Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Neuroblastoma: An Updated Review on Biology and Treatment

Author(s): Suresh Mallepalli, Manoj Kumar Gupta and Ramakrishna Vadde*

Volume 20, Issue 13, 2019

Page: [1014 - 1022] Pages: 9

DOI: 10.2174/1389200221666191226102231

Price: $65

Abstract

Background: Neuroblastoma (NB) is the second leading extracranial solid tumors of early childhood and clinically characterized by the presence of round, small, monomorphic cells with excess nuclear pigmentation (hyperchromasia).Owing to a lack of definitive treatment against NB and less survival rate in high-risk patients, there is an urgent requirement to understand molecular mechanisms associated with NB in a better way, which in turn can be utilized for developing drugs towards the treatment of NB in human.

Objectives: In this review, an approach was adopted to understand major risk factors, pathophysiology, the molecular mechanism associated with NB, and various therapeutic agents that can serve as drugs towards the treatment of NB in humans.

Conclusion: Numerous genetic (e.g., MYCN amplification), perinatal, and gestational factors are responsible for developing NB. However, no definite environmental or parental exposures responsible for causing NB have been confirmed to date. Though intensive multimodal treatment approaches, namely, chemotherapy, surgery & radiation, may help in improving the survival rate in children, these approaches have several side effects and do not work efficiently in high-risk patients. However, recent studies suggested that numerous phytochemicals, namely, vincristine, and matrine have a minimal side effect in the human body and may serve as a therapeutic drug during the treatment of NB. Most of these phytochemicals work in a dose-dependent manner and hence must be prescribed very cautiously. The information discussed in the present review will be useful in the drug discovery process as well as treatment and prevention on NB in humans.

Keywords: Neuroblastoma, molecular mechanism, chemotherapy, drugs, phytochemicals, treatment.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: ] [PMID: 30620402] [PMID: ]
[2]
Cooper, G.M. The Cell; Oxford Publishers: Oxford, 2000.
[3]
Matthay, K.K.; Maris, J.M.; Schleiermacher, G.; Nakagawara, A.; Mackall, C.L.; Diller, L.; Weiss, W.A. Neuroblastoma. Nat. Rev. Dis. Primers, 2016, 2, 16078.
[http://dx.doi.org/10.1038/nrdp.2016.78] [PMID: ] [PMID: 27830764] [PMID: ]
[4]
Mazar, J.; Li, Y.; Rosado, A.; Phelan, P.; Kedarinath, K.; Parks, G.D.; Alexander, K.A.; Westmoreland, T.J. Zika virus as an oncolytic treatment of human neuroblastoma cells requires CD24. PLoS One, 2018, 13(7)e0200358
[http://dx.doi.org/10.1371/journal.pone.0200358] [PMID: ] [PMID: 30044847] [PMID: ]
[5]
Nakagawara, A.; Li, Y.; Izumi, H.; Muramori, K.; Inada, H.; Nishi, M. Neuroblastoma. Jpn. J. Clin. Oncol., 2018, 48(3), 214-241.
[http://dx.doi.org/10.1093/jjco/hyx176] [PMID: ] [PMID: 29378002] [PMID: ]
[6]
Hassan, T.; Badr, M.; Safy, U.E.; Hesham, M.; Sherief, L.; Beshir, M.; Fathy, M.; Zakaria, M.A.M. Target therapy in neuroblastoma. Current state and recent updates. Neuroblastoma, 2017.70328. http://dx.doi.org/https://doi.org/10.5772/intechopen
[7]
Kholodenko, I.V.; Kalinovsky, D.V.; Doronin, I.I.; Deyev, S.M.; Kholodenko, R.V. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy., Available at:. https://www.hindawi.com/journals/jir/ 2018/7394268/ http://dx.doi.org/10.1155/2018/7394268
[8]
Gupta, M.K.; Vadde, R. In silico identification of natural product inhibitors for γ-secretase activating protein, a therapeutic target for Alzheimer’s disease. J. Cell. Biochem., 2018, 120(6), 10323-10336.
[http://dx.doi.org/10.1002/jcb.28316] [PMID: ] [PMID: 30565717] [PMID: ]
[9]
Gupta, M.K.; Vadde, R. Insights into the structure-function relationship of both wild and mutant zinc transporter ZnT8 in human: a computational structural biology approach. J. Biomol. Struct. Dyn., 2019, 38(1), 137-151.
[http://dx.doi.org/10.1080/07391102.2019.1567391] [PMID: ] [PMID: 30633652] [PMID: ]
[10]
Gupta, M.K.; Behera, S.K.; Dehury, B.; Mahapatra, N. Identification and characterization of differentially expressed genes from human microglial cell samples infected with Japanese encephalitis virus. J. Vector Borne Dis., 2017, 54(2), 131-138.
[PMID: 28748833] [PMID: ]
[11]
Gupta, M.K.; Vadde, R. Identification and characterization of differentially expressed genes in type 2 Diabetes using in silico approach. Comput. Biol. Chem., 2019, 79, 24-35.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.010] [PMID: ] [PMID: 30708140] [PMID: ]
[12]
Gupta, M.K.; Vadde, R.; Gouda, G.; Donde, R.; Kumar, J.; Behera, L. Computational approach to understand molecular mechanism involved in BPH resistance in Bt- rice plant. J. Mol. Graph. Model., 2019, 88, 209-220.
[http://dx.doi.org/10.1016/j.jmgm.2019.01.018] [PMID: ] [PMID: 30743158] [PMID: ]
[13]
Donde, R.; Gupta, M.K.; Gouda, G.; Kumar, J.; Vadde, R.; Sahoo, K.K.; Dash, S.K.; Behera, L. Computational characterization of structural and functional roles of DREB1A, DREB1B and DREB1C in enhancing cold tolerance in rice plant. Amino Acids, 2019, 51(5), 839-853.
[http://dx.doi.org/10.1007/s00726-019-02727-0] [PMID: ] [PMID: 30900088] [PMID: ]
[14]
Gouda, G.; Gupta, M.K.; Donde, R.; Kumar, J.; Vadde, R.; Mohapatra, T.; Behera, L. Computational approach towards understanding structural and functional role of cytokinin oxidase/dehydrogenase 2 (CKX2) in enhancing grain yield in rice plant. J. Biomol. Struct. Dyn., 2019, 0(0), 1-10.
[http://dx.doi.org/10.1080/07391102.2019.1597771] [PMID: ] [PMID: 30896372] [PMID: ]
[15]
Bluhm, E.; McNeil, D.E.; Cnattingius, S.; Gridley, G.; El Ghormli, L.; Fraumeni, J.F., Jr Prenatal and perinatal risk factors for neuroblastoma. Int. J. Cancer, 2008, 123(12), 2885-2890.
[http://dx.doi.org/10.1002/ijc.23847] [PMID: ] [PMID: 18798548] [PMID: ]
[16]
Atluri, R.; Atmaramani, R.; Tharaka, G.; McCallister, T.; Peng, J.; Diercks, D. GhoshMitra, S.; Ghosh, S. Photo-magnetic irradiation-mediated multimodal therapy of neuroblastoma cells using a cluster of multifunctional nanostructures. Nanomaterials(Basel), , 2018, 8(10)E774
[http://dx.doi.org/10.3390/nano8100774] [PMID: ] [PMID: 30274306] [PMID: ]
[17]
Weinstein, J.L.; Katzenstein, H.M.; Cohn, S.L. Advances in the diagnosis and treatment of neuroblastoma. Oncologist, 2003, 8(3), 278-292.
[http://dx.doi.org/10.1634/theoncologist.8-3-278] [PMID: ] [PMID: 12773750] [PMID: ]
[18]
Lanzkowsky, P. Manual of Pediatric Hematology and Oncology; Elsevier: The Netherland, 2005.
[19]
Ferrís i Tortajada, J.; Ortega García, J.A.; García i Castell, J.; López Andreu, J.A.; Berbel Tornero, O.; Crehuá Gaudiza, E. [Risk factors for neuroblastoma]. An. Pediatr. (Barc.) , 2005, 63(1), 50-60.
[PMID: 15989872] [PMID: ]
[20]
Mueller, S.; Matthay, K.K. Neuroblastoma: biology and staging. Curr. Oncol. Rep., 2009, 11(6), 431-438.
[http://dx.doi.org/10.1007/s11912-009-0059-6] [PMID: ] [PMID: 19840520] [PMID: ]
[21]
Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L. Neuroblastoma. Lancet, 2007, 369(9579), 2106-2120.
[http://dx.doi.org/10.1016/S0140-6736(07)60983-0] [PMID: ] [PMID: 17586306] [PMID: ]
[22]
Louis, C.U.; Shohet, J.M. Neuroblastoma: molecular pathogenesis and therapy. Annu. Rev. Med., 2015, 66, 49-63.
[http://dx.doi.org/10.1146/annurev-med-011514-023121] [PMID: ] [PMID: 25386934] [PMID: ]
[23]
Shimada, H.; Aoyama, C.; Chiba, T.; Newton, W.A., Jr Prognostic subgroups for undifferentiated neuroblastoma: immunohistochemical study with anti-S-100 protein antibody. Hum. Pathol., 1985, 16(5), 471-476.
[http://dx.doi.org/10.1016/S0046-8177(85)80085-X] [PMID: ] [PMID: 3886523] [PMID: ]
[24]
Shimada, H.; Ambros, I.M. Pathology of Peripheral Neuroblastic Tumors. In: Neuroblastoma; Cheung, N-K.V.; Cohn, S.L.; Heidelberg, S.B., Eds.; Berlin, Heidelberg, 2005; pp. 87-95.
[25]
Bansal, K.; Vaishya, S.; Gupta, R.K.; Ahlawat, S.; Munshi, A. Ganglioneuroblastoma of the paracavernous Region. Int. J. Neurooncol., 2019, 2(1), 24.
[http://dx.doi.org/10.4103/IJNO.IJNO_2_19] [PMID: ] [PMID: 29561407] [PMID: ]
[26]
Lu, D.; Liu, J.; Chen, Y.; Chen, F.; Yang, H. Primary cervical ganglioneuroblastoma: a case report. Medicine (Baltimore), 2018, 97(12)e0090
[http://dx.doi.org/10.1097/MD.0000000000010090] [PMID: ] [PMID: 29561407] [PMID: ]
[27]
Hornick, J.L.; Odze, R.D. CHAPTER 19 - Polyps of the Large Intestine. In: Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas,; 2nd ed; Odze, R.D.; Goldblum, J.R., Eds.; W.B. Saunders:Philadelphia,. , 2009; pp. 481-533.
[http://dx.doi.org/10.1016/B978-141604059-0.50022-9] [PMID: ]
[28]
Hornick, J.L. Practical Soft Tissue Pathology: a Diagnostic Approach; Elsevier: Philadelphia, 2019.
[29]
Huang, M.; Weiss, W.A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med., 2013, 3(10)a014415
[http://dx.doi.org/10.1101/cshperspect.a014415] [PMID: ] [PMID: 24086065] [PMID: ]
[30]
Slack, A.; Chen, Z.; Tonelli, R.; Pule, M.; Hunt, L.; Pession, A.; Shohet, J.M. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 731-736.
[http://dx.doi.org/10.1073/pnas.0405495102] [PMID: ] [PMID: 15644444] [PMID: ]
[31]
Liu, L.; Xu, F.; Chang, C-K.; He, Q.; Wu, L-Y.; Zhang, Z.; Li, X. MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-mediated epigenetic repression of p21. Cell Death Dis., 2017, 8(10)e3126
[http://dx.doi.org/10.1038/cddis.2017.526] [PMID: ] [PMID: 29022893] [PMID: ]
[32]
van Noesel, M.M.; Versteeg, R. Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene, 2004, 325, 1-15.
[http://dx.doi.org/10.1016/j.gene.2003.09.042] [PMID: ] [PMID: 14697505] [PMID: ]
[33]
Miyazaki, M.; Otomo, R.; Matsushima-Hibiya, Y.; Suzuki, H.; Nakajima, A.; Abe, N.; Tomiyama, A.; Ichimura, K.; Matsuda, K.; Watanabe, T.; Ochiya, T.; Nakagama, H.; Sakai, R.; Enari, M. The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas. Cell Death Discov., 2018, 4(1), 56.
[http://dx.doi.org/10.1038/s41420-018-0059-0] [PMID: ] [PMID: 29760954] [PMID: ]
[34]
Bresler, S.C.; Weiser, D.A.; Huwe, P.J.; Park, J.H.; Krytska, K.; Ryles, H.; Laudenslager, M.; Rappaport, E.F.; Wood, A.C.; McGrady, P.W.; Hogarty, M.D.; London, W.B.; Radhakrishnan, R.; Lemmon, M.A.; Mossé, Y.P. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell, 2014, 26(5), 682-694.
[http://dx.doi.org/10.1016/j.ccell.2014.09.019] [PMID: ] [PMID: 25517749] [PMID: ]
[35]
Azarova, A.M.; Gautam, G.; George, R.E. Emerging importance of ALK in neuroblastoma. Semin. Cancer Biol., 2011, 21(4), 267-275.
[http://dx.doi.org/10.1016/j.semcancer.2011.09.005] [PMID: ] [PMID: 21945349] [PMID: ]
[36]
Mossé, Y.P. Anaplastic lymphoma kinase as a cancer target in pediatric malignancies. Clin. Cancer Res., 2016, 22(3), 546-552.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1100] [PMID: ] [PMID: 26503946] [PMID: ]
[37]
Eleveld, T.F.; Oldridge, D.A.; Bernard, V.; Koster, J.; Colmet Daage, L.; Diskin, S.J.; Schild, L.; Bentahar, N.B.; Bellini, A.; Chicard, M.; Lapouble, E.; Combaret, V.; Legoix-Né, P.; Michon, J.; Pugh, T.J.; Hart, L.S.; Rader, J.; Attiyeh, E.F.; Wei, J.S.; Zhang, S.; Naranjo, A.; Gastier-Foster, J.M.; Hogarty, M.D.; Asgharzadeh, S.; Smith, M.A.; Guidry Auvil, J.M.; Watkins, T.B.; Zwijnenburg, D.A.; Ebus, M.E.; van Sluis, P.; Hakkert, A.; van Wezel, E.; van der Schoot, C.E.; Westerhout, E.M.; Schulte, J.H.; Tytgat, G.A.; Dolman, M.E.; Janoueix-Lerosey, I.; Gerhard, D.S.; Caron, H.N.; Delattre, O.; Khan, J.; Versteeg, R.; Schleiermacher, G.; Molenaar, J.J.; Maris, J.M. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat. Genet., 2015, 47(8), 864-871.
[http://dx.doi.org/10.1038/ng.3333] [PMID: ] [PMID: 26121087] [PMID: ]
[38]
Lambertz, I.; Kumps, C.; Claeys, S.; Lindner, S.; Beckers, A.; Janssens, E.; Carter, D.R.; Cazes, A.; Cheung, B.B.; De Mariano, M.; De Bondt, A.; De Brouwer, S.; Delattre, O.; Gibbons, J.; Janoueix-Lerosey, I.; Laureys, G.; Liang, C.; Marchall, G.M.; Porcu, M.; Takita, J.; Trujillo, D.C.; Van Den Wyngaert, I.; Van Roy, N.; Van Goethem, A.; Van Maerken, T.; Zabrocki, P.; Cools, J.; Schulte, J.H.; Vialard, J.; Speleman, F.; De Preter, K. Upregulation of MAPK negative feedback regulators and RET in mutant alk neuroblastoma: implications for targeted treatment. Clin. Cancer Res., 2015, 21(14), 3327-3339.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2024] [PMID: ] [PMID: 25805801] [PMID: ]
[39]
Cazes, A.; Lopez-Delisle, L.; Tsarovina, K.; Pierre-Eugène, C.; De Preter, K.; Peuchmaur, M.; Nicolas, A.; Provost, C.; Louis-Brennetot, C.; Daveau, R.; Kumps, C.; Cascone, I.; Schleiermacher, G.; Prignon, A.; Speleman, F.; Rohrer, H.; Delattre, O.; Janoueix-Lerosey, I. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma. Oncotarget, 2014, 5(9), 2688-2702.
[http://dx.doi.org/10.18632/oncotarget.1883] [PMID: ] [PMID: 24811913] [PMID: ]
[41]
Thiele, C.J.; Li, Z.; McKee, A.E. On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin. Cancer Res., 2009, 15(19), 5962-5967.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0651] [PMID: ] [PMID: 19755385] [PMID: ]
[42]
Brodeur, G.M.; Minturn, J.E.; Ho, R.; Simpson, A.M.; Iyer, R.; Varela, C.R.; Light, J.E.; Kolla, V.; Evans, A.E. Trk receptor expression and inhibition in neuroblastomas. Clin. Cancer Res., 2009, 15(10), 3244-3250.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1815] [PMID: ] [PMID: 19417027] [PMID: ]
[43]
Huber, K.; Karch, N.; Ernsberger, U.; Goridis, C.; Unsicker, K. The role of Phox2B in chromaffin cell development. Dev. Biol., 2005, 279(2), 501-508.
[http://dx.doi.org/10.1016/j.ydbio.2005.01.007] [PMID: ] [PMID: 15733675] [PMID: ]
[44]
Raabe, E.H.; Laudenslager, M.; Winter, C.; Wasserman, N.; Cole, K.; LaQuaglia, M.; Maris, D.J.; Mosse, Y.P.; Maris, J.M. Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene, 2008, 27(4), 469-476.
[http://dx.doi.org/10.1038/sj.onc.1210659] [PMID: ] [PMID: 17637745] [PMID: ]
[45]
Pattyn, A.; Morin, X.; Cremer, H.; Goridis, C.; Brunet, J.F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature, 1999, 399(6734), 366-370.
[http://dx.doi.org/10.1038/20700] [PMID: ] [PMID: 10360575 ] [PMID: ]
[46]
Trochet, D.; Bourdeaut, F.; Janoueix-Lerosey, I.; Deville, A.; de Pontual, L.; Schleiermacher, G.; Coze, C.; Philip, N.; Frébourg, T.; Munnich, A.; Lyonnet, S.; Delattre, O.; Amiel, J. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet., 2004, 74(4), 761-764.
[http://dx.doi.org/10.1086/383253] [PMID: ] [PMID: 15024693] [PMID: ]
[47]
Otto, T.; Horn, S.; Brockmann, M.; Eilers, U.; Schüttrumpf, L.; Popov, N.; Kenney, A.M.; Schulte, J.H.; Beijersbergen, R.; Christiansen, H.; Berwanger, B.; Eilers, M. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell, 2009, 15(1), 67-78.
[http://dx.doi.org/10.1016/j.ccr.2008.12.005] [PMID: ] [PMID: 19111882] [PMID: ]
[48]
Diskin, S.J.; Capasso, M.; Schnepp, R.W.; Cole, K.A.; Attiyeh, E.F.; Hou, C.; Diamond, M.; Carpenter, E.L.; Winter, C.; Lee, H.; Jagannathan, J.; Latorre, V.; Iolascon, A.; Hakonarson, H.; Devoto, M.; Maris, J.M. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat. Genet., 2012, 44(10), 1126-1130.
[http://dx.doi.org/10.1038/ng.2387] [PMID: ] [PMID: 22941191] [PMID: ]
[49]
Schnepp, R.W.; Khurana, P.; Attiyeh, E.F.; Raman, P.; Chodosh, S.E.; Oldridge, D.A.; Gagliardi, M.E.; Conkrite, K.L.; Asgharzadeh, S.; Seeger, R.C.; Madison, B.B.; Rustgi, A.K.; Maris, J.M.; Diskin, S.J. ALIN28B-RAN-AURKA Signaling Network Promotes Neuroblastoma Tumorigenesis. Cancer Cell, 2015, 28(5), 599-609.
[http://dx.doi.org/10.1016/j.ccell.2015.09.012] [PMID: ] [PMID: 26481147] [PMID: ]
[50]
Attiyeh, E.F.; London, W.B.; Mossé, Y.P.; Wang, Q.; Winter, C.; Khazi, D.; McGrady, P.W.; Seeger, R.C.; Look, A.T.; Shimada, H.; Brodeur, G.M.; Cohn, S.L.; Matthay, K.K.; Maris, J.M. Children’s Oncology Group.Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med., 2005, 353(21), 2243-2253.
[http://dx.doi.org/10.1056/NEJMoa052399] [PMID: ] [PMID: 16306521] [PMID: ]
[51]
Bown, N.; Cotterill, S.; Łastowska, M.; O’Neill, S.; Pearson, A.D.J.; Plantaz, D.; Meddeb, M.; Danglot, G.; Brinkschmidt, C.; Christiansen, H.; Laureys, G.; Speleman, F.; Nicholson, J.; Bernheim, A.; Betts, D.R.; Vandesompele, J.; Van Roy, N. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med., 1999, 340(25), 1954-1961.
[http://dx.doi.org/10.1056/NEJM199906243402504] [PMID: ] [PMID: 10379019] [PMID: ]
[52]
Pugh, T.J.; Morozova, O.; Attiyeh, E.F.; Asgharzadeh, S.; Wei, J.S.; Auclair, D.; Carter, S.L.; Cibulskis, K.; Hanna, M.; Kiezun, A.; Kim, J.; Lawrence, M.S.; Lichenstein, L.; McKenna, A.; Pedamallu, C.S.; Ramos, A.H.; Shefler, E.; Sivachenko, A.; Sougnez, C.; Stewart, C.; Ally, A.; Birol, I.; Chiu, R.; Corbett, R.D.; Hirst, M.; Jackman, S.D.; Kamoh, B.; Khodabakshi, A.H.; Krzywinski, M.; Lo, A.; Moore, R.A.; Mungall, K.L.; Qian, J.; Tam, A.; Thiessen, N.; Zhao, Y.; Cole, K.A.; Diamond, M.; Diskin, S.J.; Mosse, Y.P.; Wood, A.C.; Ji, L.; Sposto, R.; Badgett, T.; London, W.B.; Moyer, Y.; Gastier-Foster, J.M.; Smith, M.A.; Guidry Auvil, J.M.; Gerhard, D.S.; Hogarty, M.D.; Jones, S.J.; Lander, E.S.; Gabriel, S.B.; Getz, G.; Seeger, R.C.; Khan, J.; Marra, M.A.; Meyerson, M.; Maris, J.M. The genetic landscape of high-risk neuroblastoma. Nat. Genet., 2013, 45(3), 279-284.
[http://dx.doi.org/10.1038/ng.2529] [PMID: ] [PMID: 23334666] [PMID: ]
[53]
Cui, H.; Schroering, A.; Ding, H-F. p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells. Mol. Cancer Ther., 2002, 1(9), 679-686.
[PMID: 12479364] [PMID: ]
[54]
Villani, M.G.; Appierto, V.; Cavadini, E.; Bettiga, A.; Prinetti, A.; Clagett-Dame, M.; Curley, R.W.; Formelli, F. 4-oxo-fenretinide, a recently identified fenretinide metabolite, induces marked G2-M cell cycle arrest and apoptosis in fenretinide-sensitive and fenretinide-resistant cell lines. Cancer Res., 2006, 66(6), 3238-3247.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3362] [PMID: ] [PMID: 16540676] [PMID: ]
[55]
Lu, J.; Guan, S.; Zhao, Y.; Yu, Y.; Woodfield, S.E.; Zhang, H.; Yang, K.L.; Bieerkehazhi, S.; Qi, L.; Li, X.; Gu, J.; Xu, X.; Jin, J.; Muscal, J.A.; Yang, T.; Xu, G.T.; Yang, J. The second-generation ALK inhibitor alectinib effectively induces apoptosis in human neuroblastoma cells and inhibits tumor growth in a TH-MYCN transgenic neuroblastoma mouse model. Cancer Lett., 2017, 400, 61-68.
[http://dx.doi.org/10.1016/j.canlet.2017.04.022] [PMID: ] [PMID: 28455243] [PMID: ]
[56]
Lange, I.; Espinoza-Fuenzalida, I.; Ali, M.W.; Serrano, L.E.; Koomoa, D.T. FTY-720 induces apoptosis in neuroblastoma via multiple signaling pathways. Oncotarget, 2017, 8(66), 109985-109999.
[http://dx.doi.org/10.18632/oncotarget.22452] [PMID: ] [PMID: 29299124] [PMID: ]
[57]
French, K.J.; Zhuang, Y.; Maines, L.W.; Gao, P.; Wang, W.; Beljanski, V.; Upson, J.J.; Green, C.L.; Keller, S.N.; Smith, C.D. Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J. Pharmacol. Exp. Ther., 2010, 333(1), 129-139.
[http://dx.doi.org/10.1124/jpet.109.163444] [PMID: ] [PMID: 20061445] [PMID: ]
[58]
Gao, P.; Smith, C.D. Ablation of sphingosine kinase-2 inhibits tumor cell proliferation and migration. Mol. Cancer Res., 2011, 9(11), 1509-1519.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0336] [PMID: ] [PMID: 21896638] [PMID: ]
[59]
Pyne, N.J.; Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer, 2010, 10(7), 489-503.
[http://dx.doi.org/10.1038/nrc2875] [PMID: ] [PMID: 20555359] [PMID: ]
[60]
Yoshida, Y.; Nakada, M.; Sugimoto, N.; Harada, T.; Hayashi, Y.; Kita, D.; Uchiyama, N.; Hayashi, Y.; Yachie, A.; Takuwa, Y. Sphingosine-1-Phosphate Receptor Type 1 Regulates Glioma Cell Proliferation and Correlates with Patient Survival Int. J. Cancer, 2010.
[http://dx.doi.org/10.1002/ijc.24933] [PMID: ]
[61]
Yang, C.; Tan, J.; Zhu, J.; Wang, S.; Wei, G. YAP promotes tumorigenesis and cisplatin resistance in neuroblastoma. Oncotarget, 2017, 8(23), 37154-37163.
[http://dx.doi.org/10.18632/oncotarget.16209] [PMID: ] [PMID: 28415761] [PMID: ]
[62]
Siaw, J.T.; Wan, H.; Pfeifer, K.; Rivera, V.M.; Guan, J.; Palmer, R.H.; Hallberg, B. Brigatinib, an anaplastic lymphoma kinase inhibitor, abrogates activity and growth in ALK-positive neuroblastoma cells, drosophila and mice. Oncotarget, 2016, 7(20), 29011-29022.
[http://dx.doi.org/10.18632/oncotarget.8508] [PMID: ] [PMID: 27049722] [PMID: ]
[63]
Wang, Q.; Zorn, J.A.; Kuriyan, J. A Structural Atlas of Kinases Inhibited by Clinically Approved Drugs. In: Methods in Enzymology; Shokat, K.M., Ed.; Academic Press: Cambridge, 2014; pp. 23-67.
[64]
Sekimizu, M.; Osumi, T.; Fukano, R.; Koga, Y.; Kada, A.; Saito, A.M.; Mori, T. A phase I/II study of crizotinib for recurrent or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma and a phase i study of crizotinib for recurrent or refractory neuroblastoma: study protocol for a multicenter single-arm open-label trial. Acta Med. Okayama, 2018, 72(4), 431-436.
[http://dx.doi.org/10.18926/AMO/56184] [PMID: ] [PMID: 30140094] [PMID: ]
[65]
Kazandjian, D.; Blumenthal, G.M.; Chen, H-Y.; He, K.; Patel, M.; Justice, R.; Keegan, P.; Pazdur, R. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist, 2014, 19(10), e5-e11.
[http://dx.doi.org/10.1634/theoncologist.2014-0241] [PMID: ] [PMID: 25170012] [PMID: ]
[66]
Puppo, M.; Battaglia, F.; Ottaviano, C.; Delfino, S.; Ribatti, D.; Varesio, L.; Bosco, M.C. Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1alpha and -2alpha. Mol. Cancer Ther., 2008, 7(7), 1974-1984.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2059] [PMID: ] [PMID: 18645007] [PMID: ]
[67]
Kumar, A.; Fan, D.; Dipette, D.J.; Singh, U.S. Sparstolonin B, a novel plant derived compound, arrests cell cycle and induces apoptosis in N-myc amplified and N-myc nonamplified neuroblastoma cells. PLoS One, 2014, 9(5)e96343
[http://dx.doi.org/10.1371/journal.pone.0096343] [PMID: ] [PMID: 24788776] [PMID: ]
[68]
Yco, L.P.; Mocz, G.; Opoku-Ansah, J.; Bachmann, A.S. Withaferin A inhibits STAT3 and induces tumor cell death in neuroblastoma and multiple myeloma. Biochem. Insights, 2014, 7, 1-13.
[http://dx.doi.org/10.4137/BCI.S18863] [PMID: ] [PMID: 25452693] [PMID: ]
[69]
Tu, Y.; Cheng, S.; Zhang, S.; Sun, H.; Xu, Z. Vincristine induces cell cycle arrest and apoptosis in SH-SY5Y human neuroblastoma cells. Int. J. Mol. Med., 2013, 31(1), 113-119.
[http://dx.doi.org/10.3892/ijmm.2012.1167] [PMID: ] [PMID: 23129065] [PMID: ]
[70]
Torkin, R.; Lavoie, J-F.; Kaplan, D.R.; Yeger, H. Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol. Cancer Ther., 2005, 4(1), 1-11.
[http://dx.doi.org/10.1186/1476-4598-4-1] [PMID: ] [PMID: 15657348] [PMID: ]
[71]
Lin, J-W.; Chen, J-T.; Hong, C-Y.; Lin, Y-L.; Wang, K-T.; Yao, C-J.; Lai, G-M.; Chen, R-M. Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro-oncol., 2012, 14(3), 302-314.
[http://dx.doi.org/10.1093/neuonc/nor217] [PMID: ] [PMID: 22259050] [PMID: ]
[72]
Shang, Y.; Guo, X-X.; Li, W-W.; Rao, W.; Chen, M-L.; Mu, L-N.; Li, S-J. Cucurbitacin-B inhibits neuroblastoma cell proliferation through up-regulation of PTEN. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(21), 3297-3303.
[PMID: 25487942] [PMID: ]
[73]
Zheng, Q.; Liu, Y.; Liu, W.; Ma, F.; Zhou, Y.; Chen, M.; Chang, J.; Wang, Y.; Yang, G.; He, G.; Cucurbitacin, B. Cucurbitacin B inhibits growth and induces apoptosis through the JAK2/STAT3 and MAPK pathways in SH-SY5Y human neuroblastoma cells. Mol. Med. Rep., 2014, 10(1), 89-94.
[http://dx.doi.org/10.3892/mmr.2014.2175] [PMID: ] [PMID: 24789581] [PMID: ]
[74]
Shen, X.; Huang, J.; Liu, G.; Zhang, H.; Zhang, X.; Kong, X.; Du, L. Matrine Inhibits Neuroblastoma Cell Proliferation and Migration by Enhancing Tribbles 3 Expression. Oncol. Res., 2018, 26(7), 1133-1142.
[http://dx.doi.org/10.3727/096504018X15168461629558] [PMID: ] [PMID: 29386091] [PMID: ]
[75]
Engelsgjerd, S.; Kunnimalaiyaan, S.; Kandil, E.; Gamblin, T.C.; Kunnimalaiyaan, M. Xanthohumol increases death receptor 5 expression and enhances apoptosis with the TNF-related apoptosis-inducing ligand in neuroblastoma cell lines. PLoS One, 2019, 14(3)e0213776
[http://dx.doi.org/10.1371/journal.pone.0213776] [PMID: ] [PMID: 30870485] [PMID: ]
[76]
Lee, H.A.; Park, S.; Kim, Y. Effect of β-carotene on cancer cell stemness and differentiation in SK-N-BE(2)C neuroblastoma cells. Oncol. Rep., 2013, 30(4), 1869-1877.
[http://dx.doi.org/10.3892/or.2013.2643] [PMID: ] [PMID: 23900747] [PMID: ]
[77]
Lim, J.Y.; Kim, Y-S.; Kim, K-M.; Min, S.J.; Kim, Y. B-carotene inhibits neuroblastoma tumorigenesis by regulating cell differentiation and cancer cell stemness. Biochem. Biophys. Res. Commun., 2014, 450(4), 1475-1480.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.021] [PMID: ] [PMID: 25019987] [PMID: ]
[78]
Sukumari-Ramesh, S.; Bentley, J.N.; Laird, M.D.; Singh, N.; Vender, J.R.; Dhandapani, K.M. Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int. J. Dev. Neurosci., 2011, 29(7), 701-710.
[http://dx.doi.org/10.1016/j.ijdevneu.2011.06.002] [PMID: ] [PMID: 21704149] [PMID: ]
[79]
Sugantha Priya, E.; Selvakumar, K.; Bavithra, S.; Elumalai, P.; Arunkumar, R.; Raja Singh, P.; Brindha Mercy, A.; Arunakaran, J. Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. Neurol. Sci., 2014, 35(2), 163-170.
[http://dx.doi.org/10.1007/s10072-013-1462-1] [PMID: ] [PMID: 23771516] [PMID: ]
[80]
Dogra, P. Tanvi; Ghosh, N.; Janadri, S.; Raj, D.; S.V, R. Anticancer and cell cycle analysis of aqueous extract of emblica officinalis fruits on human colorectal and neuroblastoma cancer cell lines. Asian Journal of Pharmacy and Pharmacology, 2016, 2, 26-33.
[81]
Ramakrishna, V.; Gupta, K.P.; Setty, H.O.; Kondapi, K.A. Neuroprotective effect of Emblica officinalis extract against H2O2 induced DNA damage and repair in neuroblastoma cells. J. Homeop. Ayurv. Med. S.,, 2014, 1002.
[82]
Rahman, M.A.; Hong, J-S.; Huh, S-O. Antiproliferative properties of saussurea lappa clarke root extract in SH-SY5Y neuroblastoma cells via intrinsic apoptotic pathway. Anim. Cells Syst., 2015, 19(2), 119-126.
[http://dx.doi.org/10.1080/19768354.2015.1008041] [PMID: ]
[83]
Lantto, T.A.; Laakso, I.; Dorman, H.J.; Mauriala, T.; Hiltunen, R.; Kõks, S.; Raasmaja, A. Cellular stress and p53-associated apoptosis by Juniperus communis L. Berry extract treatment in the human SH-SY5Y neuroblastoma cells. Int. J. Mol. Sci., 2016, 17(7), 1113.
[http://dx.doi.org/10.3390/ijms17071113] [PMID: ] [PMID: 27420050] [PMID: ]
[84]
Gupta, M.K.; Behara, S.K.; Vadde, R. In silico analysis of differential gene expressions in biliary stricture and hepatic carcinoma. Gene, 2017, 597, 49-58.
[http://dx.doi.org/10.1016/j.gene.2016.10.032] [PMID: ] [PMID: 27777109] [PMID: ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy