxicity through increased autophagy and decreased expression of p53/mTOR/p62 Signaling. Molecules, 2017, 22(10), E1589.
[http://dx.doi.org/10.3390/molecules22101589] [PMID: 28937626]
[112]
Duran, A.; Amanchy, R.; Linares, J.F.; Joshi, J.; Abu-Baker, S.; Porollo, A.; Hansen, M.; Moscat, J.; Diaz-Meco, M.T. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell, 2011, 44(1), 134-146.
[http://dx.doi.org/10.1016/j.molcel.2011.06.038] [PMID: 21981924]
[113]
Nihira, K.; Miki, Y.; Ono, K.; Suzuki, T.; Sasano, H. An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells. Cancer Sci., 2014, 105(5), 568-575.
[http://dx.doi.org/10.1111/cas.12396] [PMID: 24618016]
[114]
Price, N.L.; Gomes, A.P.; Ling, A.J.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; Hubbard, B.P.; Varela, A.T.; Davis, J.G.; Varamini, B.; Hafner, A.; Moaddel, R.; Rolo, A.P.; Coppari, R.; Palmeira, C.M.; de Cabo, R.; Baur, J.A.; Sinclair, D.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab., 2012, 15(5), 675-690.
[http://dx.doi.org/10.1016/j.cmet.2012.04.003] [PMID: 22560220]
[115]
Bonda, D.J.; Lee, H.G.; Camins, A.; Pallàs, M.; Casadesus, G.; Smith, M.A.; Zhu, X. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol., 2011, 10(3), 275-279.
[http://dx.doi.org/10.1016/S1474-4422(11)70013-8] [PMID: 21349442]
[116]
Lee, I.H.; Cao, L.; Mostoslavsky, R.; Lombard, D.B.; Liu, J.; Bruns, N.E.; Tsokos, M.; Alt, F.W.; Finkel, T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA, 2008, 105(9), 3374-3379.
[http://dx.doi.org/10.1073/pnas.0712145105] [PMID: 18296641]
[117]
Luo, G.; Jian, Z.; Zhu, Y.; Zhu, Y.; Chen, B.; Ma, R.; Tang, F.; Xiao, Y. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int. J. Mol. Med., 2019, 43(5), 2033-2043.
[http://dx.doi.org/10.3892/ijmm.2019.4125] [PMID: 30864731]
[118]
Morselli, E.; Maiuri, M.C.; Markaki, M.; Megalou, E.; Pasparaki, A.; Palikaras, K.; Criollo, A.; Galluzzi, L.; Malik, S.A.; Vitale, I.; Michaud, M.; Madeo, F.; Tavernarakis, N.; Kroemer, G. The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy, 2010, 6(1), 186-188.
[http://dx.doi.org/10.4161/auto.6.1.10817] [PMID: 20023410]
[119]
Ge, J.F.; Qiao, J.P.; Qi, C.C.; Wang, C.W.; Zhou, J.N. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem. Int., 2012, 61(7), 1192-1201.
[120]
Min, S.W.; Sohn, P.D.; Li, Y.; Devidze, N.; Zhou, J.N. Johnson, J.R.; Krogan, N.J.; Masliah, E.; Mok, S.A.; Gestwicki, J.E.; Gan, L. SIRT1 deacetylates Tau and reduces pathogenic tau spread in a mouse model of tauopathy. J. Neurosci., 2018, 38(15), 3680-3688.
[PMID: 29540553]
[121]
Cho, S.H.; Chen, J.A.; Sayed, F.; Ward, M.E.; Gao, F.; Nguyen, T.A.; Krabbe, G.; Sohn, P.D.; Lo, I.; Minami, S.; Devidze, N.; Zhou, Y.; Coppola, G.; Gan, L. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci., 2015, 35(2), 807-818.
[http://dx.doi.org/10.1523/JNEUROSCI.2939-14.2015] [PMID: 25589773]
[122]
Tasdemir, E.; Maiuri, M.C.; Galluzzi, L.; Vitale, I.; Djavaheri-Mergny, M.; D’Amelio, M.; Criollo, A.; Morselli, E.; Zhu, C.; Harper, F.; Nannmark, U.; Samara, C.; Pinton, P.; Vicencio, J.M.; Carnuccio, R.; Moll, U.M.; Madeo, F.; Paterlini-Brechot, P.; Rizzuto, R.; Szabadkai, G.; Pierron, G.; Blomgren, K.; Tavernarakis, N.; Codogno, P.; Cecconi, F.; Kroemer, G. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol., 2008, 10(6), 676-687.
[http://dx.doi.org/10.1038/ncb1730] [PMID: 18454141]
[123]
Feng, Z.; Hu, W.; de Stanchina, E.; Teresky, A.K.; Jin, S.; Lowe, S.; Levine, A.J. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res., 2007, 67(7), 3043-3053.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4149] [PMID: 17409411]
[124]
Goiran, T.; Duplan, E.; Rouland, L.; El Manaa, W.; Lauritzen, I.; Dunys, J.; You, H.; Checler, F.; Alves da Costa, C. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ., 2018, 25(5), 873-884.
[http://dx.doi.org/10.1038/s41418-017-0016-0] [PMID: 29352272]
[125]
Cenini, G.; Sultana, R.; Memo, M.; Butterfield, D.A. Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J. Cell. Mol. Med., 2008, 12(3), 987-994.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00163.x] [PMID: 18494939]
[126]
Kitamura, Y.; Shimohama, S.; Kamoshima, W.; Matsuoka, Y.; Nomura, Y.; Taniguchi, T. Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem. Biophys. Res. Commun., 1997, 232(2), 418-421.
[http://dx.doi.org/10.1006/bbrc.1997.6301] [PMID: 9125193]
[127]
Checler, F.; Dunys, J.; Pardossi-Piquard, R.; Alves da Costa, C. p53 is regulated by and regulates members of the gamma-secretase complex. Neurodegener. Dis., 2010, 7(1-3), 50-55.
[http://dx.doi.org/10.1159/000283483] [PMID: 20160459]
[128]
Hooper, C.; Meimaridou, E.; Tavassoli, M.; Melino, G.; Lovestone, S.; Killick, R. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci. Lett., 2007, 418(1), 34-37.
[http://dx.doi.org/10.1016/j.neulet.2007.03.026] [PMID: 17399897]
[129]
Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005, 122(6), 927-939.
[http://dx.doi.org/10.1016/j.cell.2005.07.002] [PMID: 16179260]
[130]
Michiorri, S.; Gelmetti, V.; Giarda, E.; Lombardi, F.; Romano, F.; Marongiu, R.; Nerini-Molteni, S.; Sale, P.; Vago, R.; Arena, G.; Torosantucci, L.; Cassina, L.; Russo, M.A.; Dallapiccola, B.; Valente, E.M.; Casari, G. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ., 2010, 17(6), 962-974.
[http://dx.doi.org/10.1038/cdd.2009.200] [PMID: 20057503]
[131]
Lonskaya, I.; Hebron, M.L.; Desforges, N.M.; Franjie, A.; Moussa, C.E. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol. Med., 2013, 5(8), 1247-1262.
[http://dx.doi.org/10.1002/emmm.201302771] [PMID: 23737459]
[132]
Mandard, S.; Müller, M.; Kersten, S. Peroxisome proliferator-activated receptor alpha target genes. Cell. Mol. Life Sci., 2004, 61(4), 393-416.
[http://dx.doi.org/10.1007/s00018-003-3216-3] [PMID: 14999402]
[133]
Lee, J.M.; Wagner, M.; Xiao, R.; Kim, K.H.; Feng, D.; Lazar, M.A.; Moore, D.D. Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 2014, 516(7529), 112-115.
[http://dx.doi.org/10.1038/nature13961] [PMID: 25383539]
[134]
Ghosh, A.; Jana, M.; Modi, K.; Gonzalez, F.J.; Sims, K.B.; Berry-Kravis, E.; Pahan, K. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J. Biol. Chem., 2015, 290(16), 10309-10324.
[http://dx.doi.org/10.1074/jbc.M114.610659] [PMID: 25750174]
[135]
Luo, R.; Su, L.Y.; Li, G.; Yang, J.; Liu, Q.; Yang, L.X.; Zhang, D.F.; Zhou, H.; Xu, M.; Fan, Y.; Li, J.; Yao, Y.G. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy, 2020, 6(1), 52-69.
[PMID: 30898012]
[136]
Chandra, S.; Roy, A.; Jana, M.; Pahan, K. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model. Neurobiol. Dis., 2019, 124, 379-395.
[http://dx.doi.org/10.1016/j.nbd.2018.12.007] [PMID: 30578827]
[137]
Pajares, M.; Jiménez-Moreno, N.; García-Yagüe, A.J.; Escoll, M.; de Ceballos, M.L.; Van Leuven, F.; Rábano, A.; Yamamoto, M.; Rojo, A.I.; Cuadrado, A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy, 2016, 12(10), 1902-1916.
[http://dx.doi.org/10.1080/15548627.2016.1208889] [PMID: 27427974]
[138]
Hong, S.J.; Dawson, T.M.; Dawson, V.L. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci., 2004, 25(5), 259-264.
[http://dx.doi.org/10.1016/j.tips.2004.03.005] [PMID: 15120492]
[139]
Kanninen, K.; Heikkinen, R.; Malm, T.; Rolova, T.; Kuhmonen, S.; Leinonen, H.; Ylä-Herttuala, S.; Tanila, H.; Levonen, A.L.; Koistinaho, M.; Koistinaho, J. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16505-16510.
[http://dx.doi.org/10.1073/pnas.0908397106] [PMID: 19805328]
[140]
Rojo, A.I.; Pajares, M.; Rada, P.; Nuñez, A.; Nevado-Holgado, A.J.; Killik, R.; Van Leuven, F.; Ribe, E.; Lovestone, S.; Yamamoto, M.; Cuadrado, A. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol., 2017, 13, 444-451.
[http://dx.doi.org/10.1016/j.redox.2017.07.006] [PMID: 28704727]
[141]
Kim, S.; Lee, D.; Song, J.C.; Cho, S.J.; Yun, S.M.; Koh, Y.H.; Song, J.; Johnson, G.V.; Jo, C. NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model. Biochem. Biophys. Res. Commun., 2014, 454(1), 196-201.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.066] [PMID: 25450380]
[142]
Jo, C.; Gundemir, S.; Pritchard, S.; Jin, Y.N.; Rahman, I.; Johnson, G.V. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun., 2014, 5, 3496.
[http://dx.doi.org/10.1038/ncomms4496] [PMID: 24667209]
[143]
Cheng, X.; Shen, D.; Samie, M.; Xu, H. Mucolipins: Intracellular TRPML1-3 channels. FEBS Lett., 2010, 584(10), 2013-2021.
[http://dx.doi.org/10.1016/j.febslet.2009.12.056] [PMID: 20074572]
[144]
Bae, M.; Patel, N.; Xu, H.; Lee, M.; Tominaga-Yamanaka, K.; Nath, A.; Geiger, J.; Gorospe, M.; Mattson, M.P.; Haughey, N.J. Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J. Neurosci., 2014, 34(34), 11485-11503.
[http://dx.doi.org/10.1523/JNEUROSCI.0210-14.2014] [PMID: 25143627]
[145]
Grishchuk, Y.; Sri, S.; Rudinskiy, N.; Ma, W.; Stember, K.G.; Cottle, M.W.; Sapp, E.; Difiglia, M.; Muzikansky, A.; Betensky, R.A.; Wong, A.M.; Bacskai, B.J.; Hyman, B.T.; Kelleher, R.J., III; Cooper, J.D.; Slaugenhaupt, S.A. Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV. Acta Neuropathol. Commun., 2014, 2, 133.
[http://dx.doi.org/10.1186/s40478-014-0133-7] [PMID: 25200117]
[146]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.; Xu, H.; Zeng, Z.; Zhu, H. TRPML1 Participates in the progression of Alzheimer’s Disease by regulating the PPARγ/AMPK/Mtor signalling pathway. Cell. Physiol. Biochem., 2017, 43(6), 2446-2456.
[http://dx.doi.org/10.1159/000484449] [PMID: 29131026]
[147]
Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; Rocktäschel, P.; Croteau, D.L.; Akbari, M.; Greig, N.H.; Fladby, T.; Nilsen, H.; Cader, M.Z.; Mattson, M.P.; Tavernarakis, N.; Bohr, V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci., 2019, 22(3), 401-412.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[148]
Clark, I.E.; Dodson, M.W.; Jiang, C.; Cao, J.H.; Huh, J.R.; Seol, J.H.; Yoo, S.J.; Hay, B.A.; Guo, M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 2006, 441(7097), 1162-1166.
[http://dx.doi.org/10.1038/nature04779] [PMID: 16672981]
[149]
Narendra, D.; Tanaka, A.; Suen, D.F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol., 2008, 183(5), 795-803.
[http://dx.doi.org/10.1083/jcb.200809125] [PMID: 19029340]
[150]
Jin, S.M.; Lazarou, M.; Wang, C.; Kane, L.A.; Narendra, D.P.; Youle, R.J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol., 2010, 191(5), 933-942.
[http://dx.doi.org/10.1083/jcb.201008084] [PMID: 21115803]
[151]
Takatori, S.; Ito, G.; Iwatsubo, T. Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci. Lett., 2008, 430(1), 13-17.
[http://dx.doi.org/10.1016/j.neulet.2007.10.019] [PMID: 18031932]
[152]
Vives-Bauza, C.; Zhou, C.; Huang, Y.; Cui, M.; de Vries, R.L.; Kim, J.; May, J.; Tocilescu, M.A.; Liu, W.; Ko, H.S.; Magrané, J.; Moore, D.J.; Dawson, V.L.; Grailhe, R.; Dawson, T.M.; Li, C.; Tieu, K.; Przedborski, S. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 378-383.
[http://dx.doi.org/10.1073/pnas.0911187107] [PMID: 19966284]
[153]
Kazlauskaite, A.; Kondapalli, C.; Gourlay, R.; Campbell, D.G.; Ritorto, M.S.; Hofmann, K.; Alessi, D.R.; Knebel, A.; Trost, M.; Muqit, M.M. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J., 2014, 460(1), 127-139.
[http://dx.doi.org/10.1042/BJ20140334] [PMID: 24660806]
[154]
Kim, Y.; Park, J.; Kim, S.; Song, S.; Kwon, S.K.; Lee, S.H.; Kitada, T.; Kim, J.M.; Chung, J. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun., 2008, 377(3), 975-980.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.104] [PMID: 18957282]
[155]
Banerjee, K.; Munshi, S.; Frank, D.E.; Gibson, G.E. Abnormal glucose metabolism in alzheimer’s disease: relation to autophagy/mitophagy and therapeutic approaches. Neurochem. Res., 2015, 40(12), 2557-2569.
[http://dx.doi.org/10.1007/s11064-015-1631-0] [PMID: 26077923]
[156]
Du, F.; Yu, Q.; Yan, S.; Hu, G.; Lue, L.F.; Walker, D.G.; Wu, L.; Yan, S.F.; Tieu, K.; Yan, S.S. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain, 2017, 140(12), 3233-3251.
[http://dx.doi.org/10.1093/brain/awx258] [PMID: 29077793]
[157]
Ye, X.; Sun, X.; Starovoytov, V.; Cai, Q. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum. Mol. Genet., 2015, 24(10), 2938-2951.
[http://dx.doi.org/10.1093/hmg/ddv056] [PMID: 25678552]
[158]
Hong, X.; Liu, J.; Zhu, G.; Zhuang, Y.; Suo, H.; Wang, P.; Huang, D.; Xu, J.; Huang, Y.; Yu, M.; Bian, M.; Sheng, Z.; Fei, J.; Song, H.; Behnisch, T.; Huang, F. Parkin overexpression ameliorates hippocampal long-term potentiation and β-amyloid load in an Alzheimer’s disease mouse model. Hum. Mol. Genet., 2014, 23(4), 1056-1072.
[http://dx.doi.org/10.1093/hmg/ddt501] [PMID: 24105468]
[159]
Harrison, D.E.; Strong, R.; Sharp, Z.D.; Nelson, J.F.; Astle, C.M.; Flurkey, K.; Nadon, N.L.; Wilkinson, J.E.; Frenkel, K.; Carter, C.S.; Pahor, M.; Javors, M.A.; Fernandez, E.; Miller, R.A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009, 460(7253), 392-395.
[http://dx.doi.org/10.1038/nature08221] [PMID: 19587680]
[160]
Boland, B.; Kumar, A.; Lee, S.; Platt, F.M.; Wegiel, J.; Yu, W.H.; Nixon, R.A. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci., 2008, 28(27), 6926-6937.
[http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008] [PMID: 18596167]
[161]
McGowan, E.; Pickford, F.; Kim, J.; Onstead, L.; Eriksen, J.; Yu, C.; Skipper, L.; Murphy, M.P.; Beard, J.; Das, P.; Jansen, K.; DeLucia, M.; Lin, W.L.; Dolios, G.; Wang, R.; Eckman, C.B.; Dickson, D.W.; Hutton, M.; Hardy, J.; Golde, T. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron, 2005, 47(2), 191-199.
[http://dx.doi.org/10.1016/j.neuron.2005.06.030] [PMID: 16039562]
[162]
Polanco, J.C.; Li, C.; Durisic, N.; Sullivan, R.; Götz, J. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathol. Commun., 2018, 6(1), 10.
[http://dx.doi.org/10.1186/s40478-018-0514-4] [PMID: 29448966]
[163]
Soll, C.; Clavien, P.A. Inhibition of mammalian target of rapamycin: the janus face of immunosuppression? Hepatology, 2010, 51(4), 1113-1115.
[http://dx.doi.org/10.1002/hep.23582] [PMID: 20373365]
[164]
Thellung, S.; Corsaro, A.; Nizzari, M.; Barbieri, F.; Florio, T. Autophagy Activator Drugs: A new opportunity in neuroprotection from misfolded protein toxicity. Int. J. Mol. Sci., 2019, 20(4), E901.
[http://dx.doi.org/10.3390/ijms20040901] [PMID: 30791416]
[165]
Vlad, S.C.; Miller, D.R.; Kowall, N.W.; Felson, D.T. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology, 2008, 70(19), 1672-1677.
[http://dx.doi.org/10.1212/01.wnl.0000311269.57716.63] [PMID: 18458226]
[166]
Carreras, I.; McKee, A.C.; Choi, J.K.; Aytan, N.; Kowall, N.W.; Jenkins, B.G.; Dedeoglu, A. R-flurbiprofen improves tau, but not Aß pathology in a triple transgenic model of Alzheimer’s disease. Brain Res., 2013, 1541, 115-127.
[http://dx.doi.org/10.1016/j.brainres.2013.10.025] [PMID: 24161403]
[167]
Chandra, S.; Jana, M.; Pahan, K. Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimer’s Disease via PPARα. J. Neurosci., 2018, 38(30), 6682-6699.
[http://dx.doi.org/10.1523/JNEUROSCI.0054-18.2018] [PMID: 29967008]
[168]
Ayyadevara, S.; Balasubramaniam, M.; Kakraba, S.; Alla, R.; Mehta, J.L.; Shmookler Reis, R.J. Aspirin-mediated acetylation protects against multiple neurodegenerative pathologies by impeding protein aggregation. Antioxid. Redox Signal., 2017, 27(17), 1383-1396.
[http://dx.doi.org/10.1089/ars.2016.6978] [PMID: 28537433]
[169]
Matsunaga, S.; Kishi, T.; Annas, P.; Basun, H.; Hampel, H.; Iwata, N. Lithium as a treatment for Alzheimer’s Disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2015, 48(2), 403-410.
[http://dx.doi.org/10.3233/JAD-150437] [PMID: 26402004]
[170]
Forlenza, O.V.; Diniz, B.S.; Radanovic, M.; Santos, F.S.; Talib, L.L.; Gattaz, W.F. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br. J. Psychiatry, 2011, 198(5), 351-356.
[http://dx.doi.org/10.1192/bjp.bp.110.080044] [PMID: 21525519]
[171]
Yang, J.; Takahashi, Y.; Cheng, E.; Liu, J.; Terranova, P.F.; Zhao, B.; Thrasher, J.B.; Wang, H.G.; Li, B. GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy and cell death. J. Cell Sci., 2010, 123(Pt 6), 861-870.
[http://dx.doi.org/10.1242/jcs.060475] [PMID: 20159967]
[172]
Sarkar, S.; Floto, R.A.; Berger, Z.; Imarisio, S.; Cordenier, A.; Pasco, M.; Cook, L.J.; Rubinsztein, D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol., 2005, 170(7), 1101-1111.
[http://dx.doi.org/10.1083/jcb.200504035] [PMID: 16186256]
[173]
Grossberg, G.T.; Pejović, V.; Miller, M.L.; Graham, S.M. Memantine therapy of behavioral symptoms in community-dwelling patients with moderate to severe Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2009, 27(2), 164-172.
[http://dx.doi.org/10.1159/000200013] [PMID: 19194105]
[174]
Hirano, K.; Fujimaki, M.; Sasazawa, Y.; Yamaguchi, A.; Ishikawa, K.I.; Miyamoto, K.; Souma, S.; Furuya, N.; Imamichi, Y.; Yamada, D.; Saya, H.; Akamatsu, W.; Saiki, S.; Hattori, N. Neuroprotective effects of memantine via enhancement of autophagy. Biochem. Biophys. Res. Commun., 2019, 518(1), 161-170.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.025] [PMID: 31431260]
[175]
Sestito, S.; Daniele, S.; Pietrobono, D.; Citi, V.; Bellusci, L.; Chiellini, G.; Calderone, V.; Martini, C.; Rapposelli, S. Memantine prodrug as a new agent for Alzheimer’s Disease. Sci. Rep., 2019, 9(1), 4612.
[http://dx.doi.org/10.1038/s41598-019-40925-8] [PMID: 30874573]
[176]
Reiter, R.J. The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp. Gerontol., 1995, 30(3-4), 199-212.
[http://dx.doi.org/10.1016/0531-5565(94)00045-5] [PMID: 7556503]
[177]
Liu, R.Y.; Zhou, J.N.; van Heerikhuize, J.; Hofman, M.A.; Swaab, D.F. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J. Clin. Endocrinol. Metab., 1999, 84(1), 323-327.
[PMID: 9920102]
[178]
Chang, H.M.; Wu, U.I.; Lan, C.T. Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J. Pineal Res., 2009, 47(3), 211-220.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00704.x] [PMID: 19627456]
[179]
Cristòfol, R.; Porquet, D.; Corpas, R.; Coto-Montes, A.; Serret, J.; Camins, A.; Pallàs, M.; Sanfeliu, C. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J. Pineal Res., 2012, 52(3), 271-281.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00939.x] [PMID: 22085194]
[180]
Luengo, E.; Buendia, I.; Fernández-Mendívil, C.; Trigo-Alonso, P.; Negredo, P.; Michalska, P.; Hernández-García, B.; Sánchez-Ramos, C.; Bernal, J.A.; Ikezu, T.; León, R.; López, M.G. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J. Pineal Res., 2019, 67(1), e12578.
[http://dx.doi.org/10.1111/jpi.12578] [PMID: 30943316]
[181]
Caton, P.W.; Nayuni, N.K.; Kieswich, J.; Khan, N.Q.; Yaqoob, M.M.; Corder, R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J. Endocrinol., 2010, 205(1), 97-106.
[http://dx.doi.org/10.1677/JOE-09-0345] [PMID: 20093281]
[182]
Song, Y.M.; Song, S.O.; Jung, Y.K.; Kang, E.S.; Cha, B.S.; Lee, H.C.; Lee, B.W. Dimethyl sulfoxide reduces hepatocellular lipid accumulation through autophagy induction. Autophagy, 2012, 8(7), 1085-1097.
[http://dx.doi.org/10.4161/auto.20260] [PMID: 22722716]
[183]
Song, Y.M.; Lee, W.K.; Lee, Y.H.; Kang, E.S.; Cha, B.S.; Lee, B.W. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53. Int. J. Mol. Sci., 2016, 17(1), E122.
[http://dx.doi.org/10.3390/ijms17010122] [PMID: 26784190]
[184]
Ng, T.P.; Feng, L.; Yap, K.B.; Lee, T.S.; Tan, C.H.; Winblad, B. Long-term metformin usage and cognitive function among older adults with diabetes. J. Alzheimers Dis., 2014, 41(1), 61-68.
[http://dx.doi.org/10.3233/JAD-131901] [PMID: 24577463]
[185]
Hsu, C.C.; Wahlqvist, M.L.; Lee, M.S.; Tsai, H.N. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J. Alzheimers Dis., 2011, 24(3), 485-493.
[http://dx.doi.org/10.3233/JAD-2011-101524] [PMID: 21297276]
[186]
Chen, J.L.; Luo, C.; Pu, D.; Zhang, G.Q.; Zhao, Y.X.; Sun, Y.; Zhao, K.X.; Liao, Z.Y.; Lv, A.K.; Zhu, S.Y.; Zhou, J.; Xiao, Q. Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp. Neurol., 2019, 311, 44-56.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.008] [PMID: 30219731]
[187]
Son, S.M.; Shin, H.J.; Byun, J.; Kook, S.Y.; Moon, M.; Chang, Y.J.; Mook-Jung, I. Metformin facilitates amyloid-β generation by β- and γ-secretases via autophagy activation. J. Alzheimers Dis., 2016, 51(4), 1197-1208.
[http://dx.doi.org/10.3233/JAD-151200] [PMID: 26967226]
[188]
Imfeld, P.; Bodmer, M.; Jick, S.S.; Meier, C.R. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J. Am. Geriatr. Soc., 2012, 60(5), 916-921.
[http://dx.doi.org/10.1111/j.1532-5415.2012.03916.x] [PMID: 22458300]
[189]
Littlejohns, T.J.; Henley, W.E.; Lang, I.A.; Annweiler, C.; Beauchet, O.; Chaves, P.H.; Fried, L.; Kestenbaum, B.R.; Kuller, L.H.; Langa, K.M.; Lopez, O.L.; Kos, K.; Soni, M.; Llewellyn, D.J. Vitamin D and the risk of dementia and Alzheimer disease. Neurology, 2014, 83(10), 920-928.
[http://dx.doi.org/10.1212/WNL.0000000000000755] [PMID: 25098535]
[190]
Tavera-Mendoza, L.E.; Westerling, T.; Libby, E.; Marusyk, A.; Cato, L.; Cassani, R.; Cameron, L.A.; Ficarro, S.B.; Marto, J.A.; Klawitter, J.; Brown, M. Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc. Natl. Acad. Sci. USA, 2017, 114(11), E2186-E2194.
[http://dx.doi.org/10.1073/pnas.1615015114] [PMID: 28242709]
[191]
Guo, Y.X.; He, L.Y.; Zhang, M.; Wang, F.; Liu, F.; Peng, W.X. 1,25-Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Aβ1-40 brain-to-blood efflux and peripheral uptake transport. Neuroscience, 2016, 322, 28-38.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.041] [PMID: 26820600]
[192]
Durk, M.R.; Han, K.; Chow, E.C.; Ahrens, R.; Henderson, J.T.; Fraser, P.E.; Pang, K.S. 1α,25-Dihydroxyvitamin D3 reduces cerebral amyloid-β accumulation and improves cognition in mouse models of Alzheimer’s disease. J. Neurosci., 2014, 34(21), 7091-7101.
[http://dx.doi.org/10.1523/JNEUROSCI.2711-13.2014] [PMID: 24849345]
[193]
Høyer-Hansen, M.; Bastholm, L.; Mathiasen, I.S.; Elling, F.; Jäättelä, M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ., 2005, 12(10), 1297-1309.
[http://dx.doi.org/10.1038/sj.cdd.4401651] [PMID: 15905882]
[194]
Høyer-Hansen, M.; Bastholm, L.; Szyniarowski, P.; Campanella, M.; Szabadkai, G.; Farkas, T.; Bianchi, K.; Fehrenbacher, N.; Elling, F.; Rizzuto, R.; Mathiasen, I.S.; Jäättelä, M. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell, 2007, 25(2), 193-205.
[http://dx.doi.org/10.1016/j.molcel.2006.12.009] [PMID: 17244528]
[195]
Chen, X.; Li, M.; Li, L.; Xu, S.; Huang, D.; Ju, M.; Huang, J.; Chen, K.; Gu, H. Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci. Rep., 2016, 6, 28423.
[http://dx.doi.org/10.1038/srep28423] [PMID: 27328819]
[196]
Du, J.; Liang, Y.; Xu, F.; Sun, B.; Wang, Z. Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J. Pharm. Pharmacol., 2013, 65(12), 1753-1756.
[http://dx.doi.org/10.1111/jphp.12108] [PMID: 24236985]
[197]
Schaeffer, V.; Lavenir, I.; Ozcelik, S.; Tolnay, M.; Winkler, D.T.; Goedert, M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 2012, 135(Pt 7), 2169-2177.
[http://dx.doi.org/10.1093/brain/aws143] [PMID: 22689910]
[198]
Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, J.E.; Janle, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; Marambaud, P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem., 2010, 285(12), 9100-9113.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[199]
Armour, S.M.; Baur, J.A.; Hsieh, S.N.; Land-Bracha, A.; Thomas, S.M.; Sinclair, D.A. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging (Albany NY), 2009, 1(6), 515-528.
[http://dx.doi.org/10.18632/aging.100056] [PMID: 20157535]
[200]
Yu, K.C.; Kwan, P.; Cheung, S.K.K.; Ho, A.; Baum, L. Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl. Neurosci., 2018, 9, 54-60.
[201]
Karimipour, M.; Rahbarghazi, R.; Tayefi, H.; Shimia, M.; Ghanadian, M.; Mahmoudi, J.; Bagheri, H.S. Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int. J. Dev. Neurosci., 2019, 74, 18-26.
[202]
Jiménez-Aliaga, K.; Bermejo-Bescós, P.; Benedí, J.; Martín-Aragón, S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci., 2011, 89(25-26), 939-945.
[http://dx.doi.org/10.1016/j.lfs.2011.09.023] [PMID: 22008478]
[203]
Regitz, C.; Dussling, L.M.; Wenzel, U. Amyloid-beta (Abeta(1)(-)(4)(2))-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol. Nutr. Food Res., 2014, 58(10), 1931-1940.
[http://dx.doi.org/10.1002/mnfr.201400014] [PMID: 25066301]
[204]
Li, Y.; Tian, Q.; Li, Z.; Dang, M.; Lin, Y.; Hou, X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. Drug Dev. Res., 2019, 80(6), 837-845.
[http://dx.doi.org/10.1002/ddr.21567] [PMID: 31301179]
[205]
Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother., 2016, 84, 892-908.
[http://dx.doi.org/10.1016/j.biopha.2016.10.011] [PMID: 27756054]
[206]
Liu, Y.; Zhou, H.; Yin, T.; Gong, Y.; Yuan, G.; Chen, L.; Liu, J. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J. Colloid Interface Sci., 2019, 552, 388-400.
[http://dx.doi.org/10.1016/j.jcis.2019.05.066] [PMID: 31151017]
[207]
Guo, J.; Chang, L.; Zhang, X.; Pei, S.; Yu, M.; Gao, J. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement. Exp. Ther. Med., 2014, 8(4), 1271-1274.
[http://dx.doi.org/10.3892/etm.2014.1885] [PMID: 25187838]
[208]
Yang, Q.; Lin, J.; Zhang, H.; Liu, Y.; Kan, M.; Xiu, Z.; Chen, X.; Lan, X.; Li, X.; Shi, X.; Li, N.; Qu, X. Ginsenoside compound k regulates amyloid β via the Nrf2/Keap1 signaling pathway in mice with scopolamine hydrobromide-induced memory impairments. J. Mol. Neurosci., 2019, 67(1), 62-71.
[http://dx.doi.org/10.1007/s12031-018-1210-3] [PMID: 30535776]
[209]
Yao, X.C.; Xue, X.; Zhang, H.T.; Zhu, M.M.; Yang, X.W.; Wu, C.F.; Yang, J.Y. Pseudoginsenoside-F11 alleviates oligomeric β-amyloid-induced endosome-lysosome defects in microglia. Traffic, 2019, 20(1), 61-70.
[http://dx.doi.org/10.1111/tra.12620] [PMID: 30375163]
[210]
Song, X.Y.; Hu, J.F.; Chu, S.F.; Zhang, Z.; Xu, S.; Yuan, Y.H.; Han, N.; Liu, Y.; Niu, F.; He, X.; Chen, N.H. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats. Eur. J. Pharmacol., 2013, 710(1-3), 29-38.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.051] [PMID: 23588117]
[211]
Hishikawa, N.; Takahashi, Y.; Amakusa, Y.; Tanno, Y.; Tuji, Y.; Niwa, H.; Murakami, N.; Krishna, U.K. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu, 2012, 33(4), 499-504.
[http://dx.doi.org/10.4103/0974-8520.110524] [PMID: 23723666]
[212]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.; Zeng, Z.; Wu, C.; Zhu, H.; Xu, H. The potential protective effect of curcumin on amyloid-β-42 induced cytotoxicity in HT-22 Cells. BioMed Res. Int., 2018, 2018, 8134902.
[http://dx.doi.org/10.1155/2018/8134902] [PMID: 29568765]
[213]
Wang, C.; Zhang, X.; Teng, Z.; Zhang, T.; Li, Y. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol., 2014, 740, 312-320.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.051] [PMID: 25041840]
[214]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[215]
Song, J.X.; Sun, Y.R.; Peluso, I.; Zeng, Y.; Yu, X.; Lu, J.H.; Xu, Z.; Wang, M.Z.; Liu, L.F.; Huang, Y.Y.; Chen, L.L.; Durairajan, S.S.; Zhang, H.J.; Zhou, B.; Zhang, H.Q.; Lu, A.; Ballabio, A.; Medina, D.L.; Guo, Z.; Li, M. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy, 2016, 12(8), 1372-1389.
[http://dx.doi.org/10.1080/15548627.2016.1179404] [PMID: 27172265]
[216]
Bagherniya, M.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res. Rev., 2018, 47, 183-197.
[http://dx.doi.org/10.1016/j.arr.2018.08.004] [PMID: 30172870]
[217]
Rickenbacher, A.; Jang, J.H.; Limani, P.; Ungethüm, U.; Lehmann, K.; Oberkofler, C.E.; Weber, A.; Graf, R.; Humar, B.; Clavien, P.A. Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J. Hepatol., 2014, 61(2), 301-308.
[http://dx.doi.org/10.1016/j.jhep.2014.04.010] [PMID: 24751831]
[218]
Golbidi, S.; Daiber, A.; Korac, B.; Li, H.; Essop, M.F.; Laher, I. Health benefits of fasting and caloric restriction. Curr. Diab. Rep., 2017, 17(12), 123.
[http://dx.doi.org/10.1007/s11892-017-0951-7] [PMID: 29063418]
[219]
Halagappa, V.K.; Guo, Z.; Pearson, M.; Matsuoka, Y.; Cutler, R.G.; Laferla, F.M.; Mattson, M.P. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis., 2007, 26(1), 212-220.
[http://dx.doi.org/10.1016/j.nbd.2006.12.019] [PMID: 17306982]
[220]
Ntsapi, C.; Loos, B. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Exp. Gerontol., 2016, 83, 97-111.
[http://dx.doi.org/10.1016/j.exger.2016.07.014] [PMID: 27473756]
[221]
Chen, X.; Kondo, K.; Motoki, K.; Homma, H.; Okazawa, H. Fasting activates macroautophagy in neurons of Alzheimer’s disease mouse model but is insufficient to degrade amyloid-beta. Sci. Rep., 2015, 5, 12115.
[http://dx.doi.org/10.1038/srep12115] [PMID: 26169250]
[222]
Gregosa, A.; Vinuesa, Á.; Todero, M.F.; Pomilio, C.; Rossi, S.P.; Bentivegna, M.; Presa, J.; Wenker, S.; Saravia, F.; Beauquis, J. Periodic dietary restriction ameliorates amyloid pathology and cognitive impairment in PDAPP-J20 mice: Potential implication of glial autophagy. Neurobiol. Dis., 2019, 132, 104542.
[http://dx.doi.org/10.1016/j.nbd.2019.104542] [PMID: 31351172]
[223]
Hadem, I.K.H.; Sharma, R. Differential regulation of hippocampal IGF-1-Associated signaling proteins by dietary restriction in aging mouse. Cell. Mol. Neurobiol., 2017, 37(6), 985-993.
[http://dx.doi.org/10.1007/s10571-016-0431-7] [PMID: 27718093]
[224]
Qin, W.; Yang, T.; Ho, L.; Zhao, Z.; Wang, J.; Chen, L.; Zhao, W.; Thiyagarajan, M.; MacGrogan, D.; Rodgers, J.T.; Puigserver, P.; Sadoshima, J.; Deng, H.; Pedrini, S.; Gandy, S.; Sauve, A.A.; Pasinetti, G.M. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem., 2006, 281(31), 21745-21754.
[http://dx.doi.org/10.1074/jbc.M602909200] [PMID: 16751189]
[225]
Groot, C.; Hooghiemstra, A.M.; Raijmakers, P.G.; van Berckel, B.N.; Scheltens, P.; Scherder, E.J.; van der Flier, W.M.; Ossenkoppele, R. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Res. Rev., 2016, 25, 13-23.
[http://dx.doi.org/10.1016/j.arr.2015.11.005] [PMID: 26607411]
[226]
Hoffmann, K.; Sobol, N.A.; Frederiksen, K.S.; Beyer, N.; Vogel, A.; Vestergaard, K.; Brændgaard, H.; Gottrup, H.; Lolk, A.; Wermuth, L.; Jacobsen, S.; Laugesen, L.P.; Gergelyffy, R.G.; Høgh, P.; Bjerregaard, E.; Andersen, B.B.; Siersma, V.; Johannsen, P.; Cotman, C.W.; Waldemar, G.; Hasselbalch, S.G. Moderate-to-high intensity physical exercise in patients with alzheimer’s disease: a randomized controlled trial. J. Alzheimers Dis., 2016, 50(2), 443-453.
[http://dx.doi.org/10.3233/JAD-150817] [PMID: 26682695]
[227]
Larson, E.B.; Wang, L.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Crane, P.; Kukull, W. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med., 2006, 144(2), 73-81.
[http://dx.doi.org/10.7326/0003-4819-144-2-200601170-00004] [PMID: 16418406]
[228]
Kou, X.; Chen, D.; Chen, N. Physical activity alleviates cognitive dysfunction of alzheimer’s disease through regulating the mTOR signaling pathway. Int. J. Mol. Sci., 2019, 20(7), E1591.
[http://dx.doi.org/10.3390/ijms20071591] [PMID: 30934958]
[229]
Herring, A.; Münster, Y.; Metzdorf, J.; Bolczek, B.; Krüssel, S.; Krieter, D.; Yavuz, I.; Karim, F.; Roggendorf, C.; Stang, A.; Wang, Y.; Hermann, D.M.; Teuber-Hanselmann, S.; Keyvani, K. Late running is not too late against Alzheimer’s pathology. Neurobiol. Dis., 2016, 94, 44-54.
[http://dx.doi.org/10.1016/j.nbd.2016.06.003] [PMID: 27312772]
[230]
Liu, W.; Wang, Z.; Xia, Y.; Kuang, H.; Liu, S.; Li, L.; Tang, C.; Yin, D. The balance of apoptosis and autophagy via regulation of the AMPK signal pathway in aging rat striatum during regular aerobic exercise. Exp. Gerontol., 2019, 124, 110647.
[http://dx.doi.org/10.1016/j.exger.2019.110647] [PMID: 31255733]
[231]
Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med., 2010, 72(3), 239-252.
[http://dx.doi.org/10.1097/PSY.0b013e3181d14633] [PMID: 20223924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy