[1]
Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.; Pakkenberg, B. Neocortical glial cell numbers in human brains. Neurobiol. Aging, 2008, 29(11), 1754-1762.
[2]
Sampedro-Piquero, P.; Moreno-Fernandez, R.D. The forgotten cells: Role of astrocytes in mood disorders during the Aging. Curr. Neuropharmacol., 2019, 17(5), 404-405.
[3]
Pinto, J.V.; Passos, I.C.; Librenza-Garcia, D. Neuron-glia interaction as a possible pathophysiological mechanism of bipolar disorder. Curr. Neuropharmacol., 2018, 16(5), 519-532.
[4]
Fakhoury, M. Microglia and astrocytes in Alzheimer’s Disease: Implications for therapy. Curr. Neuropharmacol., 2018, 16(5), 508-518.
[5]
Rao, J.S.; Harry, G.J.; Rapoport, S.I.; Kim, H.W. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol. Psychiatry, 2010, 15(4), 384-392.
[6]
Li, N.; Zhang, X.; Dong, H.; Zhang, S.; Sun, J.; Qian, Y. Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of toll-like receptor 4 expression. Cell. Physiol. Biochem., 2016, 38(2), 714-725.
[7]
Masuch, A.; Shieh, C.H.; van Rooijen, N.; van Calker, D.; Biber, K. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFalpha, and valproic acid. Glia, 2016, 64(1), 76-89.
[8]
Fullana, M.N.; Ruiz-Bronchal, E.; Ferres-Coy, A.; Juarez-Escoto, E.; Artigas, F.; Bortolozzi, A. Regionally selective knockdown of astroglial glutamate transporters in infralimbic cortex induces a depressive phenotype in mice. Glia, 2019, 67(6), 1122-1137.
[9]
Czeh, B.; Di Benedetto, B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur. Neuropsychopharmacol., 2013, 23(3), 171-185.
[10]
Kim, Y.K.; Won, E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav. Brain Res., 2017, 329, 6-11.
[11]
Doorduin, J.; de Vries, E.F.; Willemsen, A.T.; de Groot, J.C.; Dierckx, R.A.; Klein, H.C. Neuroinflammation in schizophrenia-related psychosis: a PET study. J. Nucl. Med., 2009, 50(11), 1801-1807.
[12]
van Berckel, B.N.; Bossong, M.G.; Boellaard, R.; Kloet, R.; Schuitemaker, A.; Caspers, E.; Luurtsema, G.; Windhorst, A.D.; Cahn, W.; Lammertsma, A.A.; Kahn, R.S. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol. Psychiatry, 2008, 64(9), 820-822.
[13]
Zhang, Y.; Xu, H.; Jiang, W.; Xiao, L.; Yan, B.; He, J.; Wang, Y.; Bi, X.; Li, X.; Kong, J.; Li, X.M. Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr. Res., 2008, 106(2-3), 182-191.
[14]
Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136.
[15]
Sastre, M.; Gentleman, S.M. NSAIDs: how they work and their prospects as therapeutics in alzheimer’s disease. Front. Aging Neurosci., 2010, 2, 20.
[16]
Kim, Y.K.; Amidfar, M.; Won, E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 91, 103-112.
[17]
Guillemin, G.J.; Smythe, G.; Takikawa, O.; Brew, B.J. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia, 2005, 49(1), 15-23.