Review Article

Saint John on Patmos:抗中性粒细胞细胞质抗体(ANCA)在血管炎中的作用的揭示

卷 27, 期 17, 2020

页: [2852 - 2862] 页: 11

弟呕挨: 10.2174/0929867327666191213112220

价格: $65

摘要

血管炎的诊断是基于组织学特征和抗中性粒细胞细胞质抗体(ANCA)的血清学检测。血管炎患者,两种类型的ANCA已确定:ANCA针对中性粒细胞丝氨酸蛋白酶proteinase-3 (PR3)导致细胞质免疫荧光模式(c-ANCA)和ANCA针对中性粒细胞髓过氧化物酶(MPO),结果在细胞核周围的免疫荧光模式(p-ANCA)。问题是ANCA的存在是否是中性粒细胞异常粘附、激活和凋亡的结果。或者,它是通过目前尚不完全清楚的机制引起血管炎的。在后一种情况下,必须假设ANCA自身抗原表达在活的、活化的或早期凋亡的中性粒细胞的细胞表面。

关键词: 抗中性粒细胞胞浆抗体(ANCA)、髓过氧化物酶(MPO)、中性粒细胞、多血管炎、蛋白酶-3 (PR3)、免疫荧光图(p-ANCA)、血管炎、抗中性粒细胞胞浆抗体、胞浆免疫荧光图(c-ANCA)。

[1]
Cupps, T.R.; Fauci, A.S. The vasculitic syndromes. Adv. Intern. Med., 1982, 27, 315-344.
[PMID: 6122351]
[2]
Collins, T.R. Diagnostic criteria, classification lacking for vasculitis; new research in treatment for systemic sclerosis; The Rheumatologist, 2016.
[3]
Freeman, S. New ACR-EULAR diagnostic criteria proposed for ANCA-associated vasculitides; Vus. Spec, 2017.
[4]
Luqmani, P.M.; Watts, R. In: ; New classification criteria for ANCA-associated vasculitis: implications for clinical practice, ACR/ARHP Annual Meeting, Washington, DC, USA, November. , 2016.
[5]
DCVAS Diagnostic and classification of the systemic vasculitides., 2018.
[6]
Bossuyt, X.; Cohen Tervaert, J.W.; Arimura, Y.; Blockmans, D.; Flores-Suárez, L.F.; Guillevin, L.; Hellmich, B.; Jayne, D.; Jennette, J.C.; Kallenberg, C.G.M.; Moiseev, S.; Novikov, P.; Radice, A.; Savige, J.A.; Sinico, R.A.; Specks, U.; van Paassen, P.; Zhao, M.H.; Rasmussen, N.; Damoiseaux, J.; Csernok, E. Position paper: Revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat. Rev. Rheumatol., 2017, 13(11), 683-692.
[http://dx.doi.org/10.1038/nrrheum.2017.140] [PMID: 28905856]
[7]
Tervaert, J.W.; Goldschmeding, R.; Elema, J.D.; van der Giessen, M.; Huitema, M.G.; van der Hem, G.K.; The, T.H.; von dem Borne, A.E.; Kallenberg, C.G. Autoantibodies against myeloid lysosomal enzymes in crescentic glomerulonephritis. Kidney Int., 1990, 37(2), 799-806.
[http://dx.doi.org/10.1038/ki.1990.48] [PMID: 2155342]
[8]
Tervaert, J.W.; van der Woude, F.J.; Fauci, A.S.; Ambrus, J.L.; Velosa, J.; Keane, W.F.; Meijer, S.; van der Giessen, M.; van der Hem, G.K.; The, T.H. Association between active Wegener’s granulomatosis and anticytoplasmic antibodies. Arch. Intern. Med., 1989, 149(11), 2461-2465.
[http://dx.doi.org/10.1001/archinte.1989.00390110055012] [PMID: 2684074]
[9]
Savige, J.; Davies, D.; Falk, R.J.; Jennette, J.C.; Wiik, A. Antineutrophil cytoplasmic antibodies and associated diseases: a review of the clinical and laboratory features. Kidney Int., 2000, 57(3), 846-862.
[http://dx.doi.org/10.1046/j.1523-1755.2000.057003846.x] [PMID: 10720938]
[10]
Gabillet, J.; Millet, A.; Pederzoli-Ribeil, M.; Tacnet-Delorme, P.; Guillevin, L.; Mouthon, L.; Frachet, P.; Witko-Sarsat, V. Proteinase 3, the autoantigen in granulomatosis with polyangiitis, associates with calreticulin on apoptotic neutrophils, impairs macrophage phagocytosis, and promotes inflammation. J. Immunol., 2012, 189(5), 2574-2583.
[http://dx.doi.org/10.4049/jimmunol.1200600] [PMID: 22844112]
[11]
Kuckleburg, C.J.; Tilkens, S.B.; Santoso, S.; Newman, P.J. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils. J. Immunol., 2012, 188(5), 2419-2426.
[http://dx.doi.org/10.4049/jimmunol.1102540] [PMID: 22266279]
[12]
von Vietinghoff, S.; Eulenberg, C.; Wellner, M.; Luft, F.C.; Kettritz, R. Neutrophil surface presentation of the anti-neutrophil cytoplasmic antibody-antigen proteinase 3 depends on N-terminal processing. Clin. Exp. Immunol., 2008, 152(3), 508-516.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03663.x] [PMID: 18462208]
[13]
Kantari, C.; Pederzoli-Ribeil, M.; Amir-Moazami, O.; Gausson-Dorey, V.; Moura, I.C.; Lecomte, M.C.; Benhamou, M.; Witko-Sarsat, V. Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood, 2007, 110(12), 4086-4095.
[http://dx.doi.org/10.1182/blood-2007-03-080457] [PMID: 17712045]
[14]
Gardai, S.J.; McPhillips, K.A.; Frasch, S.C.; Janssen, W.J.; Starefeldt, A.; Murphy-Ullrich, J.E.; Bratton, D.L.; Oldenborg, P.A.; Michalak, M.; Henson, P.M. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005, 123(2), 321-334.
[http://dx.doi.org/10.1016/j.cell.2005.08.032] [PMID: 16239148]
[15]
Segawa, K.; Kurata, S.; Yanagihashi, Y.; Brummelkamp, T.R.; Matsuda, F.; Nagata, S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science, 2014, 344(6188), 1164-1168.
[http://dx.doi.org/10.1126/science.1252809] [PMID: 24904167]
[16]
Lentz, B.R. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog. Lipid Res., 2003, 42(5), 423-438.
[http://dx.doi.org/10.1016/S0163-7827(03)00025-0] [PMID: 12814644]
[17]
Gold, L.I.; Eggleton, P.; Sweetwyne, M.T.; Van Duyn, L.B.; Greives, M.R.; Naylor, S.M.; Michalak, M.; Murphy-Ullrich, J.E. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J., 2010, 24(3), 665-683.
[http://dx.doi.org/10.1096/fj.09-145482] [PMID: 19940256]
[18]
Michalak, M.; Groenendyk, J.; Szabo, E.; Gold, L.I.; Opas, M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J., 2009, 417(3), 651-666.
[http://dx.doi.org/10.1042/BJ20081847] [PMID: 19133842]
[19]
Savill, J.S.; Wyllie, A.H.; Henson, J.E.; Walport, M.J.; Henson, P.M.; Haslett, C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest., 1989, 83(3), 865-875.
[http://dx.doi.org/10.1172/JCI113970] [PMID: 2921324]
[20]
Novick, D.; Rubinstein, M.; Azam, T.; Rabinkov, A.; Dinarello, C.A.; Kim, S.H. Proteinase 3 is an IL-32 binding protein. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3316-3321.
[http://dx.doi.org/10.1073/pnas.0511206103] [PMID: 16488976]
[21]
Bae, S.; Kim, Y.G.; Choi, J.; Hong, J.; Lee, S.; Kang, T.; Jeon, H.; Hong, K.; Kim, E.; Kwak, A.; Lee, C.K.; Yoo, B.; Park, Y.B.; Song, E.Y.; Kim, S. Elevated interleukin-32 expression in granulomatosis with polyangiitis. Rheumatology (Oxford), 2012, 51(11), 1979-1988.
[http://dx.doi.org/10.1093/rheumatology/kes163] [PMID: 22850185]
[22]
Khawar, M.B.; Mukhtar, M.; Abbasi, M.H.; Sheikh, N. IL-32θ: a recently identified anti-inflammatory variant of IL-32 and its preventive role in various disorders and tumor suppressor activity. Am. J. Transl. Res., 2017, 9(11), 4726-4737.
[PMID: 29218075]
[23]
Son, D.J.; Jung, Y.Y.; Seo, Y.S.; Park, H.; Lee, D.H.; Kim, S.; Roh, Y.S.; Han, S.B.; Yoon, D.Y.; Hong, J.T. Interleukin-32alpha inhibits endothelial inflammation, vascular smooth muscle cell activation, and atherosclerosis by upregulating Timp3 and Reck through suppressing microRNA-205 biogenesis. Theranostics, 2017, 7(8), 2186-2203.
[http://dx.doi.org/10.7150/thno.18407] [PMID: 28740544]
[24]
Korkmaz, B.; Lesner, A.; Letast, S.; Mahdi, Y.K.; Jourdan, M.L.; Dallet-Choisy, S.; Marchand-Adam, S.; Kellenberger, C.; Viaud-Massuard, M.C.; Jenne, D.E.; Gauthier, F. Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis). Semin. Immunopathol., 2013, 35(4), 411-421.
[http://dx.doi.org/10.1007/s00281-013-0362-z] [PMID: 23385856]
[25]
Turk, D.; Janjić, V.; Stern, I.; Podobnik, M.; Lamba, D.; Dahl, S.W.; Lauritzen, C.; Pedersen, J.; Turk, V.; Turk, B. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J., 2001, 20(23), 6570-6582.
[http://dx.doi.org/10.1093/emboj/20.23.6570] [PMID: 11726493]
[26]
Zimmer, M.; Medcalf, R.L.; Fink, T.M.; Mattmann, C.; Lichter, P.; Jenne, D.E. Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter. Proc. Natl. Acad. Sci. USA, 1992, 89(17), 8215-8219.
[http://dx.doi.org/10.1073/pnas.89.17.8215] [PMID: 1518849]
[27]
Garwicz, D.; Lennartsson, A.; Jacobsen, S.E.; Gullberg, U.; Lindmark, A. Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model. Haematologica, 2005, 90(1), 38-44.
[PMID: 15642667]
[28]
Rao, N.V.; Rao, G.V.; Marshall, B.C.; Hoidal, J.R. Biosynthesis and processing of proteinase 3 in U937 cells. Processing pathways are distinct from those of cathepsin G. J. Biol. Chem., 1996, 271(6), 2972-2978.
[http://dx.doi.org/10.1074/jbc.271.6.2972] [PMID: 8621689]
[29]
Matsumoto, T.; Kaneko, T.; Seto, M.; Wada, H.; Kobayashi, T.; Nakatani, K.; Tonomura, H.; Tono, Y.; Ohyabu, M.; Nobori, T.; Shiku, H.; Sudo, A.; Uchida, A.; Kurosawa, D.J.; Kurosawa, S. The membrane proteinase 3 expression on neutrophils was downregulated after treatment with infliximab in patients with rheumatoid arthritis. Clin. Appl. Thromb. Hemost., 2008, 14(2), 186-192.
[http://dx.doi.org/10.1177/1076029607303961] [PMID: 18372277]
[30]
Yates, M.; Watts, R.A.; Bajema, I.M.; Cid, M.C.; Crestani, B.; Hauser, T.; Hellmich, B.; Holle, J.U.; Laudien, M.; Little, M.A.; Luqmani, R.A.; Mahr, A.; Merkel, P.A.; Mills, J.; Mooney, J.; Segelmark, M.; Tesar, V.; Westman, K.; Vaglio, A.; Yalçındağ, N.; Jayne, D.R.; Mukhtyar, C. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann. Rheum. Dis., 2016, 75(9), 1583-1594.
[http://dx.doi.org/10.1136/annrheumdis-2016-209133] [PMID: 27338776]
[31]
Falk, R.J.; Terrell, R.S.; Charles, L.A.; Jennette, J.C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl. Acad. Sci. USA, 1990, 87(11), 4115-4119.
[http://dx.doi.org/10.1073/pnas.87.11.4115] [PMID: 2161532]
[32]
Ralston, D.R.; Marsh, C.B.; Lowe, M.P.; Wewers, M.D. Antineutrophil cytoplasmic antibodies induce monocyte IL-8 release. Role of surface proteinase-3, alpha1-antitrypsin, and Fcgamma receptors. J. Clin. Invest., 1997, 100(6), 1416-1424.
[http://dx.doi.org/10.1172/JCI119662] [PMID: 9294107]
[33]
Remold-O’Donnell, E.; Nixon, J.C.; Rose, R.M. Elastase inhibitor. Characterization of the human elastase inhibitor molecule associated with monocytes, macrophages, and neutrophils. J. Exp. Med., 1989, 169(3), 1071-1086.
[http://dx.doi.org/10.1084/jem.169.3.1071] [PMID: 2926322]
[34]
Cooley, J.; Takayama, T.K.; Shapiro, S.D.; Schechter, N.M.; Remold-O’Donnell, E. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry, 2001, 40(51), 15762-15770.
[http://dx.doi.org/10.1021/bi0113925] [PMID: 11747453]
[35]
Schreiber, A.; Busjahn, A.; Luft, F.C.; Kettritz, R. Membrane expression of proteinase 3 is genetically determined. J. Am. Soc. Nephrol., 2003, 14(1), 68-75.
[http://dx.doi.org/10.1097/01.ASN.0000040751.83734.D1] [PMID: 12506139]
[36]
McKinney, E.F.; Willcocks, L.C.; Broecker, V.; Smith, K.G. The immunopathology of ANCA-associated vasculitis. Semin. Immunopathol., 2014, 36(4), 461-478.
[http://dx.doi.org/10.1007/s00281-014-0436-6] [PMID: 25056155]
[37]
Lyons, P.A.; Rayner, T.F.; Trivedi, S.; Holle, J.U.; Watts, R.A.; Jayne, D.R.; Baslund, B.; Brenchley, P.; Bruchfeld, A.; Chaudhry, A.N.; Cohen Tervaert, J.W.; Deloukas, P.; Feighery, C.; Gross, W.L.; Guillevin, L.; Gunnarsson, I.; Harper, L.; Hrušková, Z.; Little, M.A.; Martorana, D.; Neumann, T.; Ohlsson, S.; Padmanabhan, S.; Pusey, C.D.; Salama, A.D.; Sanders, J.S.; Savage, C.O.; Segelmark, M.; Stegeman, C.A.; Tesař, V.; Vaglio, A.; Wieczorek, S.; Wilde, B.; Zwerina, J.; Rees, A.J.; Clayton, D.G.; Smith, K.G. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med., 2012, 367(3), 214-223.
[http://dx.doi.org/10.1056/NEJMoa1108735] [PMID: 22808956]
[38]
Mohammad, A.; Segelmark, M. Primary systemic vasculitis with severe α1-antitrypsin deficiency revisited. Scand. J. Rheumatol., 2014, 43(3), 242-245.
[http://dx.doi.org/10.3109/03009742.2013.846405] [PMID: 24313382]
[39]
Voorzaat, B.M.; van Schaik, J.; Crobach, S.L.; van Rijswijk, C.S.; Rotmans, J.I. Alpha-1 antitrypsin deficiency presenting with MPO-ANCA associated vasculitis and aortic dissection. Case Rep. Med., 2017, 2017 8140641
[http://dx.doi.org/10.1155/2017/8140641] [PMID: 28367219]
[40]
Rooney, C.P.; Taggart, C.; Coakley, R.; McElvaney, N.G.; O’Neill, S.J. Anti-proteinase 3 antibody activation of neutrophils can be inhibited by alpha1-antitrypsin. Am. J. Respir. Cell Mol. Biol., 2001, 24(6), 747-754.
[http://dx.doi.org/10.1165/ajrcmb.24.6.4147] [PMID: 11415941]
[41]
Surmiak, M.; Sanak, M. Different forms of alpha-1 antitrypsin and neutrophil activation mediated by human anti-PR3 IgG antibodies. Pharmacol. Rep., 2016, 68(6), 1276-1284.
[http://dx.doi.org/10.1016/j.pharep.2016.08.003] [PMID: 27689755]
[42]
Mota, A.; Sahebghadam Lotfi, A.; Jamshidi, A.R.; Najavand, S. Alpha 1-antitrypsin activity is markedly decreased in Wegener’s granulomatosis. Rheumatol. Int., 2014, 34(4), 553-558.
[http://dx.doi.org/10.1007/s00296-013-2745-9] [PMID: 23604680]
[43]
Kallenberg, C.G. Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis: where to go? Clin. Exp. Immunol., 2011, 164(Suppl. 1), 1-3.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04355.x] [PMID: 21447120]
[44]
Kain, R.; Exner, M.; Brandes, R.; Ziebermayr, R.; Cunningham, D.; Alderson, C.A.; Davidovits, A.; Raab, I.; Jahn, R.; Ashour, O.; Spitzauer, S.; Sunder-Plassmann, G.; Fukuda, M.; Klemm, P.; Rees, A.J.; Kerjaschki, D. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med., 2008, 14(10), 1088-1096.
[http://dx.doi.org/10.1038/nm.1874] [PMID: 18836458]
[45]
Popa, E.R.; Stegeman, C.A.; Kallenberg, C.G.; Tervaert, J.W. Staphylococcus aureus and Wegener’s granulomatosis. Arthritis Res., 2002, 4(2), 77-79.
[http://dx.doi.org/10.1186/ar392] [PMID: 11879541]
[46]
Bonert, M. File: Wegener's granulomatosis - very high mag.jpg. 2019..Available at:. https://commons.wikimedia. org/wiki/File:Wegener%27s_granulomatosis_-_very_high_mag.jpg (Accessed Date: November 2019).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy