Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Main-Chain Ferrocene-Containing Polymers Prepared by Acyclic Diene Metathesis Polymerization: A Review

Author(s): Ye Sha*, Zhihua Shen, Huan Jia and Zhenyang Luo*

Volume 24, Issue 9, 2020

Page: [1010 - 1017] Pages: 8

DOI: 10.2174/1385272824666191227111804

Price: $65

Open Access Journals Promotions 2
Abstract

Ferrocene, the crown of metallocene family, is widely studied as a functional unit in electrochemical and catalytic applications due to its sandwich structure. Ferrocene moieties can be embedded into the polymer backbone, leading to main-chain ferrocenecontaining polymers. These polymeric materials combine the unique functionalities of iron center with the processabilities of polymers. As one of the choice polymerization techniques, acyclic diene metathesis (ADMET) polymerization serves as a versatile method to prepare main-chain ferrocene-containing polymers under mild conditions using α,ω-dienes as monomers. This paper overviews main-chain ferrocene-containing polymers prepared by ADMET polymerization. Advances in the design, synthesis and applications of this class of organometallic monomers and polymers are detailed.

Keywords: Ferrocene, main-chain, metallocene, metallopolymer, acyclic diene metathesis (ADMET), polymerization.

Next »
Graphical Abstract
[1]
Dong, Q.; Meng, Z.; Ho, C.L.; Guo, H.; Yang, W.; Manners, I.; Xu, L.; Wong, W.Y. A molecular approach to magnetic metallic nanostructures from metallopolymer precursors. Chem. Soc. Rev., 2018, 47(13), 4934-4953.
[http://dx.doi.org/10.1039/C7CS00599G] [PMID: 29774340]
[2]
Hailes, R.L.N.; Oliver, A.M.; Gwyther, J.; Whittell, G.R.; Manners, I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem. Soc. Rev., 2016, 45(19), 5358-5407.
[http://dx.doi.org/10.1039/C6CS00155F] [PMID: 27348354]
[3]
Wang, Y.; Astruc, D.; Abd-El-Aziz, A.S. Metallopolymers for advanced sustainable applications. Chem. Soc. Rev., 2019, 48, 558-636.
[4]
Gu, H.B.; Mu, S.D.; Qiu, G.R.; Liu, X.; Zhang, L.; Yuan, Y.F.; Astruc, D. Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coord. Chem. Rev., 2018, 364, 51-85.
[http://dx.doi.org/10.1016/j.ccr.2018.03.013]
[5]
Yan, Y.; Zhang, J.; Ren, L.; Tang, C. Metal-containing and related polymers for biomedical applications. Chem. Soc. Rev., 2016, 45(19), 5232-5263.
[http://dx.doi.org/10.1039/C6CS00026F] [PMID: 26910408]
[6]
Abd-El-Aziz, A.S.; Agatemor, C.; Etkin, N. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials, 2017, 118, 27-50.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.002] [PMID: 27940381]
[7]
Zhu, T.; Sha, Y.; Yan, J.; Pageni, P.; Rahman, M.A.; Yan, Y.; Tang, C. Metallo-polyelectrolytes as a class of ionic macromolecules for functional materials. Nat. Commun., 2018, 9(1), 4329.
[http://dx.doi.org/10.1038/s41467-018-06475-9] [PMID: 30337530]
[8]
Astruc, D. Why is ferrocene so exceptional? Eur. J. Inorg. Chem., 2017, (1), 6-29.
[http://dx.doi.org/10.1002/ejic.201600983]
[9]
Gu, H.B.; Ciganda, R.; Gatard, S.; Lu, F.; Zhao, P.X.; Ruiz, J.; Astruc, D. On metallocene-containing macromolecules and their applications. J. Organomet. Chem., 2016, 813, 95-102.
[http://dx.doi.org/10.1016/j.jorganchem.2016.04.016]
[10]
Zhao, L.; Liu, X.; Zhang, L.; Qiu, G.R.; Astruc, D.; Gu, H.B. Metallomacromolecules containing cobalt sandwich complexes: synthesis and functional materials properties. Coord. Chem. Rev., 2017, 337, 34-79.
[http://dx.doi.org/10.1016/j.ccr.2017.02.009]
[11]
Yan, Y.; Pageni, P.; Kabir, M.P.; Tang, C.B. Metallocenium chemistry and its emerging impact on synthetic macromolecular chemistry. Synlett, 2016, 27(7), 984-1005.
[http://dx.doi.org/10.1055/s-0035-1561504]
[12]
Gallei, M.; Rüttiger, C. Recent trends in metallopolymer design: redox-controlled surfaces, porous membranes, and switchable optical materials using ferrocene-containing polymers. Chem. Eur. J., 2018, 24(40), 10006-10021.
[http://dx.doi.org/10.1002/chem.201800412] [PMID: 29532972]
[13]
Rahman, M.A.; Cha, Y.; Yuan, L.; Pageni, P.; Zhu, T.; Jui, M.S.; Tang, C. Polymerization-induced self-assembly of metallo-polyelectrolyte block copolymers. J. Polym. Sci., 2020, 58(1), 77-83.
[http://dx.doi.org/10.1002/pola.29439]]
[14]
Alkan, A.; Wurm, F.R. Water-soluble metallocene-containing polymers. Macromol. Rapid Commun., 2016, 37(18), 1482-1493.
[http://dx.doi.org/10.1002/marc.201600205] [PMID: 27492968]
[15]
Zhou, N.; Zhang, Z.; Zhu, J.; Cheng, Z.; Zhu, X. RAFT polymerization of styrene mediated by ferrocenyl-containing RAFT agent and properties of the polymer derived from ferrocene. Macromolecules, 2009, 42(12), 3898-3905.
[http://dx.doi.org/10.1021/ma8027276]
[16]
Rulkens, R.; Lough, A.J.; Manners, I.; Lovelace, S.R.; Grant, C.; Geiger, W.E. Linear oligo(ferrocenyldimethylsilanes) with between two and nine ferrocene units: electrochemical and structural models for poly(ferrocenylsilane) high polymers. J. Am. Chem. Soc., 1996, 118(50), 12683-12695.
[http://dx.doi.org/10.1021/ja962470s]
[17]
Nguyen, M.T.; Diaz, A.F.; Dementev, V.V.; Pannell, K.H. High-molecular-weight poly(ferrocenediyl silanes) - synthesis and electrochemistry of [-(C5H4)Fe(C5H4)SiR2-]n, R = Me, Et, n-Bu, n-Hex. Chem. Mater., 1993, 5(10), 1389-1394.
[http://dx.doi.org/10.1021/cm00034a005]
[18]
Buchmeiser, M.; Schrock, R.R. Synthesis of polyenes that contain metallocenes via the living polymerization of ethynylferrocene and ethynylruthenocene. Macromolecules, 1995, 28(19), 6642-6649.
[http://dx.doi.org/10.1021/ma00123a034]
[19]
Elbert, J.; Gallei, M.; Ruettiger, C.; Brunsen, A.; Didzoleit, H.; Stuehn, B.; Rehahn, M. Ferrocene polymers for switchable surface wettability. Organometallics, 2013, 32(20), 5873-5878.
[http://dx.doi.org/10.1021/om400468p]
[20]
Li, H.K.; Li, L.Z.; Wu, H.Q.; Lam, J.W.Y.; Sun, J.Z.; Qin, A.J.; Tang, B.Z. Ferrocene-based poly(aroxycarbonyltriazole)s: synthesis by metal-free click polymerization and use as precursors to magnetic ceramics. Polym. Chem., 2013, 4(22), 5537-5541.
[http://dx.doi.org/10.1039/c3py00892d]
[21]
Zhang, J.; Yan, Y.; Chen, J.; Chance, W.M.; Hayat, J.; Gai, Z.; Tang, C. Nanostructured metal/carbon composites from heterobimetallic block copolymers with controlled magnetic properties. Chem. Mater., 2014, 26(10), 3185-3190.
[http://dx.doi.org/10.1021/cm5007058]
[22]
Hardy, C.G.; Zhang, J.Y.; Yan, Y.; Ren, L.X.; Tang, C.B. Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Prog. Polym. Sci., 2014, 39(10), 1742-1796.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.03.002]
[23]
Nguyen, P.; Elipe, P.G.; Manners, I. Organometallic polymers with transition metals in the main chain. Chem. Rev., 1999, 99(6), 1515-1548.
[http://dx.doi.org/10.1021/cr960113u] [PMID: 11849001]
[24]
Williams, K.A.; Boydston, A.J.; Bielawski, C.W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev., 2007, 36(5), 729-744.
[http://dx.doi.org/10.1039/b601574n] [PMID: 17471398]
[25]
Di Giannantonio, M.; Ayer, M.A.; Verde-Sesto, E.; Lattuada, M.; Weder, C.; Fromm, K.M. Triggered metal ion release and oxidation: ferrocene as new mechanophore in polymers. Angew. Chem. Int. Ed. Engl., 2018, 57(35), 11445-11450.
[http://dx.doi.org/10.1002/anie.201803524] [PMID: 29897637]
[26]
Sha, Y.; Zhang, Y.; Xu, E.; Wang, Z.; Zhu, T.; Craig, S.L.; Tang, C. Quantitative and mechanistic mechanochemistry in ferrocene dissociation. ACS Macro Lett., 2018, 7(10), 1174-1179.
[http://dx.doi.org/10.1021/acsmacrolett.8b00625] [PMID: 31098336]
[27]
Sha, Y.; Zhang, Y.; Xu, E.; McAlister, C.W.; Zhu, T.; Craig, S.L.; Tang, C. Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem. Sci. (Camb.), 2019, 10(19), 4959-4965.
[http://dx.doi.org/10.1039/C9SC01347D] [PMID: 31183044]
[28]
Li, Y.; Haworth, N.L.; Xiang, L.; Ciampi, S.; Coote, M.L.; Tao, N. Mechanical stretching-induced electron-transfer reactions and conductance switching in single molecules. J. Am. Chem. Soc., 2017, 139(41), 14699-14706.
[http://dx.doi.org/10.1021/jacs.7b08239] [PMID: 28946743]
[29]
Shi, W.Q.; Cui, S.; Wang, C.; Wang, L.; Zhang, X.; Wang, X.J. Single-chain elasticity of poly(ferrocenyldimethylsilane) and poly(ferrocenylmethylpheny lsilane). Macromolecules, 2004, 37(5), 1839-1842.
[http://dx.doi.org/10.1021/ma035678o]
[30]
Zou, S.; Korczagin, I.; Hempenius, M.A.; Schonherr, H.; Vancso, G.J. Single molecule force spectroscopy of smart poly(ferrocenylsilane) macromolecules: towards highly controlled redox-driven single chain motors. Polymer (Guildf.), 2006, 47(7), 2483-2492.
[http://dx.doi.org/10.1016/j.polymer.2005.12.091]
[31]
Zou, S.; Hempenius, M.A.; Schonherr, H.; Vancso, G.J. Force spectroscopy of individual stimulus-responsive poly (ferrocenyldimethylsilane) chains: towards a redox-driven macromolecular motor. Macromol. Rapid Commun., 2006, 27(2), 103-108.
[http://dx.doi.org/10.1002/marc.200500684]
[32]
Stanton, C.E.; Lee, T.R.; Grubbs, R.H.; Lewis, N.S.; Pudelski, J.K.; Callstrom, M.R.; Erickson, M.S.; McLaughlin, M.L. Routes to conjugated polymers with ferrocenes in their backbones: synthesis and characterization of poly(ferrocenylenedivinylene) and poly(ferrocenylenebutenylene). Macromolecules, 1995, 28(26), 8713-8721.
[http://dx.doi.org/10.1021/ma00130a002]
[33]
Buretea, M.A.; Tilley, T.D. Poly(ferrocenylenevinylene) from ring-opening metathesis polymerization of ansa-(vinylene)ferrocene. Organometallics, 1997, 16(7), 1507-1510.
[http://dx.doi.org/10.1021/om960940l]
[34]
Sha, Y.; Rahman, A.; Zhu, T.; Cha, Y.; McAlister, C.; Tang, C. ROMPI-CDSA: Ring-opening metathesis polymerization induced-crystallization-driven self-assembly of metallo-block copolymers. Chem. Sci. (Camb.), 2019, 10(42), 9782-9787.
[http://dx.doi.org/10.1039/C9SC03056E]
[35]
Sha, Y.; Zhang, Y.; Zhu, T.; Tan, S.; Cha, Y.; Craig, S.L.; Tang, C. Ring closing metathesis and ring-opening metathesis polymerization toward main chain ferrocene containing polymers. Macromolecules, 2018, 51(22), 9131-9139.
[http://dx.doi.org/10.1021/acs.macromol.8b02064]
[36]
Gilroy, J.B.; Gädt, T.; Whittell, G.R.; Chabanne, L.; Mitchels, J.M.; Richardson, R.M.; Winnik, M.A.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem., 2010, 2(7), 566-570.
[http://dx.doi.org/10.1038/nchem.664] [PMID: 20571575]
[37]
Lammertink, R.G.H.; Hempenius, M.A.; Manners, I.; Vancso, G.J. Crystallization and melting behavior of poly(ferrocenyldimethylsilanes) obtained by anionic polymerization. Macromolecules, 1998, 31(3), 795-800.
[http://dx.doi.org/10.1021/ma9711248]
[38]
Rasburn, J.; Petersen, R.; Jahr, T.; Rulkens, R.; Manners, I.; Vancso, G.J. Solid-state synthesis and morphology of poly(ferrocenyldimethylsilane). Chem. Mater., 1995, 7(5), 871-877.
[http://dx.doi.org/10.1021/cm00053a010]
[39]
Qiu, H.; Gao, Y.; Boott, C.E.; Gould, O.E.C.; Harniman, R.L.; Miles, M.J.; Webb, S.E.D.; Winnik, M.A.; Manners, I. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science, 2016, 352(6286), 697-701.
[http://dx.doi.org/10.1126/science.aad9521] [PMID: 27151866]
[40]
He, X.; Hsiao, M.S.; Boott, C.E.; Harniman, R.L.; Nazemi, A.; Li, X.; Winnik, M.A.; Manners, I. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nat. Mater., 2017, 16(4), 481-488.
[http://dx.doi.org/10.1038/nmat4837] [PMID: 28068313]
[41]
Li, X.; Wolanin, P.J.; MacFarlane, L.R.; Harniman, R.L.; Qian, J.; Gould, O.E.C.; Dane, T.G.; Rudin, J.; Cryan, M.J.; Schmaltz, T.; Frauenrath, H.; Winnik, M.A.; Faul, C.F.J.; Manners, I. Uniform electroactive fibre-like micelle nanowires for organic electronics. Nat. Commun., 2017, 8, 15909.
[http://dx.doi.org/10.1038/ncomms15909] [PMID: 28649998]
[42]
Hudson, Z.M.; Boott, C.E.; Robinson, M.E.; Rupar, P.A.; Winnik, M.A.; Manners, I. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem., 2014, 6(10), 893-898.
[http://dx.doi.org/10.1038/nchem.2038] [PMID: 25242484]
[43]
Boott, C.E.; Gwyther, J.; Harniman, R.L.; Hayward, D.W.; Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem., 2017, 9(8), 785-792.
[http://dx.doi.org/10.1038/nchem.2721] [PMID: 28754931]
[44]
Oliver, A.M.; Gwyther, J.; Boott, C.E.; Davis, S.; Pearce, S.; Manners, I. Scalable fiber-like micelles and block co-micelles by polymerization-induced crystallization-driven self-assembly. J. Am. Chem. Soc., 2018, 140(51), 18104-18114.
[http://dx.doi.org/10.1021/jacs.8b10993] [PMID: 30452254]
[45]
Nazemi, A.; He, X.; MacFarlane, L.R.; Harniman, R.L.; Hsiao, M.S.; Winnik, M.A.; Faul, C.F.J.; Manners, I. Uniform “patchy” platelets by seeded heteroepitaxial growth of crystallizable polymer blends in two dimensions. J. Am. Chem. Soc., 2017, 139(12), 4409-4417.
[http://dx.doi.org/10.1021/jacs.6b12503] [PMID: 28211270]
[46]
Massey, J.A.; Temple, K.; Cao, L.; Rharbi, Y.; Raez, J.; Winnik, M.A.; Manners, I. Self-assembly of organometallic block copolymers: The role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J. Am. Chem. Soc., 2000, 122(47), 11577-11584.
[http://dx.doi.org/10.1021/ja002205d]
[47]
Leitgeb, A.; Wappel, J.; Slugovc, C. The ROMP toolbox upgraded. Polymer (Guildf.), 2010, 51(14), 2927-2946.
[http://dx.doi.org/10.1016/j.polymer.2010.05.002]
[48]
Grubbs, R.H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron, 1998, 54(18), 4413-4450.
[http://dx.doi.org/10.1016/S0040-4020(97)10427-6]
[49]
Chen, Y.; Abdellatif, M.M.; Nomura, K. Olefin metathesis polymerization: some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron, 2018, 74(6), 619-643.
[http://dx.doi.org/10.1016/j.tet.2017.12.041]
[50]
Elling, B.R.; Xia, Y. Efficient and facile end group control of living ring-opening metathesis polymers via single addition of functional cyclopropenes. ACS Macro Lett., 2018, 7(6), 656-661.
[http://dx.doi.org/10.1021/acsmacrolett.8b00347]
[51]
Elling, B.R.; Su, J.K.; Feist, J.D.; Xia, Y. Precise placement of single monomer units in living ring-opening metathesis polymerization. Chem, 2019, 5(10), 2691-2701.
[http://dx.doi.org/10.1016/j.chempr.2019.07.017]
[52]
Su, J.K.; Jin, Z.; Zhang, R.; Lu, G.; Liu, P.; Xia, Y. Tuning the reactivity of cyclopropenes from living Ring-Opening Metathesis Polymerization (ROMP) to single-addition and alternating ROMP. Angew. Chem. Int. Ed. Engl., 2019, 58(49), 17771-17776.
[http://dx.doi.org/10.1002/anie.201909688] [PMID: 31571344]
[53]
Kilbinger, A.F.M. Functional end groups in living ring-opening metathesis polymerization. Synlett, 2019, 30(18), 2051-2057.
[http://dx.doi.org/10.1055/s-0039-1690154]
[54]
Opper, K.L.; Wagener, K.B. ADMET: metathesis polycondensation. J. Polym. Sci. A Polym. Chem., 2011, 49(4), 821-831.
[http://dx.doi.org/10.1002/pola.24491]
[55]
Schulz, M.D.; Wagener, K.B. Precision polymers through ADMET polymerization. Macromol. Chem. Phys., 2014, 215(20), 1936-1945.
[http://dx.doi.org/10.1002/macp.201400268]
[56]
Bielawski, C.W.; Grubbs, R.H. Living ring-opening metathesis polymerization. Prog. Polym. Sci., 2007, 32(1), 1-29.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.08.006]
[57]
Mutlu, H.; Montero de Espinosa, L.; Meier, M.A.R. Acyclic diene metathesis: a versatile tool for the construction of defined polymer architectures. Chem. Soc. Rev., 2011, 40(3), 1404-1445.
[http://dx.doi.org/10.1039/B924852H] [PMID: 20944834]
[58]
Ren, L.X.; Zhang, J.Y.; Bai, X.L.; Hardy, C.G.; Shimizu, K.D.; Tang, C.B. Preparation of cationic cobaltocenium polymers and block copolymers by “living” ring-opening metathesis polymerization. Chem. Sci. (Camb.), 2012, 3(2), 580-583.
[http://dx.doi.org/10.1039/C1SC00783A]
[59]
Yan, Y.; Zhang, J.; Wilbon, P.; Qiao, Y.; Tang, C. Ring-opening metathesis polymerization of 18-e Cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization. Macromol. Rapid Commun., 2014, 35(21), 1840-1845.
[http://dx.doi.org/10.1002/marc.201400365] [PMID: 25250694]
[60]
Yan, Y.; Deaton, T.M.; Zhang, J.; He, H.; Hayat, J.; Pageni, P.; Matyjaszewski, K.; Tang, C. Syntheses of monosubstituted rhodocenium derivatives, monomers, and polymers. Macromolecules, 2015, 48(6), 1644-1650.
[http://dx.doi.org/10.1021/acs.macromol.5b00471]
[61]
Zhu, T.; Xu, S.; Rahman, A.; Dogdibegovic, E.; Yang, P.; Pageni, P.; Kabir, M.P.; Zhou, X.D.; Tang, C. Cationic metallo-polyelectrolytes for robust alkaline anion-exchange membranes. Angew. Chem. Int. Ed. Engl., 2018, 57(9), 2388-2392.
[http://dx.doi.org/10.1002/anie.201712387] [PMID: 29291260]
[62]
Bielawski, C.W.; Louie, J.; Grubbs, R.H. Tandem catalysis: Three mechanistically distinct reactions from a single ruthenium complex. J. Am. Chem. Soc., 2000, 122(51), 12872-12873.
[http://dx.doi.org/10.1021/ja001698j]
[63]
Schwab, P.; France, M.B.; Ziller, J.W.; Grubbs, R.H. A series of well-defined metathesis catalysts - synthesis of [RuCl2(=CHR’)(PR3)2] and its reactions. Angew. Chem. Int. Ed. Engl., 1995, 34(18), 2039-2041.
[http://dx.doi.org/10.1002/anie.199520391]
[64]
Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett., 1999, 1(6), 953-956.
[http://dx.doi.org/10.1021/ol990909q] [PMID: 10823227]
[65]
Sanford, M.S.; Love, J.A.; Grubbs, R.H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics, 2001, 20(25), 5314-5318.
[http://dx.doi.org/10.1021/om010599r]
[66]
Schrock, R.R. Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes. Acc. Chem. Res., 1990, 23(5), 158-165.
[http://dx.doi.org/10.1021/ar00173a007]
[67]
Schrock, R.R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2006, 45(23), 3748-3759.
[http://dx.doi.org/10.1002/anie.200600085] [PMID: 16703641]
[68]
Schrock, R.R.; Hoveyda, A.H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew. Chem. Int. Ed. Engl., 2003, 42(38), 4592-4633.
[http://dx.doi.org/10.1002/anie.200300576] [PMID: 14533149]
[69]
Majchrzak, M.; Kostera, S.; Grzelak, M.; Marciniec, B.; Kubicki, M. An efficient catalytic synthesis and characterization of new styryl-ferrocenes and their trans-pi-conjugated organosilicon materials. RSC Advances, 2016, 6(46), 39947-39954.
[http://dx.doi.org/10.1039/C6RA00859C]
[70]
Gao, X.; Deng, L.; Hu, J.; Zhang, H. Ferrocene-containing conjugated oligomers synthesized by acyclic diene metathesis polymerization. Polymers, 2019, 11(8) E1334
[http://dx.doi.org/10.3390/polym11081334] [PMID: 31408998]
[71]
Gamble, A.S.; Patton, J.T.; Boncella, J.M. Acyclic diene metathesis polymerizations of ferrocene monomers. Makromol. Chem., Rapid. Commun., 1992, 13(2), 109-115.
[http://dx.doi.org/10.1002/marc.1992.030130207]
[72]
Buchowicz, W.; Szmajda, M. Carbonyl-substituted nickelocenes by the cross-metathesis route. Organometallics, 2009, 28(23), 6838-6840.
[http://dx.doi.org/10.1021/om9008444]
[73]
Locke, A.J.; Jones, C.; Richards, C.J. A rapid approach to ferrocenophanes via ring-closing metathesis. J. Organomet. Chem., 2001, 637, 669-676.
[http://dx.doi.org/10.1016/S0022-328X(01)00980-9]
[74]
Arae, S.; Ogasawara, M. Catalytic asymmetric synthesis of planar-chiral transition-metal complexes. Tetrahedron Lett., 2015, 56(14), 1751-1761.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.130]
[75]
Erker, G. Building bridges: ansa-Metallocene construction by carbon-carbon coupling reactions at preformed Group 4 bent metallocene frameworks. Polyhedron, 2005, 24(11), 1289-1297.
[http://dx.doi.org/10.1016/j.poly.2005.03.054]
[76]
Ren, L.; Hardy, C.G.; Tang, C. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers. J. Am. Chem. Soc., 2010, 132(26), 8874-8875.
[http://dx.doi.org/10.1021/ja1037726] [PMID: 20540580]
[77]
Wirth-Pfeifer, C.; Michel, A.; Weiss, K. Acyclic Diene Metathesis Condensation (ADMET) of 1,2-Divinylferrocene (DVFC); Springer: Dordrecht, 2003, pp. 271-276.
[http://dx.doi.org/10.1007/978-94-010-0066-6_23]
[78]
Weychardt, H.; Plenio, H. Acyclic diene metathesis polymerization of divinylarenes and divinylferrocenes with Grubbs-type olefin metathesis catalysts. Organometallics, 2008, 27(7), 1479-1485.
[http://dx.doi.org/10.1021/om701277p]
[79]
Heo, R.W.; Park, J.S.; Goodson, J.T.; Claudio, G.C.; Takenaga, M.; Albright, T.A.; Lee, T.R. ROMP of t-butyl-substituted ferrocenophanes affords soluble conjugated polymers that contain ferrocene moieties in the backbone. Tetrahedron, 2004, 60(34), 7225-7235.
[http://dx.doi.org/10.1016/j.tet.2004.06.067]
[80]
Masson, G.; Lough, A.J.; Manners, I. Soluble poly(ferrocenylenevinylene) with t-butyl substituents on the cyclopentadienyl ligands via ring-opening metathesis polymerization. Macromolecules, 2008, 41(3), 539-547.
[http://dx.doi.org/10.1021/ma071034v]
[81]
Zhang, H.; Liu, F.; Cao, J.; Ling, L.; Sun, R.F. Ferrocene-containing polymers synthesized by Acyclic Diene Metathesis (ADMET) polymerization. Chin. J. Polym. Sci., 2016, 34(2), 242-252.
[http://dx.doi.org/10.1007/s10118-016-1743-2]
[82]
Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Enantioselective synthesis of planar-chiral phosphaferrocenes by molybdenum-catalyzed asymmetric interannular ring-closing metathesis. J. Am. Chem. Soc., 2010, 132(7), 2136-2137.
[http://dx.doi.org/10.1021/ja910348z] [PMID: 20108921]
[83]
Ogasawara, M.; Wu, W.Y.; Arae, S.; Nakajima, K.; Takahashi, T. Inter versus intraannular ring-closing metathesis of polyallylferrocenes: five fold RCM within a single molecule. Organometallics, 2013, 32(21), 6593-6598.
[http://dx.doi.org/10.1021/om400936b]
[84]
Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Preparation of 4 - and 5 ferrocenophanes by ruthenium-catalyzed ring-closing ene-yne metathesis. Organometallics, 2008, 27(24), 6565-6569.
[http://dx.doi.org/10.1021/om8007663]
[85]
Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Asymmetric synthesis of planar-chiral ferrocenes by Mo- or Ru-catalyzed enantioselective metathesis. Pure Appl. Chem., 2008, 80(5), 1109-1113.
[http://dx.doi.org/10.1351/pac200880051109]
[86]
Martinez, V.; Blais, J.C.; Bravic, G.; Astruc, D. Coupling multiple benzylic activation of simple arenes by CpFe+ with multiple alkene metathesis using Grubbs catalysts: an efficient carbon-carbon bond formation strategy leading to polycycles, cyclophanes, capsules, and polymeric compounds and their CpFe+ complexes. Organometallics, 2004, 23(4), 861-874.
[http://dx.doi.org/10.1021/om030623w]
[87]
Dounis, P.; Feast, W.J.; Kenwright, A.M. Ring-opening metathesis polymerization of monocyclic alkenes using molybdenum and tungsten alkylidene (Schrock-type) initiators and c-13 nuclear-magnetic-resonance studies of the resulting polyalkenamers. Polymer (Guildf.), 1995, 36(14), 2787-2796.
[http://dx.doi.org/10.1016/0032-3861(95)93658-9]
[88]
Khan, R.K.M.; Torker, S.; Hoveyda, A.H. Readily accessible and easily modifiable Ru-based catalysts for efficient and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. J. Am. Chem. Soc., 2013, 135(28), 10258-10261.
[http://dx.doi.org/10.1021/ja404208a] [PMID: 23822154]
[89]
Keitz, B.K.; Fedorov, A.; Grubbs, R.H. Cis-selective ring-opening metathesis polymerization with ruthenium catalysts. J. Am. Chem. Soc., 2012, 134(4), 2040-2043.
[http://dx.doi.org/10.1021/ja211676y] [PMID: 22239675]
[90]
Flook, M.M.; Boerner, J.; Kilyanek, S.M.; Gerber, L.C.H.; Schrock, R.R. Five-coordinate rearrangements of metallacyclobutane intermediates during ring-opening metathesis polymerization of 2,3-dicarboalkoxynorbornenes by molybdenum and tungsten monoalkoxide pyrrolide initiators. Organometallics, 2012, 31(17), 6231-6243.
[http://dx.doi.org/10.1021/om300530p]
[91]
Benedikter, M.J.; Schowner, R.; Elser, I.; Werner, P.; Herz, K.; Stoehr, L.; Imbrich, D.A.; Nagy, G.M.; Wang, D.; Buchmeiser, M.R. Synthesis of trans isotactic poly(norbornene)s through living ring-opening metathesis polymerization initiated by group VI imido alkylidene N-heterocyclic carbene complexes. Macromolecules, 2019, 52(11), 4059-4066.
[http://dx.doi.org/10.1021/acs.macromol.9b00422]
[92]
Demonceau, A.; Stumpf, A.W.; Saive, E.; Noels, A.F. Novel ruthenium-based catalyst systems for the ring-opening metathesis polymerization of low strain cyclic olefins. Macromolecules, 1997, 30(11), 3127-3136.
[http://dx.doi.org/10.1021/ma961040j]
[93]
Delaude, L.; Demonceau, A.; Noels, A.F. Highly stereoselective ruthenium catalyzed ring-opening metathesis polymerization of 2,3-difunctionalized norbornadienes and their 7-oxa analogues. Macromolecules, 1999, 32(7), 2091-2103.
[http://dx.doi.org/10.1021/ma9812783]
[94]
Peeck, L.H.; Leuthaeusser, S.; Plenio, H. Switched stereocontrol in Grubbs hoveyda complex catalyzed ROMP utilizing proton-switched NHC ligands. Organometallics, 2010, 29(19), 4339-4345.
[http://dx.doi.org/10.1021/om100628f]
[95]
Lin, W.Y.; Murugesh, M.G.; Sudhakar, S.; Yang, H.C.; Tai, H.C.; Chang, C.S.; Liu, Y.H.; Wang, Y.; Chen, I.W.P.; Chen, C.H.; Luh, T.Y. On the rigidity of polynorbornenes with dipolar pendant groups. Chem. Eur. J., 2016, 12(1), 324-330.
[http://dx.doi.org/10.1002/chem.200500770] [PMID: 16278915]
[96]
Lee, J.C.; Parker, K.A.; Sampson, N.S. Amino acid-bearing ROMP polymers with a stereoregular backbone. J. Am. Chem. Soc., 2006, 128(14), 4578-4579.
[http://dx.doi.org/10.1021/ja058801v] [PMID: 16594687]
[97]
Chou, C.M.; Lee, S.L.; Chen, C.H.; Biju, A.T.; Wang, H.W.; Wu, Y.L.; Zhang, G.F.; Yang, K.W.; Lim, T.S.; Huang, M.J.; Tsai, P.Y.; Lin, K.C.; Huang, S.L.; Chen, C.H.; Luh, T.Y. Polymeric ladderphanes. J. Am. Chem. Soc., 2009, 131(35), 12579-12585.
[http://dx.doi.org/10.1021/ja9035362] [PMID: 19673524]
[98]
Amir-Ebrahimi, V.; Corry, D.A.; Hamilton, J.G.; Thompson, J.M.; Rooney, J.J. Characteristics of RuCl(CHPh)(PCy3)2 as a catalyst for ring-opening metathesis polymerization. Macromolecules, 2000, 33(3), 717-724.
[http://dx.doi.org/10.1021/ma991395d]
[99]
Binalimuniar, A.; Blackmore, P.M.; Edwards, J.H.; Feast, W.J.; Wilson, B. Stereoregular fluoropolymers. 1. the ring-opening polymerization of 2,3-bis(trifluoromethyl) bicyclo 2.2.1 hepta-2,5-diene. Polymer (Guildf.), 1986, 27(8), 1281-1288.
[http://dx.doi.org/10.1016/0032-3861(86)90020-0]
[100]
Al Samak, B.; Amir-Ebrahimi, V.; Corry, D.G.; Hamilton, J.G.; Rigby, S.; Rooney, J.J.; Thompson, J.M. Dramatic solvent effects on ring-opening metathesis polymerization of cycloalkenes. J. Mol. Catal. Chem., 2000, 160(1), 13-21.
[http://dx.doi.org/10.1016/S1381-1169(00)00228-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy