Review Article

慢性阻塞性肺疾病中的微生物组:天然产物对微生物病原体的作用

卷 27, 期 18, 2020

页: [2931 - 2948] 页: 18

弟呕挨: 10.2174/0929867327666191213110551

价格: $65

摘要

“微生物组”是指构成微生物群落的所有类群的集合,如细菌、古菌、真菌和原生生物(最初是微生物群)。微生物群由本地微生物群落和它们所居住的宿主环境组成。事实上,已有研究表明,微生物群与人类健康和疾病状况有着密切的关系。虽然最初认为肺部是无菌的,但实际上,健康肺部微生物组的存在通常是可以接受的。肺微生物组的变化在慢性阻塞性肺疾病(COPD)和加重。呼吸系统的病毒和细菌感染是COPD加重(AECOPD)的主要原因,导致局部和全身炎症增加。根据检测方法,AECOPD病毒检出率在25-62%之间变化。人类呼吸道和肺部疾病的研究是最近的,仍然非常有限。本综述的目的是总结最近在COPD和AECOPD中肺部微生物组组成的发现,特别强调了病毒组。介绍了一些天然来源的药物对耐药细菌和病毒的活性。

关键词: 细菌组,慢性阻塞性肺病,微生物组,真菌组,呼吸道,病毒组。

[1]
Knight, R.; Callewaert, C.; Marotz, C.; Hyde, E.R.; Debelius, J.W.; McDonald, D.; Sogin, M.L. The microbiome and human biology. Annu. Rev. Genomics Hum. Genet., 2017, 18, 65-86.
[http://dx.doi.org/10.1146/annurev-genom-083115-022438] [PMID: 28375652]
[2]
Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59(1), 143-169.
[http://dx.doi.org/10.1128/MMBR.59.1.143-169.1995] [PMID: 7535888]
[3]
Franzosa, E.A.; Hsu, T.; Sirota-Madi, A.; Shafquat, A.; Abu-Ali, G.; Morgan, X.C.; Huttenhower, C. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol., 2015, 13(6), 360-372.
[http://dx.doi.org/10.1038/nrmicro3451] [PMID: 25915636]
[4]
Young, V.B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ, 2017, 356, j831.
[http://dx.doi.org/10.1136/bmj.j831] [PMID: 28298355]
[5]
Thaiss, C.A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A.C.; Abramson, L.; Katz, M.N.; Korem, T.; Zmora, N.; Kuperman, Y.; Biton, I.; Gilad, S.; Harmelin, A.; Shapiro, H.; Halpern, Z.; Segal, E.; Elinav, E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 2014, 159(3), 514-529.
[http://dx.doi.org/10.1016/j.cell.2014.09.048] [PMID: 25417104]
[6]
Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136.
[http://dx.doi.org/10.1016/j.ynstr.2017.03.001] [PMID: 29276734]
[7]
Goodrich, J.K.; Davenport, E.R.; Clark, A.G.; Ley, R.E. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet., 2017, 51, 413-433.
[http://dx.doi.org/10.1146/annurev-genet-110711-155532] [PMID: 28934590]
[8]
Kolde, R.; Franzosa, E.A.; Rahnavard, G.; Hall, A.B.; Vlamakis, H.; Stevens, C.; Daly, M.J.; Xavier, R.J.; Huttenhower, C. Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Med., 2018, 10(1), 6.
[http://dx.doi.org/10.1186/s13073-018-0515-8] [PMID: 29378630]
[9]
Zmora, N.; Suez, J.; Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(1), 35-56.
[http://dx.doi.org/10.1038/s41575-018-0061-2] [PMID: 30262901]
[10]
Lau, A.S.Y.; Mitsuyama, E.; Odamaki, T.; Xiao, J.Z.; Liong, M.T. El Niño altered gut microbiota of children: a new insight on weather-gut interactions and protective effects of probiotic. J. Med. Food, 2019, 22(3), 230-240.
[http://dx.doi.org/10.1089/jmf.2018.4276] [PMID: 30183458]
[11]
Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med., 2016, 8(1), 39.
[http://dx.doi.org/10.1186/s13073-016-0294-z] [PMID: 27074706]
[12]
Savin, Z.; Kivity, S.; Yonath, H.; Yehuda, S. Smoking and the intestinal microbiome. Arch. Microbiol., 2018, 200(5), 677-684.
[http://dx.doi.org/10.1007/s00203-018-1506-2] [PMID: 29626219]
[13]
Ma, W.; Zhang, L.; Zeng, P.; Huang, C.; Li, J.; Geng, B.; Yang, J.; Kong, W.; Zhou, X.; Cui, Q. An analysis of human microbe-disease associations. Brief. Bioinform., 2017, 18(1), 85-97.
[http://dx.doi.org/10.1093/bib/bbw005] [PMID: 26883326]
[14]
Human microbiome project - home NIH common fund. Available at: commonfund.nih.gov (Accessed Date: January 16, 2019).
[15]
Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[16]
NIH integrative human microbiome project. Available at: https://hmpdacc.org/ihmp/ (Accessed Date: January 16,2019).
[17]
Metagenomics of the human intestinal tract. Available at: http://www.metahit.eu/index.php?id=234 (Accessed Date:January 16, 2019).
[18]
Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol., 2017, 15(5), 259-270.
[http://dx.doi.org/10.1038/nrmicro.2017.14] [PMID: 28316330]
[19]
Moffatt, M.F.; Cookson, W.O. The lung microbiome in health and disease. Clin. Med. (Lond.), 2017, 17(6), 525-529.
[http://dx.doi.org/10.7861/clinmedicine.17-6-525] [PMID: 29196353]
[20]
Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Beck, J.M.; Huffnagle, G.B.; Curtis, J.L. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc., 2015, 12(6), 821-830.
[http://dx.doi.org/10.1513/AnnalsATS.201501-029OC] [PMID: 25803243]
[21]
Whelan, F.J.; Verschoor, C.P.; Stearns, J.C.; Rossi, L.; Luinstra, K.; Loeb, M.; Smieja, M.; Johnstone, J.; Surette, M.G.; Bowdish, D.M. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann. Am. Thorac. Soc., 2014, 11(4), 513-521.
[http://dx.doi.org/10.1513/AnnalsATS.201310-351OC] [PMID: 24601676]
[22]
Winer, R.A.; Qin, X.; Harrington, T.; Moorman, J.; Zahran, H. Asthma incidence among children and adults: findings from the Behavioral Risk Factor Surveillance system asthma call-back survey--United States, 2006-2008. J. Asthma, 2012, 49(1), 16-22.
[http://dx.doi.org/10.3109/02770903.2011.637594] [PMID: 22236442]
[23]
Cortopassi, F.; Gurung, P.; Pinto-Plata, V. Chronic obstructive pulmonary disease in elderly patients. Clin. Geriatr. Med., 2017, 33(4), 539-552.
[http://dx.doi.org/10.1016/j.cger.2017.06.006] [PMID: 28991649]
[24]
WHO-Europe. Tobacco. Available at: http://www.euro. who.int/en/health-topics/diseaseprevention/tobacco (Accessed Date: January 16, 2019).
[25]
Taking stock: tobacco control in the WHO European Region in 2017.Available at:. http://www.euro.who.int/en/health-topics/diseaseprevention/tobacco/publications/2017/taking-stock-tobaccocontrol-in-the-who-european-region-in-2017 (Accessed Date: January 16, 2019).
[26]
WHO global report on trends in tobacco smoking 2000-2025, 2nd ed; World Health Organization: Geneva, 2015.
[27]
WHO global report on trends in tobacco smoking 2000-2025. Available at: http://www.who.int/tobacco/publica-tions/ surveillance/report ontrendstobaccosmoking/en/in dex4.html (Accessed Date: January 16, 2019)
[28]
Jayes, L.; Haslam, P.L.; Gratziou, C.G.; Powell, P.; Britton, J.; Vardavas, C.; Jimenez-Ruiz, C.; Leonardi-Bee, J. Tobacco control committee of the european respiratory society. smokehaz: systematic reviews and meta-analyses of the effects of smoking on respiratory health. Chest, 2016, 150(1), 164-179.
[http://dx.doi.org/10.1016/j.chest.2016.03.060] [PMID: 27102185]
[29]
Morris, A.; Sciurba, F.C.; Lebedeva, I.P.; Githaiga, A.; Elliott, W.M.; Hogg, J.C.; Huang, L.; Norris, K.A. Association of chronic obstructive pulmonary disease severity and Pneumocystis colonization. Am. J. Respir. Crit. Care Med., 2004, 170(4), 408-413.
[http://dx.doi.org/10.1164/rccm.200401-094OC] [PMID: 15117741]
[30]
Gregory, A.C.; Sullivan, M.B.; Segal, L.N.; Keller, B.C. Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respir. Res., 2018, 19(1), 174.
[http://dx.doi.org/10.1186/s12931-018-0878-9] [PMID: 30208886]
[31]
Virgin, H.W. The virome in mammalian physiology and disease. Cell, 2014, 157(1), 142-150.
[http://dx.doi.org/10.1016/j.cell.2014.02.032] [PMID: 24679532]
[32]
Mannino, D.M.; Buist, A.S. Global burden of COPD: risk factors, prevalence, and future trends. Lancet, 2007, 370(9589), 765-773.
[http://dx.doi.org/10.1016/S0140-6736(07)61380-4] [PMID: 17765526]
[33]
Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; Brown, J.C.; Friedman, J.; He, J.; Heuton, K.R.; Holmberg, M.; Patel, D.J.; Reidy, P.; Carter, A.; Cercy, K.; Chapin, A.; Douwes-Schultz, D.; Frank, T.; Goettsch, F.; Liu, P.Y.; Nandakumar, V.; Reitsma, M.B.; Reuter, V.; Sadat, N.; Sorensen, R.J.D.; Srinivasan, V.; Updike, R.L.; York, H.; Lopez, A.D.; Lozano, R.; Lim, S.S.; Mokdad, A.H.; Vollset, S.E.; Murray, C.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 2018, 392(10159), 2052-2090.
[http://dx.doi.org/10.1016/S0140-6736(18)31694-5] [PMID: 30340847]
[34]
Global strategy for prevention. Diagnosis and Management of COPD, 2020. Available at: https://goldcopd.org/wpcon-tent/uploads/2019/11/GOLD-2020-REPORTver1.0wms.pdf (Accessed Date: 5 January, 2019)
[35]
Celli, B.R.; MacNee, W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur. Respir. J., 2004, 23(6), 932-946.
[http://dx.doi.org/10.1183/09031936.04.00014304] [PMID: 15219010]
[36]
Ren, L.; Zhang, R.; Rao, J.; Xiao, Y.; Zhang, Z.; Yang, B.; Cao, D.; Zhong, H.; Ning, P.; Shang, Y.; Li, M.; Gao, Z.; Wang, J. Transcriptionally active lung microbiome and its association with bacterial biomass and host inflammatory status. mSystems, 2018, 3(5), e00199-e18.
[http://dx.doi.org/10.1128/mSystems.00199-18] [PMID: 30417108]
[37]
Mika, M.; Nita, I.; Morf, L.; Qi, W.; Beyeler, S.; Bernasconi, E.; Marsland, B.J.; Ott, S.R.; von Garnier, C.; Hilty, M. Microbial and host immune factors as drivers of COPD. ERJ Open Res., 2018, 4(3), 00015-02018.
[http://dx.doi.org/10.1183/23120541.00015-2018] [PMID: 29992131]
[38]
Einarsson, G.G.; Comer, D.M.; McIlreavey, L.; Parkhill, J.; Ennis, M.; Tunney, M.M.; Elborn, J.S. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 2016, 71(9), 795-803.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207235] [PMID: 27146202]
[39]
Diao, W.; Shen, N.; Du, Y.; Erb-Downward, J.R.; Sun, X.; Guo, C.; Ke, Q.; Huffnagle, G.B.; Gyetko, M.R.; He, B. Symptom-related sputum microbiota in stable chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 2289-2299.
[http://dx.doi.org/10.2147/COPD.S167618] [PMID: 30104869]
[40]
Sinha, R.; Weissenburger-Moser, L.A.; Clarke, J.L.; Smith, L.M.; Heires, A.J.; Romberger, D.J.; LeVan, T.D. Short term dynamics of the sputum microbiome among COPD patients. PLoS One, 2018, 13(3)e0191499
[http://dx.doi.org/10.1371/journal.pone.0191499]
[41]
Tangedal, S.; Aanerud, M.; Grønseth, R.; Drengenes, C.; Wiker, H.G.; Bakke, P.S.; Eagan, T.M. Comparing microbiota profiles in induced and spontaneous sputum samples in COPD patients. Respir. Res., 2017, 18(1), 164.
[http://dx.doi.org/10.1186/s12931-017-0645-3] [PMID: 28851370]
[42]
Garcia-Nuñez, M.; Marti, S.; Puig, C.; Perez-Brocal, V.; Millares, L.; Santos, S.; Ardanuy, C.; Moya, A.; Liñares, J.; Monsó, E. Bronchial microbiome, PA biofilm-forming capacity and exacerbation in severe COPD patients colonized by P. aeruginosa. Future Microbiol., 2017, 12, 379-392.
[http://dx.doi.org/10.2217/fmb-2016-0127] [PMID: 28339291]
[43]
Cameron, S.J.; Lewis, K.E.; Huws, S.A.; Lin, W.; Hegarty, M.J.; Lewis, P.D.; Mur, L.A.; Pachebat, J.A. Metagenomic sequencing of the chronic obstructive pulmonary disease upper bronchial tract microbiome reveals functional changes associated with disease severity. PLoS One, 2016, 11(2)e0149095
[http://dx.doi.org/10.1371/journal.pone.0149095] [PMID: 26872143]
[44]
Pragman, A.A.; Lyu, T.; Baller, J.A.; Gould, T.J.; Kelly, R.F.; Reilly, C.S.; Isaacson, R.E.; Wendt, C.H. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease. Microbiome, 2018, 6(1), 7.
[http://dx.doi.org/10.1186/s40168-017-0381-4] [PMID: 29316977]
[45]
Engel, M.; Endesfelder, D.; Schloter-Hai, B.; Kublik, S.; Granitsiotis, M.S.; Boschetto, P.; Stendardo, M.; Barta, I.; Dome, B.; Deleuze, J.F.; Boland, A.; Müller-Quernheim, J.; Prasse, A.; Welte, T.; Hohlfeld, J.; Subramanian, D.; Parr, D.; Gut, I.G.; Greulich, T.; Koczulla, A.R.; Nowinski, A.; Gorecka, D.; Singh, D.; Gupta, S.; Brightling, C.E.; Hoffmann, H.; Frankenberger, M.; Hofer, T.P.; Burggraf, D.; Heiss-Neumann, M.; Ziegler-Heitbrock, L.; Schloter, M.; Zu Castell, W. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS One, 2017, 12(7)e0180859
[http://dx.doi.org/10.1371/journal.pone.0180859] [PMID: 28704452]
[46]
Viniol, C.; Vogelmeier, C.F. Exacerbations of COPD. Eur. Respir. Rev., 2018, 27(147)170103
[http://dx.doi.org/10.1183/16000617.0103-2017] [PMID: 29540496]
[47]
Leitao Filho, F.S.; Alotaibi, N.M.; Ngan, D.; Tam, S.; Yang, J.; Hollander, Z.; Chen, V.; FitzGerald, J.M.; Nislow, C.; Leung, J.M.; Man, S.F.P.; Sin, D.D. Sputum microbiome is associated with 1-year mortality following COPD hospitalizations. Am. J. Respir. Crit. Care Med., 2019, 199(10), 1205-1213.
[http://dx.doi.org/10.1164/rccm.201806-1135OC] [PMID: 30376356]
[48]
Jubinville, E.; Veillette, M.; Milot, J.; Maltais, F.; Comeau, A.M.; Levesque, R.C.; Duchaine, C. Exacerbation induces a microbiota shift in sputa of COPD patients. PLoS One, 2018, 13(3)e0194355
[http://dx.doi.org/10.1371/journal.pone.0194355] [PMID: 29579057]
[49]
Wang, Z.; Bafadhel, M.; Haldar, K.; Spivak, A.; Mayhew, D.; Miller, B.E.; Tal-Singer, R.; Johnston, S.L.; Ramsheh, M.Y.; Barer, M.R.; Brightling, C.E.; Brown, J.R. Lung microbiome dynamics in COPD exacerbations. Eur. Respir. J., 2016, 47(4), 1082-1092.
[http://dx.doi.org/10.1183/13993003.01406-2015] [PMID: 26917613]
[50]
Millares, L.; Pérez-Brocal, V.; Ferrari, R.; Gallego, M.; Pomares, X.; García-Núñez, M.; Montón, C.; Capilla, S.; Monsó, E.; Moya, A. Functional metagenomics of the bronchial microbiome in COPD. PLoS One, 2015, 10(12)e0144448
[http://dx.doi.org/10.1371/journal.pone.0144448] [PMID: 26632844]
[51]
Ghebre, M.A.; Pang, P.H.; Diver, S.; Desai, D.; Bafadhel, M.; Haldar, K.; Kebadze, T.; Cohen, S.; Newbold, P.; Rapley, L.; Woods, J.; Rugman, P.; Pavord, I.D.; Johnston, S.L.; Barer, M.; May, R.D.; Brightling, C.E. Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. J. Allergy Clin. Immunol., 2018, 141(6), 2027-2036.e12.
[http://dx.doi.org/10.1016/j.jaci.2018.04.013] [PMID: 29709671]
[52]
Haldar, K.; Bafadhel, M.; Lau, K.; Berg, A.; Kwambana, B.; Kebadze, T.; Ramsheh, M.Y.; Barker, B.; Haldar, P.; Johnston, S.; Ketley, J.M.; Brightling, C.E.; Barer, M.R. Microbiome balance in sputum determined by PCR stratifies COPD exacerbations and shows potential for selective use of antibiotics. PLoS One, 2017, 12(8)e0182833
[http://dx.doi.org/10.1371/journal.pone.0182833] [PMID: 28841671]
[53]
Mayhew, D.; Devos, N.; Lambert, C.; Brown, J.R.; Clarke, S.C.; Kim, V.L.; Magid-Slav, M.; Miller, B.E.; Ostridge, K.K.; Patel, R.; Sathe, G.; Simola, D.F.; Staples, K.J.; Sung, R.; Tal-Singer, R.; Tuck, A.C.; Van Horn, S.; Weynants, V.; Williams, N.P.; Devaster, J.M.; Wilkinson, T.M.A. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73(5), 422-430.
[http://dx.doi.org/10.1136/thoraxjnl-2017-210408] [PMID: 29386298]
[54]
Wylie, T.N.; Wylie, K.M.; Herter, B.N.; Storch, G.A.; Author, C.; Louis, S. Enhanced virome sequencing using targeted sequence capture. Genome Res., 2015, 25(12), 1910-1920.
[http://dx.doi.org/10.1101/gr.191049.115] [PMID: 26395152]
[55]
Jankauskaitė, L.; Misevičienė, V.; Vaidelienė, L.; Kėvalas, R. Lower airway virology in health and disease-from invaders to symbionts. Medicina (Kaunas), 2018, 54(5)E72
[http://dx.doi.org/10.3390/medicina54050072] [PMID: 30344303]
[56]
Penadés, J.R.; Chen, J.; Quiles-Puchalt, N.; Carpena, N.; Novick, R.P. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol., 2015, 23, 171-178.
[http://dx.doi.org/10.1016/j.mib.2014.11.019] [PMID: 25528295]
[57]
Miedzybrodzki, R.; Switala-Jelen, K.; Fortuna, W.; Weber-Dabrowska, B.; Przerwa, A.; Lusiak-Szelachowska, M.; Dabrowska, K.; Kurzepa, A.; Boratynski, J.; Syper, D.; Pozniak, G.; Lugowski, C.; Gorski, A. Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Res., 2008, 131(2), 233-242.
[http://dx.doi.org/10.1016/j.virusres.2007.09.013] [PMID: 17996972]
[58]
Selva, L.; Viana, D.; Regev-Yochay, G.; Trzcinski, K.; Corpa, J.M.; Lasa, I.; Novick, R.P.; Penadés, J.R. Killing niche competitors by remote-control bacteriophage induction. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1234-1238.
[http://dx.doi.org/10.1073/pnas.0809600106] [PMID: 19141630]
[59]
Goerke, C.; Köller, J.; Wolz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(1), 171-177.
[http://dx.doi.org/10.1128/AAC.50.1.171-177.2006] [PMID: 16377683]
[60]
Wylie, K.M.; Weinstock, G.M.; Storch, G.A. Emerging view of the human virome. Transl. Res., 2012, 160(4), 283-290.
[http://dx.doi.org/10.1016/j.trsl.2012.03.006] [PMID: 22683423]
[61]
Elbehery, A.H.A.; Feichtmayer, J.; Singh, D.; Griebler, C.; Deng, L. The human virome protein cluster database (HVPC): a human viral metagenomic database for diversity and function annotation. Front. Microbiol., 2018, 9, 1110.
[http://dx.doi.org/10.3389/fmicb.2018.01110] [PMID: 29896176]
[62]
Borg, I.; Rohde, G.; Löseke, S.; Bittscheidt, J.; Schultze-Werninghaus, G.; Stephan, V.; Bufe, A. Evaluation of a quantitative real-time PCR for the detection of respiratory syncytial virus in pulmonary diseases. Eur. Respir. J., 2003, 21(6), 944-951.
[http://dx.doi.org/10.1183/09031936.03.00088102] [PMID: 12797486]
[63]
Kwak, H.J.; Park, D.W.; Kim, J.E.; Park, M.K.; Koo, G.W.; Park, T.S.; Moon, J.Y.; Kim, T.H.; Sohn, J.W.; Yoon, H.J.; Shin, D.H.; Kim, S.H. Prevalence and risk factors of respiratory viral infections in exacerbations of chronic obstructive pulmonary disease. Tohoku J. Exp. Med., 2016, 240(2), 131-139.
[http://dx.doi.org/10.1620/tjem.240.131] [PMID: 27725531]
[64]
Hutchinson, A.F.; Ghimire, A.K.; Thompson, M.A.; Black, J.F.; Brand, C.A.; Lowe, A.J.; Smallwood, D.M.; Vlahos, R.; Bozinovski, S.; Brown, G.V.; Anderson, G.P.; Irving, L.B. A community-based, time-matched, case-control study of respiratory viruses and exacerbations of COPD. Respir. Med., 2007, 101(12), 2472-2481.
[http://dx.doi.org/10.1016/j.rmed.2007.07.015] [PMID: 17822891]
[65]
Wark, P.A.; Tooze, M.; Powell, H.; Parsons, K. Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission. Respirology, 2013, 18(6), 996-1002.
[http://dx.doi.org/10.1111/resp.12099] [PMID: 23600594]
[66]
Seemungal, T.; Harper-Owen, R.; Bhowmik, A.; Moric, I.; Sanderson, G.; Message, S.; Maccallum, P.; Meade, T.W.; Jeffries, D.J.; Johnston, S.L.; Wedzicha, J.A. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2001, 164(9), 1618-1623.
[http://dx.doi.org/10.1164/ajrccm.164.9.2105011] [PMID: 11719299]
[67]
Djamin, R.S.; Uzun, S.; Snelders, E.; Kluytmans, J.J.; Hoogsteden, H.C.; Aerts, J.G.; Van Der Eerden, M.M. Occurrence of virus-induced COPD exacerbations during four seasons. Infect. Dis. (Lond.), 2015, 47(2), 96-100.
[http://dx.doi.org/10.3109/00365548.2014.968866] [PMID: 25426994]
[68]
Hosseini, S.S.; Ghasemian, E.; Jamaati, H.; Tabaraie, B.; Amini, Z.; Cox, K. Association between respiratory viruses and exacerbation of COPD: a case-control study. Infect. Dis. (Lond.), 2015, 47(8), 523-529.
[http://dx.doi.org/10.3109/23744235.2015.1022873] [PMID: 25800059]
[69]
Wilkinson, T.M.A.; Aris, E.; Bourne, S.; Clarke, S.C.; Peeters, M.; Pascal, T.G.; Schoonbroodt, S.; Tuck, A.C.; Kim, V.; Ostridge, K.; Staples, K.J.; Williams, N.; Williams, A.; Wootton, S.; Devaster, J.M. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax, 2017, 72(10), 919-927.
[http://dx.doi.org/10.1136/thoraxjnl-2016-209023] [PMID: 28432209]
[70]
Jafarinejad, H.; Moghoofei, M.; Mostafaei, S.; Salimian, J.; Azimzadeh Jamalkandi, S.; Ahmadi, A. Worldwide prevalence of viral infection in AECOPD patients: A meta-analysis. Microb. Pathog., 2017, 113, 190-196.
[http://dx.doi.org/10.1016/j.micpath.2017.10.021] [PMID: 29038056]
[71]
Wang, H.; Anthony, D.; Selemidis, S.; Vlahos, R.; Bozinovski, S. Resolving viral-induced secondary bacterial infection in COPD: a concise review. Front. Immunol., 2018, 9, 2345.
[http://dx.doi.org/10.3389/fimmu.2018.02345] [PMID: 30459754]
[72]
Linden, D.; Guo-Parke, H.; Coyle, P.V.; Fairley, D.; McAuley, D.F.; Taggart, C.C.; Kidney, J. Respiratory viral infection: a potential “missing link” in the pathogenesis of COPD. Eur. Respir. Rev., 2019, 28(151)180063
[http://dx.doi.org/10.1183/16000617.0063-2018] [PMID: 30872396]
[73]
Weltevrede, M.; Eilers, R.; de Melker, H.E.; van Baarle, D. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: A systematic review. Exp. Gerontol., 2016, 77, 87-95.
[http://dx.doi.org/10.1016/j.exger.2016.02.005] [PMID: 26883338]
[74]
Barnes, P.J. Senescence in COPD and its comorbidities. Annu. Rev. Physiol., 2017, 79, 517-539.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034314] [PMID: 27959617]
[75]
Tan, D.B.; Amran, F.S.; Teo, T.H.; Price, P.; Moodley, Y.P. Levels of CMV-reactive antibodies correlate with the induction of CD28(null) T cells and systemic inflammation in chronic obstructive pulmonary disease (COPD). Cell. Mol. Immunol., 2016, 13(4), 551-553.
[http://dx.doi.org/10.1038/cmi.2015.4] [PMID: 27402584]
[76]
Goh, L.Y.; Card, T.; Fogarty, A.W.; McKeever, T.M. The association of exposure to hepatitis B and C viruses with lung function and respiratory disease: a population based study from the NHANES III database. Respir. Med., 2014, 108(12), 1733-1740.
[http://dx.doi.org/10.1016/j.rmed.2014.10.006] [PMID: 25456709]
[77]
Kim, T.W.; Kim, M.N.; Kwon, J.W.; Kim, K.M.; Kim, S.H.; Kim, W.; Park, H.W.; Chang, Y.S.; Cho, S.H.; Min, K.U.; Kim, Y.Y. Risk of hepatitis B virus reactivation in patients with asthma or chronic obstructive pulmonary disease treated with corticosteroids. Respirology, 2010, 15(7), 1092-1097.
[http://dx.doi.org/10.1111/j.1440-1843.2010.01798.x] [PMID: 20630033]
[78]
Freer, G.; Maggi, F.; Pifferi, M.; Di Cicco, M.E.; Peroni, D.G.; Pistello, M. The Virome and its major component, anellovirus, a convoluted system molding human immune defenses and possibly affecting the development of asthma and respiratory diseases in childhood. Front. Microbiol., 2018, 9, 686.
[http://dx.doi.org/10.3389/fmicb.2018.00686] [PMID: 29692764]
[79]
Focosi, D.; Antonelli, G.; Pistello, M.; Maggi, F. Torquetenovirus: the human virome from bench to bedside. Clin. Microbiol. Infect., 2016, 22(7), 589-593.
[http://dx.doi.org/10.1016/j.cmi.2016.04.007] [PMID: 27093875]
[80]
Maggi, F.; Bendinelli, M. Immunobiology of the Torque teno viruses and other anelloviruses. Curr. Top. Microbiol. Immunol., 2009, 331, 65-90.
[http://dx.doi.org/10.1007/978-3-540-70972-5_5] [PMID: 19230558]
[81]
Thomas, J.; Pociute, A.; Kevalas, R.; Malinauskas, M.; Jankauskaite, L. Blood biomarkers differentiating viral versus bacterial pneumonia aetiology: a literature review. Ital. J. Pediatr., 2020, 46(1), 4.
[http://dx.doi.org/10.1186/s13052-020-0770-3] [PMID: 31918745]
[82]
Maggi, F.; Pifferi, M.; Fornai, C.; Andreoli, E.; Tempestini, E.; Vatteroni, M.; Presciuttini, S.; Marchi, S.; Pietrobelli, A.; Boner, A.; Pistello, M.; Bendinelli, M. TT virus in the nasal secretions of children with acute respiratory diseases: relations to viremia and disease severity. J. Virol., 2003, 77(4), 2418-2425.
[http://dx.doi.org/10.1128/JVI.77.4.2418-2425.2003] [PMID: 12551979]
[83]
Pifferi, M.; Maggi, F.; Di Cristofano, C.; Cangiotti, A.M.; Nelli, L.C.; Bevilacqua, G.; Macchia, P.; Bendinelli, M.; Boner, A.L. Torquetenovirus infection and ciliary dysmotility in children with recurrent pneumonia. Pediatr. Infect. Dis. J., 2008, 27(5), 413-418.
[http://dx.doi.org/10.1097/INF.0b013e318162a14f] [PMID: 18360304]
[84]
Pifferi, M.; Maggi, F.; Andreoli, E.; Lanini, L.; Marco, E.D.; Fornai, C.; Vatteroni, M.L.; Pistello, M.; Ragazzo, V.; Macchia, P.; Boner, A.; Bendinelli, M. Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J. Infect. Dis., 2005, 192(7), 1141-1148.
[http://dx.doi.org/10.1086/444389] [PMID: 16136454]
[85]
Pifferi, M.; Maggi, F.; Caramella, D.; De Marco, E.; Andreoli, E.; Meschi, S.; Macchia, P.; Bendinelli, M.; Boner, A.L. High torquetenovirus loads are correlated with bronchiectasis and peripheral airflow limitation in children. Pediatr. Infect. Dis. J., 2006, 25(9), 804-808.
[http://dx.doi.org/10.1097/01.inf.0000232723.58355.f4] [PMID: 16940838]
[86]
Abbas, A.A.; Diamond, J.M.; Chehoud, C.; Chang, B.; Kotzin, J.J.; Young, J.C.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; Meyer, K.C.; Milewski, R.K.; Olthoff, K.M.; Shaked, A.; Christie, J.D.; Bushman, F.D.; Collman, R.G. The perioperative lung transplant virome: torquetenoviruses are elevated in donor lungs and show divergent dynamics in primary graft dysfuntion. Am. J. Transplant., 2017, 17(5), 1313-1324.
[http://dx.doi.org/10.1111/ajt.14076] [PMID: 27731934]
[87]
Garcia-Nunez, M.; Gallego, M.; Monton, C.; Capilla, S.; Millares, L.; Pomares, X.; Espasa, M.; Ferrari, R.; Moya, A.; Monso, E.; Perz-Brocal, V. The respiratory virome in chronic obstructive pulmonary disease. Future Virol., 2018, 13(7)
[http://dx.doi.org/10.2217/fvl-2018-0027]
[88]
Hofer, U. Microbiome: anelloviridae go viral. Nat. Rev. Microbiol., 2014, 12(1), 4-5.
[http://dx.doi.org/10.1038/nrmicro3192] [PMID: 24336177]
[89]
Feyzioğlu, B.; Teke, T.; Ozdemir, M.; Karaibrahimoğlu, A.; Doğan, M.; Yavşan, M. The presence of Torque teno virus in chronic obstructive pulmonary disease. Int. J. Clin. Exp. Med., 2014, 7(10), 3461-3466.
[PMID: 25419383]
[90]
Huffnagle, G.B.; Noverr, M.C. The emerging world of the fungal microbiome. Trends Microbiol., 2013, 21(7), 334-341.
[http://dx.doi.org/10.1016/j.tim.2013.04.002] [PMID: 23685069]
[91]
Tipton, L.; Ghedin, E.; Morris, A. The lung mycobiome in the next-generation sequencing era. Virulence, 2017, 8(3), 334-341.
[http://dx.doi.org/10.1080/21505594.2016.1235671] [PMID: 27687858]
[92]
Morris, A.; Beck, J.M.; Schloss, P.D.; Campbell, T.B.; Crothers, K.; Curtis, J.L.; Flores, S.C.; Fontenot, A.P.; Ghedin, E.; Huang, L.; Jablonski, K.; Kleerup, E.; Lynch, S.V.; Sodergren, E.; Twigg, H.; Young, V.B.; Bassis, C.M.; Venkataraman, A.; Schmidt, T.M.; Weinstock, G.M. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med., 2013, 187(10), 1067-1075.
[http://dx.doi.org/10.1164/rccm.201210-1913OC] [PMID: 23491408]
[93]
Cui, L.; Lucht, L.; Tipton, L.; Rogers, M.B.; Fitch, A.; Kessinger, C.; Camp, D.; Kingsley, L.; Leo, N.; Greenblatt, R.M.; Fong, S.; Stone, S.; Dermand, J.C.; Kleerup, E.C.; Huang, L.; Morris, A.; Ghedin, E. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am. J. Respir. Crit. Care Med., 2015, 191(8), 932-942.
[http://dx.doi.org/10.1164/rccm.201409-1583OC] [PMID: 25603113]
[94]
Khodavaisy, S.; Mortaz, E.; Mohammadi, F.; Aliyali, M.; Fakhim, H.; Badali, H. Pneumocystis jirovecii colonization in Chronic Obstructive Pulmonary Disease (COPD). Curr Med Mycol, 2015, 1(1), 42-48.
[http://dx.doi.org/10.18869/acadpub.cmm.1.1.42] [PMID: 28680980]
[95]
Taccone, F.S.; Van den Abeele, A.M.; Bulpa, P.; Misset, B.; Meersseman, W.; Cardoso, T.; Paiva, J.A.; Blasco-Navalpotro, M.; De Laere, E.; Dimopoulos, G.; Rello, J.; Vogelaers, D.; Blot, S.I. Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying conditions, and outcomes. Crit. Care, 2015, 19(1), 7.
[http://dx.doi.org/10.1186/s13054-014-0722-7] [PMID: 25928694]
[96]
Huerta, A.; Soler, N.; Esperatti, M.; Guerrero, M.; Menendez, R.; Gimeno, A.; Zalacaín, R.; Mir, N.; Aguado, J.M.; Torres, A. Importance of Aspergillus spp. isolation in Acute exacerbations of severe COPD: prevalence, factors and follow-up: the FUNGI-COPD study. Respir. Res., 2014, 15(1), 17.
[http://dx.doi.org/10.1186/1465-9921-15-17] [PMID: 24517318]
[97]
Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules, 2018, 23(4)E762
[http://dx.doi.org/10.3390/molecules23040762] [PMID: 29584636]
[98]
Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[99]
Langeder, J.; Grienke, U.; Chen, Y.; Kirchmair, J.; Schmidtke, M.; Rollinger, J.M. Natural products against acute respiratory infections: Strategies and lessons learned. J. Ethnopharmacol., 2020, 248112298
[http://dx.doi.org/10.1016/j.jep.2019.112298] [PMID: 31610260]
[100]
Liu, M.; El-Hossary, E.M.; Oelschlaeger, T.A.; Donia, M.S.; Quinn, R.J.; Abdelmohsen, U.R. Potential of marine natural products against drug-resistant bacterial infections. Lancet Infect. Dis., 2019, 19(7), e237-e245.
[http://dx.doi.org/10.1016/S1473-3099(18)30711-4] [PMID: 31031171]
[101]
Liu, C.; Eichelberger, M.C.; Compans, R.W.; Air, G.M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J. Virol., 1995, 69(2), 1099-1106.
[http://dx.doi.org/10.1128/JVI.69.2.1099-1106.1995] [PMID: 7815489]
[102]
Ghosh, S.; Chisti, Y.; Banerjee, U.C. Production of shikimic acid. Biotechnol. Adv., 2012, 30(6), 1425-1431.
[http://dx.doi.org/10.1016/j.biotechadv.2012.03.001] [PMID: 22445787]
[103]
Jefferson, T.; Jones, M.A.; Doshi, P.; Del Mar, C.B.; Heneghan, C.J.; Hama, R.; Thompson, M.J. Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst. Rev., 2012, 1(1)CD008965
[http://dx.doi.org/10.1002/14651858.CD008965.pub3] [PMID: 22258996]
[104]
Zeng, F.L.; Xiang, Y.F.; Liang, Z.R.; Wang, X.; Huang, D.E.; Zhu, S.N.; Li, M.M.; Yang, D.P.; Wang, D.M.; Wang, Y.F. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola. Am. J. Chin. Med., 2013, 41(1), 119-130.
[http://dx.doi.org/10.1142/S0192415X13500092] [PMID: 23336511]
[105]
Rechtman, M.M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1alpha. FEBS Lett., 2010, 584(11), 2485-2490.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[106]
Abdelmohsen, U.R.; Balasubramanian, S.; Oelschlaeger, T.A.; Grkovic, T.; Pham, N.B.; Quinn, R.J.; Hentschel, U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect. Dis., 2017, 17(2), e30-e41.
[http://dx.doi.org/10.1016/S1473-3099(16)30323-1] [PMID: 27979695]
[107]
Ma, L.Y.; Ma, S.C.; Wei, F.; Lin, R.C.; But, P.P.; Lee, S.H.; Lee, S.F. Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata. Chem. Pharm. Bull. (Tokyo), 2003, 51(11), 1264-1267.
[http://dx.doi.org/10.1248/cpb.51.1264] [PMID: 14600370]
[108]
Huang, W.; Zhang, X.; Wang, Y.; Ye, W.; Ooi, V.E.; Chung, H.Y.; Li, Y. Antiviral biflavonoids from Radix Wikstroemiae (Liaogewanggen). Chin. Med., 2010, 5, 23.
[http://dx.doi.org/10.1186/1749-8546-5-23] [PMID: 20565950]
[109]
Wang, Y.; Chen, M.; Zhang, J.; Zhang, X.L.; Huang, X.J.; Wu, X.; Zhang, Q.W.; Li, Y.L.; Ye, W.C. Flavone C-glycosides from the leaves of Lophatherum gracile and their in vitro antiviral activity. Planta Med., 2012, 78(1), 46-51.
[http://dx.doi.org/10.1055/s-0031-1280128] [PMID: 21870321]
[110]
Budden, K.F.; Shukla, S.D.; Rehman, S.F.; Bowerman, K.L.; Keely, S.; Hugenholtz, P.; Armstrong-James, D.P.H.; Adcock, I.M.; Chotirmall, S.H.; Chung, K.F.; Hansbro, P.M. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med., 2019, 7(10), 907-920.
[http://dx.doi.org/10.1016/S2213-2600(18)30510-1] [PMID: 30975495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy