Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Therapeutic Study of Phytochemicals Against Cancer and Alzheimer’s Disease Management

Author(s): Syed Sayeed Ahmad, Tayyaba Waheed, Sayed Rozeen, Sufia Mahmood and Mohammad Amjad Kamal*

Volume 20, Issue 13, 2019

Page: [1006 - 1013] Pages: 8

DOI: 10.2174/1389200221666200103092719

Price: $65

Abstract

Background: Phytochemicals are a significant piece of conventional prescription and have been researched in detail for conceivable consideration in current drug discovery. Medications and plants are firmly identified for traditional prescriptions and ethnomedicines that are basically arranged from plants. Recognizing the medical advantages of phytochemicals is of fundamental advancement in medication and useful sustenance improvement. Secondary metabolites of different plants have been customarily used for the improvement of human wellbeing. The phytochemicals are diets rich, which can upgrade neuroplasticity and protection from neurodegeneration.

Results: Phytochemicals keep on entering clinical preliminaries or provide leads for the synthesis of medicinal agents. Phytochemicals are a great extent cancer prevention agents in nature at lower concentrations and under favorable cell conditions that adequately avoid the oxidation of different molecules that have an ability to produce free radicals and thus protect the body.

Conclusion: The purpose of this review is to describe the use of phytochemicals against cancer and Alzheimer’s disease treatment.

Keywords: Phytochemicals, Alzheimer's disease, cancer, nanotechnology, databases, metabolites.

Graphical Abstract
[1]
Marešová, P.; Mohelská, H.; Dolejš, J.; Kuča, K. Socio-economic Aspects of Alzheimer’s disease. Curr. Alzheimer Res., 2015, 12(9), 903-911.
[http://dx.doi.org/10.2174/156720501209151019111448] [PMID: 26510983]
[2]
Wang, Y.; Xu, C.; Park, J.H.; Lee, S.; Stern, Y.; Yoo, S.; Kim, J.H.; Kim, H.S.; Cha, J. Alzheimer’s disease neuroimaging initiative. Diagnosis and prognosis of Alzheimer’s disease using brain morphometry and white matter connectomes. Neuroimage Clin., 2019, 23101859
[http://dx.doi.org/10.1016/j.nicl.2019.101859] [PMID: 31150957]
[3]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet., 2010, 19(R1), R12-R20.
[http://dx.doi.org/10.1093/hmg/ddq160] [PMID: 20413653]
[4]
Hilton, K.J.; Cunningham, C.; Reynolds, R.A.; Perry, V.H. Early hippocampal synaptic loss precedes neuronal loss and associates with early behavioral deficits in three distinct strains of prion disease. PLoS One, 2013, 8, 6.
[http://dx.doi.org/10.1371/journal.pone.0068062]
[5]
Milnerwood, A.J.; Raymond, L.A. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci., 2010, 33(11), 513-523.
[http://dx.doi.org/10.1016/j.tins.2010.08.002] [PMID: 20850189]
[6]
Ahmad, S.S.; Akhtar, S. Danish Rizvi, S.M.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Arif, J.M. Screening and elucidation of selected natural compounds for anti- Alzheimer’s potential targeting bace-1 enzyme: A case computational study. Curr. Comput. Aided Drug Des., 2017, 13(4), 311-318.
[http://dx.doi.org/10.2174/1573409913666170414123825] [PMID: 28413992]
[7]
Li, J.; Han, Y.; Li, M.; Nie, C. Curcumin promotes proliferation of adult neural stem cells and the birth of neurons in Alzheimer’s disease mice via notch signaling pathway. Cell. Reprogram., 2019, 21(3), 152-161.
[http://dx.doi.org/10.1089/cell.2018.0027] [PMID: 31145652]
[8]
Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev., 2011, 35(6), 1397-1409.
[http://dx.doi.org/10.1016/j.neubiorev.2011.03.001] [PMID: 21392524]
[9]
Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[10]
Maccioni, R.B.; Farías, G.; Morales, I.; Navarrete, L. The revitalized tau hypothesis on Alzheimer’s disease. Arch. Med. Res., 2010, 41(3), 226-231.
[http://dx.doi.org/10.1016/j.arcmed.2010.03.007] [PMID: 20682182]
[11]
Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med., 1997, 23(1), 134-147.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[12]
Craddock, T.J.; Tuszynski, J.A.; Chopra, D.; Casey, N.; Goldstein, L.E.; Hameroff, S.R.; Tanzi, R.E. The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One, 2012, 7(3)e33552
[http://dx.doi.org/10.1371/journal.pone.0033552] [PMID: 22457776]
[13]
Yamashima, T. Reconsider Alzheimer’s disease by the ‘calpain-cathepsin hypothesis’-a perspective review. Prog. Neurobiol., 2013, 105, 1-23.
[http://dx.doi.org/10.1016/j.pneurobio.2013.02.004] [PMID: 23499711]
[14]
Ahmad, S.S.; Akhtar, S.; Jamal, Q.M.; Rizvi, S.M.; Kamal, M.A.; Khan, M.K.; Siddiqui, M.H. Multiple targets for the management of Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets, 2016, 15(10), 1279-1289.
[http://dx.doi.org/10.2174/1871527315666161003165855] [PMID: 27712576]
[15]
Inoue, K.; Tsutsui, H.; Akatsu, H.; Hashizume, Y.; Matsukawa, N.; Yamamoto, T.; Toyo’oka, T. Metabolic profiling of Alzheimer’s disease brains. Sci. Rep., 2013, 3, 2364.
[http://dx.doi.org/10.1038/srep02364] [PMID: 23917584]
[16]
Prince, M.; Jackson, J. World Alzheimer Report; Illinois, 2009.
[17]
Yao, F.; Zhang, K.; Zhang, Y.; Guo, Y.; Li, A.; Xiao, S.; Liu, Q.; Shen, L.; Ni, J. Identification of blood biomarkers for Alzheimer’s disease through computational prediction and experimental validation. Front. Neurol., 2019, 9, 1158.
[http://dx.doi.org/10.3389/fneur.2018.01158] [PMID: 30671019]
[18]
Bhalla, S.; Verma, R.; Kaur, H.; Kumar, R.; Usmani, S.S.; Sharma, S.; Raghava, G.P.S. CancerPDF: A repository of cancer-associated peptidome found in human biofluids. Sci. Rep., 2017, 7(1), 1511.
[http://dx.doi.org/10.1038/s41598-017-01633-3] [PMID: 28473704]
[19]
[20]
Theodoratou, E.; Timofeeva, M.; Li, X.; Meng, X.; Ioannidis, J.P.A. Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer. Annu. Rev. Nutr., 2017, 37, 293-320.
[http://dx.doi.org/10.1146/annurev-nutr-071715-051004] [PMID: 28826375]
[21]
Weaver, L.; Samkari, A. Neurological complications of childhood cancer. Semin. Pediatr. Neurol., 2017, 24(1), 60-69.
[http://dx.doi.org/10.1016/j.spen.2016.12.005] [PMID: 28779867]
[22]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[23]
Auti, S.T.; Kulkarni, Y.A. A systematic review on the role of natural products in modulating the pathways in Alzheimer’s disease. Int. J. Vitam. Nutr. Res., 2017, 87(1-2), 99-116.
[http://dx.doi.org/10.1024/0300-9831/a000405] [PMID: 30010515]
[24]
Malar, D.S.; Devi, K.P. Dietary polyphenols for treatment of Alzheimer’s disease--future research and development. Curr. Pharm. Biotechnol., 2014, 15(4), 330-342.
[http://dx.doi.org/10.2174/1389201015666140813122703] [PMID: 25312617]
[25]
Behrens, M.I.; Lendon, C.; Roe, C.M. A common biological mechanism in cancer and Alzheimer’s disease? Curr. Alzheimer Res., 2009, 6(3), 196-204.
[http://dx.doi.org/10.2174/156720509788486608] [PMID: 19519301]
[26]
Demetrius, L.A.; Simon, D.K. The inverse association of cancer and Alzheimer’s: a bioenergetic mechanism. J. R. Soc. Interface, 2013, 10(82)20130006
[http://dx.doi.org/10.1098/rsif.2013.0006] [PMID: 23427097]
[27]
Mueed, Z.; Tandon, P.; Maurya, S.K.; Deval, R.; Kamal, M.A.; Poddar, N.K. Tau and mTOR: The hotspots for multifarious diseases in Alzheimer’s development. Front. Neurosci., 2019, 12, 1017.
[http://dx.doi.org/10.3389/fnins.2018.01017] [PMID: 30686983]
[28]
Xia, X.; Qian, S.; Soriano, S.; Wu, Y.; Fletcher, A.M.; Wang, X.J.; Koo, E.H.; Wu, X.; Zheng, H. Loss of presenilin 1 is associated with enhanced beta-catenin signaling and skin tumorigenesis. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10863-10868.
[http://dx.doi.org/10.1073/pnas.191284198] [PMID: 11517342]
[29]
Yonemura, Y.; Futai, E.; Yagishita, S.; Suo, S.; Tomita, T.; Iwatsubo, T.; Ishiura, S. Comparison of presenilin 1 and presenilin 2 γ-secretase activities using a yeast reconstitution system. J. Biol. Chem., 2011, 286(52), 44569-44575.
[http://dx.doi.org/10.1074/jbc.M111.270108] [PMID: 22074918]
[30]
Nixon, D.W. The inverse relationship between cancer and alzheimer’s disease: a possible mechanism. Curr. Alzheimer Res., 2017, 14(8), 883-893.
[http://dx.doi.org/10.2174/1567205014666170216152905] [PMID: 28215174]
[31]
Tabarés-Seisdedos, R.; Rubenstein, J.L. Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat. Rev. Neurosci., 2013, 14(4), 293-304.
[http://dx.doi.org/10.1038/nrn3464] [PMID: 23511909]
[32]
Ham, S.; Kim, T.K.; Ryu, J.; Kim, Y.S.; Tang, Y.P. Im, H.I. Comprehensive MicroRNAome analysis of the relationship between Alzheimer disease and cancer in PSEN double-knockout mice. Int. Neurourol. J., 2018, 22(4), 237-245.
[http://dx.doi.org/10.5213/inj.1836274.137] [PMID: 30599494]
[33]
Driver, J.A.; Zhou, X.Z.; Lu, K.P. Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer’s disease. Biochim. Biophys. Acta, 2015, 1850(10), 2069-2076.
[http://dx.doi.org/10.1016/j.bbagen.2014.12.025] [PMID: 25583562]
[34]
Li, Q.F.; Wu, C.T.; Duan, H.F.; Sun, H.Y.; Wang, H.; Lu, Z.Z.; Zhang, Q.W.; Liu, H.J.; Wang, L.S. Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis. Br. J. Haematol., 2007, 138(5), 632-639.
[http://dx.doi.org/10.1111/j.1365-2141.2007.06711.x] [PMID: 17686057]
[35]
Pastorino, L.; Sun, A.; Lu, P.J.; Zhou, X.Z.; Balastik, M.; Finn, G.; Wulf, G.; Lim, J.; Li, S.H.; Li, X.; Xia, W.; Nicholson, L.K.; Lu, K.P. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature, 2006, 440(7083), 528-534.
[http://dx.doi.org/10.1038/nature04543] [PMID: 16554819]
[36]
Zhou, X.Z.; Kops, O.; Werner, A.; Lu, P.J.; Shen, M.; Stoller, G.; Küllertz, G.; Stark, M.; Fischer, G.; Lu, K.P. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell, 2000, 6(4), 873-883.
[http://dx.doi.org/10.1016/S1097-2765(05)00083-3] [PMID: 11090625]
[37]
Zita, M.M.; Marchionni, I.; Bottos, E.; Righi, M.Del; Sal, G.; Cherubini, E.; Zacchi, P. Post- phosphorylation prolyl isomerization of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J., 2007, 26(7), 1761-1771.
[http://dx.doi.org/10.1038/sj.emboj.7601625] [PMID: 17347650]
[38]
Bao, L.; Kimzey, A.; Sauter, G.; Sowadski, J.M.; Lu, K.P.; Wang, D.G. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol., 2004, 164(5), 1727-1737.
[http://dx.doi.org/10.1016/S0002-9440(10)63731-5] [PMID: 15111319]
[39]
Teng, B.L.; Hacker, K.E.; Chen, S.; Means, A.R.; Rathmell, W.K. Tumor suppressive activity of prolyl isomerase Pin1 in renal cell carcinoma. Mol. Oncol., 2011, 5(5), 465-474.
[http://dx.doi.org/10.1016/j.molonc.2011.06.002] [PMID: 21764651]
[40]
Lu, K.P.; Hanes, S.D.; Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature, 1996, 380(6574), 544-547.
[http://dx.doi.org/10.1038/380544a0] [PMID: 8606777]
[41]
Rippmann, J.F.; Hobbie, S.; Daiber, C.; Guilliard, B.; Bauer, M.; Birk, J.; Nar, H.; Garin-Chesa, P.; Rettig, W.J.; Schnapp, A. Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into mitosis. Cell Growth Differ., 2000, 11(7), 409-416.
[PMID: 10939594]
[42]
Wulf, G.; Garg, P.; Liou, Y.C.; Iglehart, D.; Lu, K.P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J., 2004, 23(16), 3397-3407.
[http://dx.doi.org/10.1038/sj.emboj.7600323] [PMID: 15257284]
[43]
Takahashi, K.; Akiyama, H.; Shimazaki, K.; Uchida, C.; Akiyama-Okunuki, H.; Tomita, M.; Fukumoto, M.; Uchida, T. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene, 2007, 26(26), 3835-3845.
[http://dx.doi.org/10.1038/sj.onc.1210153] [PMID: 17160015]
[44]
Ho, Y.S.; So, K.F.; Chang, R.C. Anti-aging herbal medicine-how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res. Rev., 2010, 9(3), 354-362.
[http://dx.doi.org/10.1016/j.arr.2009.10.001] [PMID: 19833234]
[45]
Ng, Y.P.; Or, T.C.; Ip, N.Y. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int., 2015, 89, 260-270.
[http://dx.doi.org/10.1016/j.neuint.2015.07.018] [PMID: 26220901]
[46]
Girdhar, S.; Girdhar, A.; Verma, S.A.; Lather, V.; Pandita, D. Plant-derived alkaloids in major neurodegenerative diseases: from animal models to clinical trials. J. Ayu. Herb. Med., 2015, 1(3), 91-100.
[47]
Lakshmi, P.M.; Bhanu, P.K.; Kotakadi, V.S.; Josthna, P. Herbal and medicinal plants molecules towards treatment of cancer: a mini-review. Am. J. Ethnomed., 2015, 2, 2.
[48]
Lu, J.J.; Bao, J.L.; Chen, X.P.; Huang, M.; Wang, Y.T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012485042
[http://dx.doi.org/10.1155/2012/485042] [PMID: 22988474]
[49]
Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.N.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: overview of molecular mechanisms. Molecules, 2017, 22(2), 250.
[http://dx.doi.org/10.3390/molecules22020250] [PMID: 28208712]
[50]
Cheeseman, K.H.; Slater, T.F. An introduction to free radical biochemistry. Br. Med. Bull., 1993, 49(3), 481-493.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072625] [PMID: 8221017]
[51]
Wang, X.; Yang, Y.; An, Y.; Fang, G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed. Pharmacother., 2019, 117109086
[http://dx.doi.org/10.1016/j.biopha.2019.109086] [PMID: 31200254]
[52]
Chimplee, S.; Graidist, P.; Srisawat, T.; Sukrong, S.; Bissanum, R.; Kanokwiroon, K. Anti-breast cancer potential of frullanolide from Grangea maderaspatana plant by inducing apoptosis. Oncol. Lett., 2019, 17(6), 5283-5291.
[http://dx.doi.org/10.3892/ol.2019.10209] [PMID: 31186745]
[53]
Mohammadzadeh, N.; Mehri, S.; Hosseinzadeh, H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iran. J. Basic Med. Sci., 2017, 20(5), 538-551.
[PMID: 28656089]
[54]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[55]
Harmon, A.D.; Weiss, U.; Silverton, J.V. The structure of rohitukine the main alkaloid of Amoora rohituka (Syn) Aphanamixis polystachya (Meliaceae). Tetrahedron Lett., 1979, 20, 721-724.
[http://dx.doi.org/10.1016/S0040-4039(01)93556-7]
[56]
Nandagopal, K.; Halder, M.; Dash, B.; Nayak, S.; Jha, S. Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone. Curr. Med. Chem., 2018, 25(36), 4693-4717.
[http://dx.doi.org/10.2174/0929867324666170404145656] [PMID: 28393691]
[57]
Ayoob, I.; Hazari, Y.M.; Lone, S.H.; Khuroo, M.A.; Fazili, K.M.; Bhat, K.A. Phytochemical and cytotoxic evaluation of peganum harmala: structure-activity relationship studies of harmine. Chem Sel., 2017, 2(10), 2965-2968.
[http://dx.doi.org/10.1002/slct.201700232]
[58]
Alam, A.; Shaikh, S.; Ahmad, S.S.; Ansari, M.A.; Shakil, S.; Rizvi, S.M.; Shakil, S.; Imran, M.; Haneef, M.; Abuzenadah, A.M.; Kamal, M.A. Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: an enzoinformatics approach. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 487-490.
[http://dx.doi.org/10.2174/18715273113126660163] [PMID: 24059299]
[59]
Shaikh, S.; Ahmad, S.S.; Ansari, M.A.; Shakil, S.; Rizvi, S.M.; Shakil, S.; Tabrez, S.; Akhtar, S.; Kamal, M.A. Prediction of comparative inhibition efficiency for a novel natural ligand, galangin against human brain acetylcholinesterase, butyrylcholinesterase and 5-lipoxygenase: a neuroinformatics study. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 452-459.
[http://dx.doi.org/10.2174/18715273113126660162] [PMID: 24059300]
[60]
Ali, M.Y.; Jannat, S.; Edraki, N.; Das, S.; Chang, W.K.; Kim, H.C.; Park, S.K.; Chang, M.S. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem Biol Interact,, 2019.pii: S0009-2797(19)30594-0
[http://dx.doi.org/ 10.1016/j.cbi.2019.06.020]
[61]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[62]
Chen, M.; Du, Z.Y.; Zheng, X.; Li, D.L.; Zhou, R.P.; Zhang, K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 742-752.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[63]
Sánchez-Melgar, A.; Albasanz, J.L.; Guixà-González, R.; Saleh, N.; Selent, J.; Martín, M. The antioxidant resveratrol acts as a non-selective adenosine receptor agonist. Free Radic. Biol. Med., 2019, 135, 261-273.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.019] [PMID: 30898665]
[64]
Byun, S.; Lee, K.W.; Jung, S.K.; Lee, E.J.; Hwang, M.K.; Lim, S.H.; Bode, A.M.; Lee, H.J.; Dong, Z. Luteolin inhibits protein kinase C(epsilon) and c-Src activities and UVB-induced skin cancer. Cancer Res., 2010, 70(6), 2415-2423.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4093] [PMID: 20215519]
[65]
National Nanotechnology Initiative 2018.Available at:. http://www.nano.gov
[66]
National Institutes of Health. In: National Institute of Health Roadmap for Medical Research: Nanomedicine; National Institutes of Health: Bethesda, MD, USA, 2006.
[67]
Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine-challenge and perspectives. Angew. Chem. Int. Ed. Engl., 2009, 48(5), 872-897.
[http://dx.doi.org/10.1002/anie.200802585] [PMID: 19142939]
[68]
Sabry, N.M.; Tolba, S.; Abdel-Gawad, F.K.; Bassem, S.M.; Nassar, H.F.; El-Taweel, G.E.; Okasha, A.; Ibrahim, M. Interaction between nanosilver and bacteria: modeling approach. Biointerface Res. Appl. Chem., 2018, 8, 3570-3574.
[69]
Kendall, M.; Lynch, I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol., 2016, 11(3), 206-210.
[http://dx.doi.org/10.1038/nnano.2015.341] [PMID: 26936811]
[70]
Tomar, A.; Garg, G. Short review on application of gold nanoparticles. Glob. J. Pharmacol., 2013, 7(1), 34-38.
[71]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae, 2011, 3(2), 34-55.
[http://dx.doi.org/10.32607/20758251-2011-3-2-34-56] [PMID: 22649683]
[72]
Cai, W.; Chen, X. Nanoplatforms for targeted molecular imaging in living subjects. Small, 2007, 3(11), 1840-1854.
[http://dx.doi.org/10.1002/smll.200700351] [PMID: 17943716]
[73]
Arrighetti, N.; Corbo, C.; Evangelopoulos, M.; Pasto, A.; Zuco, V.; Tasciotti, E. Exosome-like nanovectors for drug delivery in cancer. Curr. Med. Chem., 2019, 26(33), 6132-6148.
[http://dx.doi.org/10.2174/0929867325666180831150259] [PMID: 30182846]
[74]
Fernandes, M.; Lopes, I.; Teixeira, J.; Botelho, C.; Gomes, A.C. Exosome-like nanoparticles: a new type of nanocarrier. Curr. Med. Chem., 2019. Epub ahead of print
[http://dx.doi.org/10.2174/0929867326666190129142604] [PMID: 30706777]
[75]
Farrand, L.; Oh, S.W.; Song, Y.S.; Tsang, B.K. Phytochemicals: a multitargeted approach to gynecologic cancer therapy. BioMed Res. Int., 2014, 2014890141
[http://dx.doi.org/10.1155/2014/890141] [PMID: 25093186]
[76]
Harborne, J.R. Introduction to Ecological Biochemistry, 4th ed; Elsevier Inc.: London, UK, 1993.
[77]
Gershenzon, J. The cost of plant chemical defense against herbivory: A biochemical perspective. In: Insect-Plant Interactions; Bernays, E.A., Ed.; CRC Press: Boca Raton, USA, 1994; pp. 105-173.
[78]
Reymond, P.; Weber, H.; Damond, M.; Farmer, E.E. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 2000, 12(5), 707-720.
[http://dx.doi.org/10.1105/tpc.12.5.707] [PMID: 10810145]
[79]
Hermsmeier, D.; Schittko, U.; Baldwin, I.T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol., 2001, 125(2), 683-700.
[http://dx.doi.org/10.1104/pp.125.2.683] [PMID: 11161026]
[80]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2(1), 32-50.
[http://dx.doi.org/10.3945/an.110.000117] [PMID: 22211188]
[81]
Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod., 2004, 67(2), 257-268.
[http://dx.doi.org/10.1021/np030397v] [PMID: 14987067]
[82]
Verma, V.C.; Kharwar, R.N.; Strobel, G.A. Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun., 2009, 4(11), 1511-1532.
[http://dx.doi.org/10.1177/1934578X0900401114] [PMID: 19967984]
[83]
Yu, H.; Zhang, L.; Li, L.; Zheng, C.; Guo, L.; Li, W.; Sun, P.; Qin, L. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res., 2010, 165(6), 437-449.
[http://dx.doi.org/10.1016/j.micres.2009.11.009] [PMID: 20116229]
[84]
Bascom-Slack, C.A.; Arnold, A.E.; Strobel, S.A. IBI series winner. Student-directed discovery of the plant microbiome and its products. Science, 2012, 338(6106), 485-486.
[http://dx.doi.org/10.1126/science.1215227] [PMID: 23112324]
[85]
Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes - secret producers of bioactive plant metabolites. Pharmazie, 2013, 68(7), 499-505.
[PMID: 23923629]
[86]
Mousa, W.K.; Raizada, M.N. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front. Microbiol., 2013, 4, 65.
[http://dx.doi.org/10.3389/fmicb.2013.00065] [PMID: 23543048]
[87]
Leonov, A.; Arlia-Ciommo, A.; Piano, A.; Svistkova, V.; Lutchman, V.; Medkour, Y.; Titorenko, V.I. Longevity extension by phytochemicals. Molecules, 2015, 20(4), 6544-6572.
[http://dx.doi.org/10.3390/molecules20046544] [PMID: 25871373]
[88]
Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicals-promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458.
[http://dx.doi.org/10.1002/ijc.22419] [PMID: 17131309]
[89]
Somani, S.J.; Modi, K.P.; Majumdar, A.S.; Sadarani, B.N. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother. Res., 2015, 29(3), 339-350.
[http://dx.doi.org/10.1002/ptr.5271] [PMID: 25572840]
[90]
Kim, J.; Lee, H.J.; Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem., 2010, 112(6), 1415-1430.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06562.x] [PMID: 20050972]
[91]
Ahmad, S.S.; Kamal, M.A. Current updates on the regulation of beta-secretase movement as a potential restorative focus for the management of Alzheimer’s disease. Protein Pept. Lett., 2019, 26(8), 579-587.
[http://dx.doi.org/10.2174/0929866526666190405125334] [PMID: 30950339]
[92]
Farooqui, A.A. Phytochemicals, Signal Transduction, and Neurological DisordersEffect of lifestyle, aging, and phytochemicals on the onset of neurological disorders; Springer: New York, NY, USA, 2012, pp. 1-29.
[93]
Flannery, P.J.; Trushina, E. Mitochondrial dynamics, and transport in Alzheimer’s disease. Mol. Cell. Neurosci., 2019, 19, 30094-30096.
[http://dx.doi.org/10.1016/j.mcn.2019.06.009]
[94]
Albensi, B.C. Dysfunction of mitochondria: implications for Alzheimer’s disease. Int. Rev. Neurobiol., 2019, 145, 13-27.
[http://dx.doi.org/10.1016/bs.irn.2019.03.001] [PMID: 31208523]
[95]
Villar-Alvarez, E.; Leal, B.H.; Cambón, A.; Pardo, A.; Martínez-Gonzalez, R.; Fernández-Vega, J.; Al-Qadi, S.; Mosquera, V.X.; Bouzas, A.; Barbosa, S.; Taboada, P. Triggered RNAi therapy using metal inorganic nanovectors. Mol. Pharm., 2019, 16(8), 3374-3385.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00021] [PMID: 31188622]
[96]
Hampel, H.; Lista, S.; Mango, D.; Nisticò, R.; Perry, G.; Avila, J.; Hernandez, F.; Geerts, H.; Vergallo, A. Alzheimer Precision Medicine Initiative (APMI). Lithium as a treatment for Alzheimer’s Disease: the systems pharmacology perspective. J. Alzheimers Dis., 2019, 69(3), 615-629.
[http://dx.doi.org/10.3233/JAD-190197] [PMID: 31156173]
[97]
Türkan, F.; Taslimi, P.; Saltan, F.Z. Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer’s disease. J. Biochem. Mol. Toxicol., 2019, 33(8)e22340
[http://dx.doi.org/10.1002/jbt.22340] [PMID: 30974029]
[98]
Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.039] [PMID: 29289883]
[99]
Pistollato, F.; Calderón Iglesias, R.; Ruiz, R.; Aparicio, S.; Crespo, J.; Dzul Lopez, L.; Giampieri, F.; Battino, M. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett., 2017, 411, 191-200.
[http://dx.doi.org/10.1016/j.canlet.2017.09.050] [PMID: 29017913]
[100]
Chu, P.Y.; Tsai, S.C.; Ko, H.Y.; Wu, C.C.; Lin, Y.H. Co-delivery of natural compounds with a dual-targeted nanoparticle delivery system for improving synergistic therapy in an orthotopic tumor model. ACS Appl. Mater. Interfaces, 2019, 11(27), 23880-23892.
[http://dx.doi.org/10.1021/acsami.9b06155] [PMID: 31192580]
[101]
Hosseini, A.; Ghorbani, A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J. Phytomed., 2015, 5(2), 84-97.
[PMID: 25949949]
[102]
Mollakhalili, M. N.; Mortazavian, A. M. Bahadori, Monfared, A.; Sohrabvandi, S.; Aghaei, Meybodi, F. Phytochemicals in cancer prevention: a review of the evidence. Int J Cancer Manag.,, 2017. 10e7219
[103]
D’Onofrio, G.; Sancarlo, D.; Ruan, Q.; Yu, Z.; Panza, F.; Daniele, A.; Greco, A.; Seripa, D. Phytochemicals in the treatment of Alzheimer’s disease: a systematic review. Curr. Drug Targets, 2017, 18(13), 1487-1498.
[http://dx.doi.org/10.2174/1389450117666161102121553] [PMID: 27809746]
[104]
Hartman, R.E.; Ross, D.M. Effects and mechanisms of actions of phytochemicals on Alzheimer’s disease neuropathology. Front. Biosci. (Elite Ed.), 2018, 10, 300-333.
[http://dx.doi.org/10.2741/e824] [PMID: 28930620]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy