Mini-Review Article

尿素转运蛋白被认为是新的利尿药物靶点

卷 21, 期 3, 2020

页: [279 - 287] 页: 9

弟呕挨: 10.2174/1389450120666191129101915

价格: $65

摘要

背景: 尿素转运蛋白是一类膜通道蛋白,可促进尿素通过质膜的被动转运。UTs被分成两个子类,UT-A和UT-B。UT-As主要分布于肾小管上皮,UT-Bs在肾降血管直 肠和肾外多组织中均有高度表达。各种尿素转运蛋白敲除小鼠的尿浓缩能力较低,提示UTs是新的利尿靶点。通过对小分子类药物化合物文库的高通量筛选,在纳米级鉴定出多种有效UT抑制剂的半数抑制浓度(即IC50)。此外,选择性UT抑制剂在不干扰电解质和代谢平衡的情况下表现出利尿活性, 这证实了UTs作为利尿剂靶点和\UT抑制剂作为新型利尿剂的潜力,不会引起电解质失衡。 摘要目的: 本文综述了尿素转运蛋白作为利尿剂潜在作用靶点的识别与验证,以及小分子UT抑制剂作为新型利尿剂的发现。 结论: 糖皮质激素是一种潜在的利尿剂。UT抑制剂具有显著的利尿作用,可发展为不影响电解质平衡的利尿剂。

关键词: 尿素转运蛋白,利尿靶点,抑制剂,药物研发,分子动力学,电解质平衡。

图形摘要
[1]
Calderone V, Martelli A, Piragine E, Citi V, Testai L, Breschi MC. the renal outer medullary potassium channel (romk): an intriguing pharmacological target for an innovative class of diuretic drugs. Curr Med Chem 2018; 25(23): 2627-36.
[http://dx.doi.org/10.2174/0929867324666171012120937] [PMID: 29022503]
[2]
Palazzuoli A, Ruocco G, Pellegrini M, Beltrami M, Del Castillo G, Nuti R. Loop diuretics strategies in acute heart failure: from clinical trials to practical application. Curr Drug Targets 2015; 16(11): 1246-53.
[http://dx.doi.org/10.2174/1389450116666150420125531] [PMID: 25892312]
[3]
Zhang L, Hussain Z, Ren Z. Recent advances in rational diagnosis and treatment of normal pressure hydrocephalus: a critical appraisal on novel diagnostic, therapy monitoring and treatment modalities. Curr Drug Targets 2019; 20(10): 1041-57.
[http://dx.doi.org/10.2174/1389450120666190214121342] [PMID: 30767741]
[4]
Huxel C, Raja A. Ollivierre-lawrence md loop diuretics. Treasure Island, FL: StatPearls 2019.
[5]
Akbari P, Khorasani-Zadeh A. Thiazide Diuretics. Treasure Island, FL: StatPearls 2019.
[6]
Blowey DL. Diuretics in the treatment of hypertension. Pediatr Nephrol 2016; 31(12): 2223-33.
[http://dx.doi.org/10.1007/s00467-016-3334-4] [PMID: 26983630]
[7]
Shrimanker I, Bhattarai S. Electrolytes. Treasure Island, FL: StatPearls 2019.
[8]
Mann SJ. The silent epidemic of thiazide-induced hyponatremia. J Clin Hypertens (Greenwich) 2008; 10(6): 477-84.
[http://dx.doi.org/10.1111/j.1751-7176.2008.08126.x] [PMID: 18550938]
[9]
Yang SS, Lo YF, Wu CC, et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 2010; 21(11): 1868-77.
[http://dx.doi.org/10.1681/ASN.2009121295] [PMID: 20813865]
[10]
Xiao Y, Meng XX, Zhang H, Guo XW, Gu RM. The function and regulation of basolateral Kir4.1 and Kir4.1/Kir5.1 in renal tubules Sheng li xue bao : [Acta physiologica Sinica 2018; 70(6): 600.
[11]
Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Garneau AP, Isenring P. Regulation of Na+-K+-Cl- cotransporter type 2 by the with no lysine kinase-dependent signaling pathway. Am J Physiol Cell Physiol 2019; 317(1): C20-30.
[http://dx.doi.org/10.1152/ajpcell.00041.2019] [PMID: 30917032]
[12]
Matsumura Y, Uchida S, Kondo Y, et al. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet 1999; 21(1): 95-8.
[http://dx.doi.org/10.1038/5036] [PMID: 9916798]
[13]
Greenberg A, Verbalis JG. Vasopressin receptor antagonists. Kidney Int 2006; 69(12): 2124-30.
[http://dx.doi.org/10.1038/sj.ki.5000432] [PMID: 16672911]
[14]
Fukui H. Do vasopressin V2 receptor antagonists benefit cirrhotics with refractory ascites? World J Gastroenterol 2015; 21(41): 11584-96.
[http://dx.doi.org/10.3748/wjg.v21.i41.11584] [PMID: 26556988]
[15]
Thibonnier M, Coles P, Thibonnier A, Shoham M. The basic and clinical pharmacology of nonpeptide vasopressin receptor antagonists. Annu Rev Pharmacol Toxicol 2001; 41: 175-202.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.175] [PMID: 11264455]
[16]
Ginès P, Wong F, Watson H, Milutinovic S, del Arbol LR, Olteanu D. HypoCAT Study Investigators. Effects of satavaptan, a selective vasopressin V(2) receptor antagonist, on ascites and serum sodium in cirrhosis with hyponatremia: a randomized trial. Hepatology 2008; 48(1): 204-13.
[http://dx.doi.org/10.1002/hep.22293] [PMID: 18508290]
[17]
Sands JM. Urea transporter inhibitors: en route to new diuretics. Chem Biol 2013; 20(10): 1201-2.
[http://dx.doi.org/10.1016/j.chembiol.2013.10.003] [PMID: 24210002]
[18]
Sands JM, Knepper MA. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest 1987; 79(1): 138-47.
[http://dx.doi.org/10.1172/JCI112774] [PMID: 3793921]
[19]
You G, Smith CP, Kanai Y, Lee WS, Stelzner M, Hediger MA. Cloning and characterization of the vasopressin-regulated urea transporter. Nature 1993; 365(6449): 844-7.
[http://dx.doi.org/10.1038/365844a0] [PMID: 8413669]
[20]
Yang B, Bankir L. Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol Renal Physiol 2005; 288(5): F881-96.
[http://dx.doi.org/10.1152/ajprenal.00367.2004] [PMID: 15821253]
[21]
Fenton RA, Cottingham CA, Stewart GS, Howorth A, Hewitt JA, Smith CP. Structure and characterization of the mouse UT-A gene (Slc14a2). Am J Physiol Renal Physiol 2002; 282(4): F630-8.
[http://dx.doi.org/10.1152/ajprenal.00264.2001] [PMID: 11880324]
[22]
Kim YH, Kim DU, Han KH, et al. Expression of urea transporters in the developing rat kidney. Am J Physiol Renal Physiol 2002; 282(3): F530-40.
[http://dx.doi.org/10.1152/ajprenal.00246.2001] [PMID: 11832436]
[23]
Karakashian A, Timmer RT, Klein JD, Gunn RB, Sands JM, Bagnasco SM. Cloning and characterization of two new isoforms of the rat kidney urea transporter: UT-A3 and UT-A4. J Am Soc Nephrol 1999; 10(2): 230-7.
[PMID: 10215321]
[24]
Bagnasco SM, Peng T, Nakayama Y, Sands JM. Differential expression of individual UT-A urea transporter isoforms in rat kidney. J Am Soc Nephrol 2000; 11(11): 1980-6.
[PMID: 11053472]
[25]
Fenton RA, Stewart GS, Carpenter B, et al. Characterization of mouse urea transporters UT-A1 and UT-A2. Am J Physiol Renal Physiol 2002; 283(4): F817-25.
[http://dx.doi.org/10.1152/ajprenal.00263.2001] [PMID: 12217874]
[26]
Smith CP, Lee WS, Martial S, et al. Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J Clin Invest 1995; 96(3): 1556-63.
[http://dx.doi.org/10.1172/JCI118194] [PMID: 7657826]
[27]
Olives B, Neau P, Bailly P, et al. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 1994; 269(50): 31649-52.
[PMID: 7989337]
[28]
Bagnasco SM. Gene structure of urea transporters. Am J Physiol Renal Physiol 2003; 284(1): F3-F10.
[http://dx.doi.org/10.1152/ajprenal.00260.2002] [PMID: 12473534]
[29]
Doran JJ, Klein JD, Kim YH, et al. Tissue distribution of UT-A and UT-B mRNA and protein in rat. Am J Physiol Regul Integr Comp Physiol 2006; 290(5): R1446-59.
[http://dx.doi.org/10.1152/ajpregu.00352.2004] [PMID: 16373440]
[30]
Sun Y, Lau CW, Jia Y, et al. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway. Sci Rep 2016; 6: 18697.
[http://dx.doi.org/10.1038/srep18697] [PMID: 26739766]
[31]
Shayakul C, Clémençon B, Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med 2013; 34(2-3): 313-22.
[http://dx.doi.org/10.1016/j.mam.2012.12.003] [PMID: 23506873]
[32]
Shayakul C, Hediger MA. The SLC14 gene family of urea transporters. Pflugers Arch 2004; 447(5): 603-9.
[http://dx.doi.org/10.1007/s00424-003-1124-x] [PMID: 12856182]
[33]
Minocha R, Studley K, Saier MH Jr. The urea transporter (UT) family: bioinformatic analyses leading to structural, functional, and evolutionary predictions. Receptors Channels 2003; 9(6): 345-52.
[http://dx.doi.org/10.3109/714041015] [PMID: 14698962]
[34]
Levin EJ, Zhou M. Structure of urea transporters. Subcell Biochem 2014; 73: 65-78.
[http://dx.doi.org/10.1007/978-94-017-9343-8_5] [PMID: 25298339]
[35]
Rousselet G, Ripoche P, Bailly P. Tandem sequence repeats in urea transporters: identification of an urea transporter signature sequence. Am J Physiol 1996; 270(3 Pt 2): F554-5.
[PMID: 8780260]
[36]
Levin EJ, Cao Y, Enkavi G, et al. Structure and permeation mechanism of a mammalian urea transporter. Proc Natl Acad Sci USA 2012; 109(28): 11194-9.
[http://dx.doi.org/10.1073/pnas.1207362109] [PMID: 22733730]
[37]
Klein JD, Blount MA, Sands JM. Urea transport in the kidney. Compr Physiol 2011; 1(2): 699-729.
[PMID: 23737200]
[38]
Barmore W, Stone WL. Physiology, Urea Cycle. Treasure Island, FL: StatPearls 2019.
[39]
Pannabecker TL. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am J Physiol Regul Integr Comp Physiol 2013; 304(7): R488-503.
[http://dx.doi.org/10.1152/ajpregu.00456.2012] [PMID: 23364530]
[40]
Sands JM, Layton HE. The physiology of urinary concentration: an update. Semin Nephrol 2009; 29(3): 178-95.
[http://dx.doi.org/10.1016/j.semnephrol.2009.03.008] [PMID: 19523568]
[41]
Fenton RA. Urea transporters and renal function: lessons from knockout mice. Curr Opin Nephrol Hypertens 2008; 17(5): 513-8.
[http://dx.doi.org/10.1097/MNH.0b013e3283050969] [PMID: 18695393]
[42]
Fenton RA. Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch 2009; 458(1): 169-77.
[http://dx.doi.org/10.1007/s00424-008-0612-4] [PMID: 19011892]
[43]
Sands JM. Critical role of urea in the urine-concentrating mechanism. J Am Soc Nephrol 2007; 18(3): 670-1.
[http://dx.doi.org/10.1681/ASN.2006121314] [PMID: 17251382]
[44]
Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem 2002; 277(12): 10633-7.
[http://dx.doi.org/10.1074/jbc.M200207200] [PMID: 11792714]
[45]
Fenton RA, Knepper MA. Urea and renal function in the 21st century: insights from knockout mice. J Am Soc Nephrol 2007; 18(3): 679-88.
[http://dx.doi.org/10.1681/ASN.2006101108] [PMID: 17251384]
[46]
Sands JM. Renal urea transporters. Curr Opin Nephrol Hypertens 2004; 13(5): 525-32.
[http://dx.doi.org/10.1097/00041552-200409000-00008] [PMID: 15300159]
[47]
Sands JM, Layton HE. Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol 2014; 76: 387-409.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170350] [PMID: 24245944]
[48]
Klein JD, Blount MA, Sands JM. Molecular mechanisms of urea transport in health and disease. Pflugers Arch 2012; 464(6): 561-72.
[http://dx.doi.org/10.1007/s00424-012-1157-0] [PMID: 23007461]
[49]
Sands JM, Gargus JJ, Fröhlich O, Gunn RB, Kokko JP. Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. J Am Soc Nephrol 1992; 2(12): 1689-96.
[PMID: 1498276]
[50]
Li X, Ran J, Zhou H, Lei T, Zhou L, Han J, et al. Mice lacking urea transporter UT-B display depression-like behavior. MN 2012; 46(2): 362-72.
[http://dx.doi.org/10.1007/s12031-011-9594-3]
[51]
Meng Y, Zhao C, Zhang X, et al. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B. Sci China C Life Sci 2009; 52(5): 474-8.
[http://dx.doi.org/10.1007/s11427-009-0047-y] [PMID: 19471871]
[52]
Guo L, Zhao D, Song Y, et al. Reduced urea flux across the blood-testis barrier and early maturation in the male reproductive system in UT-B-null mice. Am J Physiol Cell Physiol 2007; 293(1): C305-12.
[http://dx.doi.org/10.1152/ajpcell.00608.2006] [PMID: 17475664]
[53]
Fenton RA, Chou CL, Stewart GS, Smith CP, Knepper MA. Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci USA 2004; 101(19): 7469-74.
[http://dx.doi.org/10.1073/pnas.0401704101] [PMID: 15123796]
[54]
Fenton RA, Flynn A, Shodeinde A, Smith CP, Schnermann J, Knepper MA. Renal phenotype of UT-A urea transporter knockout mice. J Am Soc Nephrol 2005; 16(6): 1583-92.
[http://dx.doi.org/10.1681/ASN.2005010031] [PMID: 15829709]
[55]
Klein JD, Wang Y, Mistry A, et al. Transgenic restoration of urea transporter a1 confers maximal urinary concentration in the absence of urea transporter a3. J Am Soc Nephrol 2016; 27(5): 1448-55.
[http://dx.doi.org/10.1681/ASN.2014121267] [PMID: 26407594]
[56]
Uchida S, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S. Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT-A2. Mol Cell Biol 2005; 25(16): 7357-63.
[http://dx.doi.org/10.1128/MCB.25.16.7357-7363.2005] [PMID: 16055743]
[57]
Jiang T, Li Y, Layton AT, et al. Generation and phenotypic analysis of mice lacking all urea transporters. Kidney Int 2017; 91(2): 338-51.
[http://dx.doi.org/10.1016/j.kint.2016.09.017] [PMID: 27914708]
[58]
Esteva-Font C, Phuan PW, Anderson MO, Verkman AS. A small molecule screen identifies selective inhibitors of urea transporter UT-A. Chem Biol 2013; 20(10): 1235-44.
[http://dx.doi.org/10.1016/j.chembiol.2013.08.005] [PMID: 24055006]
[59]
Knepper MA, Miranda CA. Urea channel inhibitors: a new functional class of aquaretics. Kidney Int 2013; 83(6): 991-3.
[http://dx.doi.org/10.1038/ki.2013.94] [PMID: 23728001]
[60]
Tsuchiya Y, Vidaurre D, Toh S, et al. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 2010; 6(10): 741-9.
[http://dx.doi.org/10.1038/nchembio.435] [PMID: 20818397]
[61]
Bankir L, Yang B. New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism. Kidney Int 2012; 81(12): 1179-98.
[http://dx.doi.org/10.1038/ki.2012.67] [PMID: 22456603]
[62]
Zhang Z, Dmitrieva NI, Park JH, Levine RL, Burg MB. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc Natl Acad Sci USA 2004; 101(25): 9491-6.
[http://dx.doi.org/10.1073/pnas.0402961101] [PMID: 15190183]
[63]
Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 2007; 34(9): 906-11.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04638.x] [PMID: 17645639]
[64]
Dong Z, Ran J, Zhou H, et al. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium. PLoS One 2013; 8(10)e76952
[http://dx.doi.org/10.1371/journal.pone.0076952] [PMID: 24204711]
[65]
Li X, Chen G, Yang B. Urea transporter physiology studied in knockout mice. Front Physiol 2012; 3: 217.
[http://dx.doi.org/10.3389/fphys.2012.00217] [PMID: 22745630]
[66]
Chou CL, Knepper MA. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol 1989; 257(3 Pt 2): F359-65.
[PMID: 2506765]
[67]
Levin MH, de la Fuente R, Verkman AS. Urearetics: a small molecule screen yields nanomolar potency inhibitors of urea transporter UT-B. FASEB J 2007; 21(2): 551-63.
[http://dx.doi.org/10.1096/fj.06-6979com] [PMID: 17202246]
[68]
Yao C, Anderson MO, Zhang J, Yang B, Phuan PW, Verkman AS. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. J Am Soc Nephrol 2012; 23(7): 1210-20.
[http://dx.doi.org/10.1681/ASN.2011070751] [PMID: 22491419]
[69]
Cil O, Esteva-Font C, Tas ST, et al. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats. Kidney Int 2015; 88(2): 311-20.
[http://dx.doi.org/10.1038/ki.2015.138] [PMID: 25993324]
[70]
Liu Y, Esteva-Font C, Yao C, Phuan PW, Verkman AS, Anderson MO. 1,1-Difluoroethyl-substituted triazolothienopyrimidines as inhibitors of a human urea transport protein (UT-B): new analogs and binding model. Bioorg Med Chem Lett 2013; 23(11): 3338-41.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.089] [PMID: 23597791]
[71]
Lee S, Esteva-Font C, Phuan PW, Anderson MO, Verkman AS. Discovery, synthesis and structure-activity analysis of symmetrical 2,7-disubstituted fluorenones as urea transporter inhibitors. MedChemComm 2015; 6: 1278-84.
[http://dx.doi.org/10.1039/C5MD00198F] [PMID: 26191399]
[72]
Esteva-Font C, Phuan PW, Lee S, Su T, Anderson MO, Verkman AS. Structure-activity analysis of thiourea analogs as inhibitors of UT-A and UT-B urea transporters. Biochim Biophys Acta 2015; 1848(5): 1075-80.
[http://dx.doi.org/10.1016/j.bbamem.2015.01.004] [PMID: 25613743]
[73]
Li F, Lei T, Zhu J, et al. A novel small-molecule thienoquinolin urea transporter inhibitor acts as a potential diuretic. Kidney Int 2013; 83(6): 1076-86.
[http://dx.doi.org/10.1038/ki.2013.62] [PMID: 23486518]
[74]
Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol 2018; 9: 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[75]
de Azevedo WF Jr. Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr Med Chem 2011; 18(9): 1353-66.
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[76]
Xavier MM, Heck GS, Avila MB, et al. SAnDReS a Computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen 2016; 19(10): 801-12.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[77]
Li M, Tou WI, Zhou H, et al. Developing hypothetical inhibition mechanism of novel urea transporter B inhibitor. Sci Rep 2014; 4: 5775.
[http://dx.doi.org/10.1038/srep05775] [PMID: 25047372]
[78]
Ren H, Wang Y, Xing Y, et al. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters. Am J Physiol Renal Physiol 2014; 307(12): F1363-72.
[http://dx.doi.org/10.1152/ajprenal.00421.2014] [PMID: 25298523]
[79]
Zhang ZY, Zhang H, Liu D, et al. Pharmacokinetics, Tissue Distribution and Excretion of a Novel Diuretic (PU-48) in Rats. Pharmaceutics 2018; 10(3)E124
[http://dx.doi.org/10.3390/pharmaceutics10030124] [PMID: 30096833]
[80]
Zhang ZY, Wang X, Liu D, Zhang H, Zhang Q, Lu YY, et al. Development and validation of an LC-MS/MS method for the determination of a novel thienoquinolin urea transporter inhibitor PU- 48 in rat plasma and its application to a pharmacokinetic study Biomedical chromatography : BMC 2018; 32-4.
[81]
Zhao Y, Li M, Li B, et al. Discovery and optimization of thienopyridine derivatives as novel urea transporter inhibitors. Eur J Med Chem 2019; 172: 131-42.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.060] [PMID: 30959323]
[82]
Li M, Zhao Y, Zhang S, et al. A thienopyridine, CB-20, exerts diuretic activity by inhibiting urea transporters. Acta Pharmacol Sin 2019.
[http://dx.doi.org/10.1038/s41401-019-0245-5]
[83]
Lee S, Cil O, Diez-Cecilia E, Anderson MO, Verkman AS. Nanomolar-potency 1,2,4-triazoloquinoxaline inhibitors of the kidney urea transporter ut-a1. J Med Chem 2018; 61(7): 3209-17.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00343] [PMID: 29589443]
[84]
Klein JD, Sands JM. Urea transport and clinical potential of urearetics. Curr Opin Nephrol Hypertens 2016; 25(5): 444-51.
[http://dx.doi.org/10.1097/MNH.0000000000000252] [PMID: 27367911]
[85]
Esteva-Font C, Anderson MO, Verkman AS. Urea transporter proteins as targets for small-molecule diuretics. Nat Rev Nephrol 2015; 11(2): 113-23.
[http://dx.doi.org/10.1038/nrneph.2014.219] [PMID: 25488859]
[86]
Tao R, de Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 2007; 13(11): 1299-307.
[http://dx.doi.org/10.1038/nm1652] [PMID: 17922010]
[87]
Fadden P, Huang KH, Veal JM, et al. Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Chem Biol 2010; 17(7): 686-94.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.015] [PMID: 20659681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy