Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Medicinal Thiols: Current Status and New Perspectives

Author(s): Annalise R. Pfaff, Justin Beltz, Emily King and Nuran Ercal*

Volume 20, Issue 6, 2020

Page: [513 - 529] Pages: 17

DOI: 10.2174/1389557519666191119144100

Price: $65

Abstract

The thiol (-SH) functional group is found in a number of drug compounds and confers a unique combination of useful properties. Thiol-containing drugs can reduce radicals and other toxic electrophiles, restore cellular thiol pools, and form stable complexes with heavy metals such as lead, arsenic, and copper. Thus, thiols can treat a variety of conditions by serving as radical scavengers, GSH prodrugs, or metal chelators. Many of the compounds discussed here have been in use for decades, yet continued exploration of their properties has yielded new understanding in recent years, which can be used to optimize their clinical application and provide insights into the development of new treatments. The purpose of this narrative review is to highlight the biochemistry of currently used thiol drugs within the context of developments reported in the last five years. More specifically, this review focuses on thiol drugs that represent the standard of care for their associated conditions, including N-acetylcysteine, 2,3-meso-dimercaptosuccinic acid, British anti-Lewisite, D-penicillamine, amifostine, and others. Reports of novel dosing regimens, delivery strategies, and clinical applications for these compounds were examined with an eye toward emerging approaches to address a wide range of medical conditions in the future.

Keywords: Thiol, heavy metals, toxicity, radioprotectant, glutathione, antioxidant, chelation, ROS.

« Previous
Graphical Abstract
[1]
Laher, I. Systems Biology of Free Radicals and Antioxidants; Springer: Berlin, Heidelberg, 2014.
[http://dx.doi.org/10.1007/978-3-642-30018-9]
[2]
Gutteridge, J.M.C.; Halliwell, B. Free Radicals in Biology and Medicine, 5th ed; Oxford University Press: New York, 2015.
[3]
Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid. Redox Signal., 2016, 25(3), 119-146.
[http://dx.doi.org/10.1089/ars.2016.6665] [PMID: 26906267]
[4]
Quiñonez-Flores, C.M.; González-Chávez, S.A.; Del Río Nájera, D.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. BioMed Res. Int., 2016, 2016, 6097417
[http://dx.doi.org/10.1155/2016/6097417] [PMID: 27340664]
[5]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[6]
Smith, T.A.; Kirkpatrick, D.R.; Smith, S.; Smith, T.K.; Pearson, T.; Kailasam, A.; Herrmann, K.Z.; Schubert, J.; Agrawal, D.K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med., 2017, 15(1), 232.
[http://dx.doi.org/10.1186/s12967-017-1338-x] [PMID: 29121966]
[7]
Crichton, E.; Ward, R.J.; Hider, R.C. Metal Chelation in Medicine; The Royal Society of Chemistry: Cambridge, UK, 2016, Vol. 8, p. 322.
[http://dx.doi.org/10.1039/9781782623892]
[8]
Huxtable, R.J. Biochemistry of Sulfur, 1986.
[http://dx.doi.org/10.1007/978-1-4757-9438-0]
[9]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[10]
Blieden, M.; Paramore, L.C.; Shah, D.; Ben-Joseph, R. A perspective on the epidemiology of acetaminophen exposure and toxicity in the United States. Expert Rev. Clin. Pharmacol., 2014, 7(3), 341-348.
[http://dx.doi.org/10.1586/17512433.2014.904744] [PMID: 24678654]
[11]
Lee, W.M. Acetaminophen and the U.S. Acute Liver Failure Study Group: lowering the risks of hepatic failure. Hepatology, 2004, 40(1), 6-9.
[http://dx.doi.org/10.1002/hep.20293] [PMID: 15239078]
[12]
Larson, A.M.; Polson, J.; Fontana, R.J.; Davern, T.J.; Lalani, E.; Hynan, L.S.; Reisch, J.S.; Schiødt, F.V.; Ostapowicz, G.; Shakil, A.O.; Lee, W.M. Acute Liver Failure Study Group. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology, 2005, 42(6), 1364-1372.
[http://dx.doi.org/10.1002/hep.20948] [PMID: 16317692]
[13]
Schiødt, F.V.; Atillasoy, E.; Shakil, A.O.; Schiff, E.R.; Caldwell, C.; Kowdley, K.V.; Stribling, R.; Crippin, J.S.; Flamm, S.; Somberg, K.A.; Rosen, H.; McCashland, T.M.; Hay, J.E.; Lee, W.M. Etiology and outcome for 295 patients with acute liver failure in the United States. Liver Transpl. Surg., 1999, 5(1), 29-34.
[http://dx.doi.org/10.1002/lt.500050102] [PMID: 9873089]
[14]
Nourjah, P.; Ahmad, S.R.; Karwoski, C.; Willy, M. Estimates of acetaminophen (Paracetomal)-associated overdoses in the United States. Pharmacoepidemiol. Drug Saf., 2006, 15(6), 398-405.
[http://dx.doi.org/10.1002/pds.1191] [PMID: 16294364]
[15]
Heard, K.J. Acetylcysteine for acetaminophen poisoning. N. Engl. J. Med., 2008, 359(3), 285-292.
[http://dx.doi.org/10.1056/NEJMct0708278] [PMID: 18635433]
[16]
Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update. J. Clin. Transl. Hepatol., 2016, 4(2), 131-142.
[PMID: 27350943]
[17]
Macherey, A-C.; Dansette, P.M. Biotransformations Leading to Toxic Metabolites: Chemical Aspect.The Practice of Medicinal Chemistry, 3rd ed; Wermuth, C.G., Ed.; Academic Press, 2011.
[18]
Klopčič, I.; Poberžnik, M.; Mavri, J.; Dolenc, M.S. A quantum chemical study of the reactivity of acetaminophen (paracetamol) toxic metabolite N-acetyl-p-benzoquinone imine with deoxyguanosine and glutathione. Chem. Biol. Interact., 2015, 242, 407-414.
[http://dx.doi.org/10.1016/j.cbi.2015.11.002] [PMID: 26551927]
[19]
James, L.P.; Mayeux, P.R.; Hinson, J.A. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos., 2003, 31(12), 1499-1506.
[http://dx.doi.org/10.1124/dmd.31.12.1499] [PMID: 14625346]
[20]
Saito, C.; Zwingmann, C.; Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology, 2010, 51(1), 246-254.
[http://dx.doi.org/10.1002/hep.23267] [PMID: 19821517]
[21]
Ghanem, C.I.; Pérez, M.J.; Manautou, J.E.; Mottino, A.D. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol. Res., 2016, 109, 119-131.
[http://dx.doi.org/10.1016/j.phrs.2016.02.020] [PMID: 26921661]
[22]
Kim, J.W.; Ryu, S.H.; Kim, S.; Lee, H.W.; Lim, M.S.; Seong, S.J.; Kim, S.; Yoon, Y.R.; Kim, K.B. Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal. Chem., 2013, 85(23), 11326-11334.
[http://dx.doi.org/10.1021/ac402390q] [PMID: 24127682]
[23]
Chiew, A.L.; Gluud, C.; Brok, J.; Buckley, N.A. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst. Rev., 2018., 2CD003328
[PMID: 29473717]
[24]
Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol., 2007, 7(4), 355-359.
[http://dx.doi.org/10.1016/j.coph.2007.04.005] [PMID: 17602868]
[25]
Chan, J.C.Y.; Soh, A.C.K.; Kioh, D.Y.Q.; Li, J.; Verma, C.; Koh, S.K.; Beuerman, R.W.; Zhou, L.; Chan, E.C.Y. Reactive Metabolite-induced Protein Glutathionylation: A Potentially Novel Mechanism Underlying Acetaminophen Hepatotoxicity. Mol. Cell. Proteomics, 2018, 17(10), 2034-2050.
[http://dx.doi.org/10.1074/mcp.RA118.000875] [PMID: 30006487]
[26]
Marzullo, L. An update of N-acetylcysteine treatment for acute acetaminophen toxicity in children. Curr. Opin. Pediatr., 2005, 17(2), 239-245.
[http://dx.doi.org/10.1097/01.mop.0000152622.05168.9e] [PMID: 15800420]
[27]
Smilkstein, M.J.; Knapp, G.L.; Kulig, K.W.; Rumack, B.H. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N. Engl. J. Med., 1988, 319(24), 1557-1562.
[http://dx.doi.org/10.1056/NEJM198812153192401] [PMID: 3059186]
[28]
Craig, D.G.; Bates, C.M.; Davidson, J.S.; Martin, K.G.; Hayes, P.C.; Simpson, K.J. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity. Br. J. Clin. Pharmacol., 2012, 73(2), 285-294.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04067.x] [PMID: 22106945]
[29]
Kane, A.E.; Huizer-Pajkos, A.; Mach, J.; McKenzie, C.; Mitchell, S.J.; de Cabo, R.; Jones, B.; Cogger, V.; Le Couteur, D.G.; Hilmer, S.N. N-Acetyl cysteine does not prevent liver toxicity from chronic low-dose plus subacute high-dose paracetamol exposure in young or old mice. Fundam. Clin. Pharmacol., 2016, 30(3), 263-275.
[http://dx.doi.org/10.1111/fcp.12184] [PMID: 26821200]
[30]
Green, J.L.; Heard, K.J.; Reynolds, K.M.; Albert, D. Oral and Intravenous Acetylcysteine for Treatment of Acetaminophen Toxicity: A Systematic Review and Meta-analysis. West. J. Emerg. Med., 2013, 14(3), 218-226.
[http://dx.doi.org/10.5811/westjem.2012.4.6885] [PMID: 23687539]
[31]
Blackford, M.G.; Felter, T.; Gothard, M.D.; Reed, M.D. Assessment of the clinical use of intravenous and oral N-acetylcysteine in the treatment of acute acetaminophen poisoning in children: a retrospective review. Clin. Ther., 2011, 33(9), 1322-1330.
[http://dx.doi.org/10.1016/j.clinthera.2011.08.005] [PMID: 21890206]
[32]
Pauley, K.A.; Sandritter, T.L.; Lowry, J.A.; Algren, D.A. Evaluation of an Alternative Intravenous N-Acetylcysteine Regimen in Pediatric Patients. J. Pediatr. Pharmacol. Ther., 2015, 20(3), 178-185.
[PMID: 26170769]
[33]
Hayes, B.D.; Klein-Schwartz, W.; Doyon, S. Frequency of medication errors with intravenous acetylcysteine for acetaminophen overdose. Ann. Pharmacother., 2008, 42(6), 766-770.
[http://dx.doi.org/10.1345/aph.1K685] [PMID: 18445707]
[34]
Stine, J.G.; Lewis, J.H. Current and future directions in the treatment and prevention of drug-induced liver injury: a systematic review. Expert Rev. Gastroenterol. Hepatol., 2016, 10(4), 517-536.
[http://dx.doi.org/10.1586/17474124.2016.1127756] [PMID: 26633044]
[35]
Schmidt, L.E. Identification of patients at risk of anaphylactoid reactions to N-acetylcysteine in the treatment of paracetamol overdose. Clin. Toxicol. (Phila.), 2013, 51(6), 467-472.
[http://dx.doi.org/10.3109/15563650.2013.799677] [PMID: 23697458]
[36]
Pickering, G.; Macian, N.; Papet, I.; Dualé, C.; Coudert, C.; Pereira, B. N-acetylcysteine prevents glutathione decrease and does not interfere with paracetamol antinociceptive effect at therapeutic dosage: a randomized double-blind controlled trial in healthy subjects. Fundam. Clin. Pharmacol., 2019, 33(3), 303-311.
[http://dx.doi.org/10.1111/fcp.12437] [PMID: 30471141]
[37]
Kelly, G.S. Clinical applications of N-acetylcysteine. Altern. Med. Rev., 1998, 3(2), 114-127.
[PMID: 9577247]
[38]
Chiew, A.L.; Fountain, J.S.; Graudins, A.; Isbister, G.K.; Reith, D.; Buckley, N.A. Summary statement: new guidelines for the management of paracetamol poisoning in Australia and New Zealand. Med. J. Aust., 2015, 203(5), 215-218.
[http://dx.doi.org/10.5694/mja15.00614] [PMID: 26852051]
[39]
Wong, A.; Landersdorfer, C.; Graudins, A. Pharmacokinetic modelling of modified acetylcysteine infusion regimens used in the treatment of paracetamol poisoning. Eur. J. Clin. Pharmacol., 2017, 73(9), 1103-1110.
[http://dx.doi.org/10.1007/s00228-017-2277-4] [PMID: 28624886]
[40]
Wong, A.; Gunja, N.; McNulty, R.; Graudins, A. Analysis of an 8-hour acetylcysteine infusion protocol for repeated supratherapeutic ingestion (RSTI) of paracetamol. Clin. Toxicol. (Phila.), 2018, 56(3), 199-203.
[http://dx.doi.org/10.1080/15563650.2017.1359620] [PMID: 28812380]
[41]
Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol., 2016, 10, 148-156.
[http://dx.doi.org/10.1016/j.redox.2016.10.001] [PMID: 27744120]
[42]
Duan, L.; Davis, J. S.; Woolbright, B. L.; Du, K.; Cahkraborty, M.; Weemhoff, J.; Jaeschke, H.; Bourdi, M. Differential susceptibility to acetaminophen-induced liver injury in sub-strains of C57BL/6 mice: 6N versus 6J Food Chem. Toxicol, 2016, 98(Pt B), 107-118.
[43]
Hughes, R.D.; Gazzard, B.G.; Hanid, M.A.; Trewby, P.N.; Murray-Lyon, I.M.; Davis, M.; Williams, R.; Bennet, J.R. Controlled trial of cysteamine and dimercaprol after paracetamol overdose. BMJ, 1977, 2(6099), 1395.
[http://dx.doi.org/10.1136/bmj.2.6099.1395] [PMID: 338110]
[44]
Hamlyn, A.N.; Lesna, M.; Record, C.O.; Smith, P.A.; Watson, A.J.; Meredith, T.; Volans, G.N.; Crome, P. Methionine and cysteamine in paracetamol (acetaminophen) overdose, prospective controlled trial of early therapy. J. Int. Med. Res., 1981, 9(3), 226-231.
[http://dx.doi.org/10.1177/030006058100900314] [PMID: 6165632]
[45]
Castañeda-Arriaga, R.; Pérez-González, A.; Galano, A. Chemical Protectors against the toxic effects of paracetamol (Acetaminophen) and its meta analogue: Preventing protein arylation. ACS Omega, 2018, 3(12), 18582-18591.
[http://dx.doi.org/10.1021/acsomega.8b02943]
[46]
Koyama, R.; Mizuta, R. Acrolein scavengers, cysteamine and N-benzylhydroxylamine, reduces the mouse liver damage after acetaminophen overdose. J. Vet. Med. Sci., 2017, 78(12), 1903-1905.
[http://dx.doi.org/10.1292/jvms.16-0325] [PMID: 27594275]
[47]
Buckley, N.A.; Dawson, A.H.; Isbister, G.K. Treatments for paracetamol poisoning. BMJ, 2016, 353, i2579.
[http://dx.doi.org/10.1136/bmj.i2579] [PMID: 27193197]
[48]
Khayyat, A.; Tobwala, S.; Hart, M.; Ercal, N. N-acetylcysteine amide, a promising antidote for acetaminophen toxicity. Toxicol. Lett., 2016, 241, 133-142.
[http://dx.doi.org/10.1016/j.toxlet.2015.11.008] [PMID: 26602168]
[49]
Theodosis-Nobelos, P.; Athanasekou, C.; Rekka, E.A. Dual antioxidant structures with potent anti-inflammatory, hypolipidemic and cytoprotective properties. Bioorg. Med. Chem. Lett., 2017, 27(21), 4800-4804.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.054] [PMID: 29017787]
[50]
More, S.S.; Nugent, J.; Vartak, A.P.; Nye, S.M.; Vince, R. Hepatoprotective effect of ψ-Glutathione in a murine model of Acetaminophen-Induced liver toxicity. Chem. Res. Toxicol., 2017, 30(3), 777-784.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00291] [PMID: 28165728]
[51]
Nilsson, J.L.A.; Blomgren, A.; Nilsson, U.J.; Högestätt, E.D.; Grundemar, L. N′-Bis(2-mercaptoethyl)isophthalamide binds electrophilic paracetamol metabolites and prevents paracetamol-induced liver toxicity. Basic Clin. Pharmacol. Toxicol., 2018, 123(5), 589-593.
[http://dx.doi.org/10.1111/bcpt.13058] [PMID: 29908097]
[52]
Ates, B.; Abraham, L.; Ercal, N. Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radic. Res., 2008, 42(4), 372-377.
[http://dx.doi.org/10.1080/10715760801998638] [PMID: 18404536]
[53]
Tobwala, S.; Khayyat, A.; Fan, W.; Ercal, N. Comparative evaluation of N-acetylcysteine and N-acetylcysteineamide in acetaminophen-induced hepatotoxicity in human hepatoma HepaRG cells. Exp. Biol. Med. (Maywood), 2015, 240(2), 261-272.
[http://dx.doi.org/10.1177/1535370214549520] [PMID: 25245075]
[54]
Baran, E.J. Chelation therapies: a chemical and biochemical perspective. Curr. Med. Chem., 2010, 17(31), 3658-3672.
[http://dx.doi.org/10.2174/092986710793213760] [PMID: 20846112]
[55]
Coordination Chemistry. A Century of Progress; American Chemical Society, 1994, Vol. 565, .
[56]
Advisory Committee for Childhood Lead Poisoning Prevention. Low level lead exposure harms children: a renewed call for primary prevention (A report of the Advisory Committee on Childhood Lead Poisoning Prevention); Centers for Disease Control and Prevention Atlanta: GA, 2012.
[57]
Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283(2-3), 65-87.
[http://dx.doi.org/10.1016/j.tox.2011.03.001] [PMID: 21414382]
[58]
Hanna-Attisha, M.; LaChance, J.; Sadler, R.C.; Champney Schnepp, A. Elevated blood lead levels in children associated with the flint drinking water crisis: A spatial analysis of risk and public health response. Am. J. Public Health, 2016, 106(2), 283-290.
[http://dx.doi.org/10.2105/AJPH.2015.303003] [PMID: 26691115]
[59]
Gillis, B.S.; Arbieva, Z.; Gavin, I.M. Analysis of lead toxicity in human cells. BMC Genomics, 2012, 13, 344.
[http://dx.doi.org/10.1186/1471-2164-13-344] [PMID: 22839698]
[60]
Farkas, E.; Buglyó, P. Lead(II) Complexes of Amino Acids, Peptides, and other related ligands of biological interest. Met. Ions Life Sci., 2017, 17, 17.
[http://dx.doi.org/10.1515/9783110434330-008] [PMID: 28731301]
[61]
Kern, M.; Wisniewski, M.; Cabell, L.; Audesirk, G. Inorganic lead and calcium interact positively in activation of calmodulin. Neurotoxicology, 2000, 21(3), 353-363.
[PMID: 10894125]
[62]
Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 2012, 5(2), 47-58.
[http://dx.doi.org/10.2478/v10102-012-0009-2] [PMID: 23118587]
[63]
Ercal, N.; Gurer-Orhan, H.; Aykin-Burns, N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem., 2001, 1(6), 529-539.
[http://dx.doi.org/10.2174/1568026013394831] [PMID: 11895129]
[64]
Gurer, H.; Ercal, N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic. Biol. Med., 2000, 29(10), 927-945.
[http://dx.doi.org/10.1016/S0891-5849(00)00413-5] [PMID: 11084283]
[65]
Kasperczyk, A.; Prokopowicz, A.; Dobrakowski, M.; Pawlas, N.; Kasperczyk, S. The effect of occupational lead exposure on blood levels of zinc, iron, copper, selenium and related proteins. Biol. Trace Elem. Res., 2012, 150(1-3), 49-55.
[http://dx.doi.org/10.1007/s12011-012-9490-x] [PMID: 22923205]
[66]
Monteiro, H.P.; Abdalla, D.S.; Augusto, O.; Bechara, E.J. Free radical generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies. Arch. Biochem. Biophys., 1989, 271(1), 206-216.
[http://dx.doi.org/10.1016/0003-9861(89)90271-3] [PMID: 2540713]
[67]
Monteiro, H.P.; Abdalla, D.S.; Faljoni-Alàrio, A.; Bechara, E.J. Generation of active oxygen species during coupled autoxidation of oxyhemoglobin and delta-aminolevulinic acid. Biochim. Biophys. Acta, 1986, 881(1), 100-106.
[http://dx.doi.org/10.1016/0304-4165(86)90102-9] [PMID: 3081047]
[68]
Gürer, H.; Ozgünes, H.; Neal, R.; Spitz, D.R.; Erçal, N. Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats. Toxicology, 1998, 128(3), 181-189.
[http://dx.doi.org/10.1016/S0300-483X(98)00074-2] [PMID: 9750041]
[69]
Othman, A.I.; El Missiry, M.A. Role of selenium against lead toxicity in male rats. J. Biochem. Mol. Toxicol., 1998, 12(6), 345-349.
[http://dx.doi.org/10.1002/(SICI)1099-0461(1998)12:6<345:AID-JBT4>3.0.CO;2-V] [PMID: 9736483]
[70]
Tobwala, S.; Wang, H-J.; Carey, J.; Banks, W.; Ercal, N. Effects of lead and cadmium on brain endothelial cell survival, monolayer permeability, and crucial oxidative stress markers in an in vitro model of the blood-brain barrier. Toxics, 2014, 2(2), 258-275.
[http://dx.doi.org/10.3390/toxics2020258]
[71]
Aaseth, J.; Skaug, M.A.; Cao, Y.; Andersen, O. Chelation in metal intoxication--Principles and paradigms. J. Trace Elem. Med. Biol., 2015, 31, 260-266.
[http://dx.doi.org/10.1016/j.jtemb.2014.10.001] [PMID: 25457281]
[72]
Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: lead, mercury, and arsenic. Arch. Toxicol., 2017, 91(12), 3787-3797.
[http://dx.doi.org/10.1007/s00204-017-2100-0] [PMID: 29063135]
[73]
Flora, S.J.; Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health, 2010, 7(7), 2745-2788.
[http://dx.doi.org/10.3390/ijerph7072745] [PMID: 20717537]
[74]
Zhai, H.; Wang, Y.; Wang, M.; Liu, S.; Yu, F.; Gao, C.; Li, G.; Wu, Q. Construction of a glutathione-responsive and silica-based nanocomposite for controlled release of chelator dimercaptosuccinic acid. Int. J. Mol. Sci., 2018, 19(12), E3790
[http://dx.doi.org/10.3390/ijms19123790] [PMID: 30487433]
[75]
Kosnett, M.J. Chelation for heavy metals (arsenic, lead, and mercury): protective or perilous? Clin. Pharmacol. Ther., 2010, 88(3), 412-415.
[http://dx.doi.org/10.1038/clpt.2010.132] [PMID: 20664538]
[76]
Andersen, O.; Aaseth, J. A review of pitfalls and progress in chelation treatment of metal poisonings. J. Trace Elem. Med. Biol., 2016, 38, 74-80.
[http://dx.doi.org/10.1016/j.jtemb.2016.03.013] [PMID: 27150911]
[77]
Sakthithasan, K.; Lévy, P.; Poupon, J.; Garnier, R. A comparative study of edetate calcium disodium and dimercaptosuccinic acid in the treatment of lead poisoning in adults. Clin. Toxicol. (Phila.), 2018, 56(11), 1143-1149.
[http://dx.doi.org/10.1080/15563650.2018.1478424] [PMID: 29889577]
[78]
Kaviani, S.; Shahab, S.; Sheikhi, M.; Ahmadianarog, M. DFT study on the selective complexation of meso-2,3-dimercaptosuccinic acid with toxic metal ions (Cd2+, Hg2+ and Pb2+) for pharmaceutical and biological applications. J. Mol. Struct., 2019, 1176, 901-907.
[http://dx.doi.org/10.1016/j.molstruc.2018.09.027]
[79]
van Eijkeren, J.C.; Olie, J.D.; Bradberry, S.M.; Vale, J.A.; de Vries, I.; Clewell, H.J., III; Meulenbelt, J.; Hunault, C.C. Modeling the effect of succimer (DMSA; dimercaptosuccinic acid) chelation therapy in patients poisoned by lead. Clin. Toxicol. (Phila.), 2017, 55(2), 133-141.
[http://dx.doi.org/10.1080/15563650.2016.1263855] [PMID: 27919185]
[80]
Yadav, A.; Flora, S.J. Nano drug delivery systems: a new paradigm for treating metal toxicity. Expert Opin. Drug Deliv., 2016, 13(6), 831-841.
[http://dx.doi.org/10.1517/17425247.2016.1160890] [PMID: 27030893]
[81]
Alcaraz-Contreras, Y.; Mendoza-Lozano, R.P.; Martínez-Alcaraz, E.R.; Martínez-Alfaro, M.; Gallegos-Corona, M.A.; Ramírez-Morales, M.A.; Vázquez-Guevara, M.A. Silymarin and dimercaptosuccinic acid ameliorate lead-induced nephrotoxicity and genotoxicity in rats. Hum. Exp. Toxicol., 2016, 35(4), 398-403.
[http://dx.doi.org/10.1177/0960327115591373] [PMID: 26078282]
[82]
Sisombath, N.S.; Jalilehvand, F. Similarities between N-Acetylcysteine and Glutathione in Binding to Lead(II) Ions. Chem. Res. Toxicol., 2015, 28(12), 2313-2324.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00323] [PMID: 26624959]
[83]
Aykin-Burns, N.; Franklin, E.A.; Ercal, N. Effects of N-acetylcysteine on lead-exposed PC-12 cells. Arch. Environ. Contam. Toxicol., 2005, 49(1), 119-123.
[http://dx.doi.org/10.1007/s00244-004-0025-0] [PMID: 15981033]
[84]
Penugonda, S.; Ercal, N. Comparative evaluation of N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) on glutamate and lead-induced toxicity in CD-1 mice. Toxicol. Lett., 2011, 201(1), 1-7.
[http://dx.doi.org/10.1016/j.toxlet.2010.11.013] [PMID: 21145953]
[85]
Pedroso, T.F.; Oliveira, C.S.; Fonseca, M.M.; Oliveira, V.A.; Pereira, M.E. Effects of Zinc and N-Acetylcysteine in damage caused by lead exposure in young rats. Biol. Trace Elem. Res., 2017, 180(2), 275-284.
[http://dx.doi.org/10.1007/s12011-017-1009-z] [PMID: 28389902]
[86]
Kasperczyk, S.; Dobrakowski, M.; Kasperczyk, A.; Romuk, E.; Rykaczewska-Czerwińska, M.; Pawlas, N.; Birkner, E. Effect of N-acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers. Toxicol. Ind. Health, 2016, 32(9), 1607-1618.
[http://dx.doi.org/10.1177/0748233715571152] [PMID: 25731901]
[87]
Gurer, H.; Ozgunes, H.; Oztezcan, S.; Ercal, N. Antioxidant role of alpha-lipoic acid in lead toxicity. Free Radic. Biol. Med., 1999, 27(1-2), 75-81.
[http://dx.doi.org/10.1016/S0891-5849(99)00036-2] [PMID: 10443922]
[88]
Gurer, H.; Neal, R.; Yang, P.; Oztezcan, S.; Ercal, N. Captopril as an antioxidant in lead-exposed Fischer 344 rats. Hum. Exp. Toxicol., 1999, 18(1), 27-32.
[http://dx.doi.org/10.1177/096032719901800104] [PMID: 10025365]
[89]
Aldahmash, B.A.; El-Nagar, D.M. Antioxidant effects of captopril against lead acetate-induced hepatic and splenic tissue toxicity in Swiss albino mice. Saudi J. Biol. Sci., 2016, 23(6), 667-673.
[http://dx.doi.org/10.1016/j.sjbs.2016.05.005] [PMID: 27872561]
[90]
Neal, R.; Cooper, K.; Kellogg, G.; Gurer, H.; Ercal, N. Effects of some sulfur-containing antioxidants on lead-exposed lenses. Free Radic. Biol. Med., 1999, 26(1-2), 239-243.
[http://dx.doi.org/10.1016/S0891-5849(98)00214-7] [PMID: 9890658]
[91]
Neal, R.; Cooper, K.; Gurer, H.; Ercal, N. Effects of N-acetylcysteine and 2,3-dimercaptosuccinic acid on lead induced oxidative stress in rat lenses. Toxicology, 1998, 130(2-3), 167-174.
[http://dx.doi.org/10.1016/S0300-483X(98)00104-8] [PMID: 9865483]
[92]
Flora, S.J.; Pande, M.; Kannan, G.M.; Mehta, A. Lead induced oxidative stress and its recovery following co-administration of melatonin or N-acetylcysteine during chelation with succimer in male rats. Cell. Mol. Biol. (Noisy-le-grand), , 2004, 50 , OL543-OL551.
[93]
Ercal, N.; Treeratphan, P.; Hammond, T.C.; Matthews, R.H.; Grannemann, N.H.; Spitz, D.R. In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radic. Biol. Med., 1996, 21(2), 157-161.
[http://dx.doi.org/10.1016/0891-5849(96)00020-2] [PMID: 8818630]
[94]
Ioannou, P.V.; Vachliotis, D.G.; Chrissanthopoulos, A. Chelation therapy: The interaction of British Anti-Lewisite (BAL) with some heavy metal cations of p and d blocks. Main Group Chem., 2017, 16(2), 125-139.
[http://dx.doi.org/10.3233/MGC-170231]
[95]
Harper, L.K.; Bayse, C.A. Modeling the chelation of As(III) in lewisite by dithiols using density functional theory and solvent-assisted proton exchange. J. Inorg. Biochem., 2015, 153, 60-67.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.10.004] [PMID: 26479948]
[96]
Szekeres, L.I.; Gyurcsik, B.; Kiss, T.; Kele, Z.; Jancsó, A. Interaction of arsenous acid with the dithiol-type chelator British Anti-Lewisite (BAL): Structure and stability of species formed in an unexpectedly complex system. Inorg. Chem., 2018, 57(12), 7191-7200.
[http://dx.doi.org/10.1021/acs.inorgchem.8b00894] [PMID: 29856616]
[97]
Katerji, M.; Barada, K.; Jomaa, M.; Kobeissy, F.; Makkawi, A.K.; Abou-Kheir, W.; Usta, J. Chemosensitivity of U251 Cells to the Co-treatment of D-Penicillamine and Copper: Possible implications on wilson disease patients. Front. Mol. Neurosci., 2017, 10, 10.
[http://dx.doi.org/10.3389/fnmol.2017.00010] [PMID: 28197071]
[98]
Gaur, K.; Vázquez-Salgado, A.; Duran-Camacho, G.; Dominguez-Martinez, I.; Benjamín-Rivera, J.; Fernández-Vega, L.; Carmona Sarabia, L.; Cruz García, A.; Pérez-Deliz, F.; Méndez Román, J.; Vega-Cartagena, M.; Loza-Rosas, S.; Rodriguez Acevedo, X.; Tinoco, A. Iron and Copper intracellular chelation as an anticancer drug strategy. Inorganics, 2018, 6(4), 126.
[http://dx.doi.org/10.3390/inorganics6040126]
[99]
Pfeiffenberger, J.; Beinhardt, S.; Gotthardt, D.N.; Haag, N.; Freissmuth, C.; Reuner, U.; Gauss, A.; Stremmel, W.; Schilsky, M.L.; Ferenci, P.; Weiss, K.H. Pregnancy in Wilson’s disease: Management and outcome. Hepatology, 2018, 67(4), 1261-1269.
[http://dx.doi.org/10.1002/hep.29490] [PMID: 28859232]
[100]
Roberts, E.A.; Schilsky, M.L. American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: an update. Hepatology, 2008, 47(6), 2089-2111.
[http://dx.doi.org/10.1002/hep.22261] [PMID: 18506894]
[101]
Poujois, A.; Woimant, F. Wilson’s disease: A 2017 update. Clin. Res. Hepatol. Gastroenterol., 2018, 42(6), 512-520.
[http://dx.doi.org/10.1016/j.clinre.2018.03.007] [PMID: 29625923]
[102]
Hachmöller, O.; Zibert, A.; Zischka, H.; Sperling, M.; Groba, S.R.; Grünewald, I.; Wardelmann, E.; Schmidt, H.H.; Karst, U. Spatial investigation of the elemental distribution in Wilson’s disease liver after d-penicillamine treatment by LA-ICP-MS. J. Trace Elem. Med. Biol., 2017, 44, 26-31.
[http://dx.doi.org/10.1016/j.jtemb.2017.05.008] [PMID: 28965585]
[103]
Rasheed, S.; Sánchez, S.S.; Yousuf, S.; Honoré, S.M.; Choudhary, M.I. Drug repurposing: In-vitro anti-glycation properties of 18 common drugs. PLoS One, 2018, 13(1), e0190509
[http://dx.doi.org/10.1371/journal.pone.0190509] [PMID: 29300762]
[104]
Członkowska, A.; Litwin, T. Wilson disease - currently used anticopper therapy. Handb. Clin. Neurol., 2017, 142, 181-191.
[http://dx.doi.org/10.1016/B978-0-444-63625-6.00015-X] [PMID: 28433101]
[105]
Helmy, H.; Fahmy, M.; Abdel Aziz, H.; Ghobrial, C.; Abdel Hameed, N.; El-Karaksy, H. Urinary abnormalities in children and adolescents with Wilson disease before and during treatment with d-penicillamine. J. Gastroenterol. Hepatol., 2019.
[http://dx.doi.org/10.1111/jgh.14653] [PMID: 30861190]
[106]
Smirnova, J.; Kabin, E.; Järving, I.; Bragina, O.; Tõugu, V.; Plitz, T.; Palumaa, P. Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Sci. Rep., 2018, 8(1), 1463.
[http://dx.doi.org/10.1038/s41598-018-19873-2] [PMID: 29362485]
[107]
Conry, R.R. Copper: Inorganic & Coordination Chemistry Based in part on the article Copper: Inorganic & Coordination Chemistry by Rebecca R. Conry & Kenneth D. Karlin which appeared in the Encyclopedia of Inorganic Chemistry.Encyclopedia of Inorganic Chemistry,; 1st ed; King, R.B.; Crabtree, R.H.; Lukehart, C.M.; Atwood, D.A.; Scott, R.A., Eds.; . John Wiley & Sons, Ltd,, 2006.
[http://dx.doi.org/10.1002/0470862106.ia052]
[108]
Königsberger, L.C.; Königsberger, E.; Hefter, G.; May, P.M. Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye. Dalton Trans., 2015, 44(47), 20413-20425.
[http://dx.doi.org/10.1039/C5DT02129D] [PMID: 26505238]
[109]
Rubino, J.T.; Franz, K.J. Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function. J. Inorg. Biochem., 2012, 107(1), 129-143.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.11.024] [PMID: 22204943]
[110]
Sciegienka, S.J.; Solst, S.R.; Falls, K.C.; Schoenfeld, J.D.; Klinger, A.R.; Ross, N.L.; Rodman, S.N.; Spitz, D.R.; Fath, M.A. D-penicillamine combined with inhibitors of hydroperoxide metabolism enhances lung and breast cancer cell responses to radiation and carboplatin via H2O2-mediated oxidative stress. Free Radic. Biol. Med., 2017, 108, 354-361.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.001] [PMID: 28389407]
[111]
Brem, S.; Grossman, S.A.; Carson, K.A.; New, P.; Phuphanich, S.; Alavi, J.B.; Mikkelsen, T.; Fisher, J.D. New Approaches to Brain Tumor Therapy CNS Consortium. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro-oncol., 2005, 7(3), 246-253.
[http://dx.doi.org/10.1215/S1152851704000869] [PMID: 16053699]
[112]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[113]
Kim, B.M.; Hong, Y.; Lee, S.; Liu, P.; Lim, J.H.; Lee, Y.H.; Lee, T.H.; Chang, K.T.; Hong, Y. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int. J. Mol. Sci., 2015, 16(11), 26880-26913.
[http://dx.doi.org/10.3390/ijms161125991] [PMID: 26569225]
[114]
Abbotts, R.; Wilson, D.M., III Coordination of DNA single strand break repair. Free Radic. Biol. Med., 2017, 107, 228-244.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.039] [PMID: 27890643]
[115]
Ceccaldi, R.; Rondinelli, B.; D’Andrea, A.D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol., 2016, 26(1), 52-64.
[http://dx.doi.org/10.1016/j.tcb.2015.07.009] [PMID: 26437586]
[116]
Cadet, J.; Sage, E.; Douki, T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res., 2005, 571(1-2), 3-17.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.09.012] [PMID: 15748634]
[117]
Kuefner, M.; Brand, M.; Engert, C.; Schwab, S.; Uder, M. Radiation induced dna double-strand breaks in radiology. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, , 2015, 187(10), 872-878.
[http://dx.doi.org/10.1055/s-0035-1553209]]
[118]
Gerber, D.E.; Chan, T.A. Recent advances in radiation therapy. Am. Fam. Physician, 2008, 78(11), 1254-1262.
[PMID: 19069018]
[119]
Kamran, M.Z.; Ranjan, A.; Kaur, N.; Sur, S.; Tandon, V. Radioprotective agents: Strategies and translational advances. Med. Res. Rev., 2016, 36(3), 461-493.
[http://dx.doi.org/10.1002/med.21386] [PMID: 26807693]
[120]
Brenner, B.; Wasserman, L.; Beery, E.; Nordenberg, J.; Schechter, J.; Gutman, H.; Fenig, E. Variable cytotoxicity of amifostine in malignant and non-malignant cell lines. Oncol. Rep., 2003, 10(5), 1609-1613.
[http://dx.doi.org/10.3892/or.10.5.1609] [PMID: 12883748]
[121]
Hofer, M.; Falk, M.; Komůrková, D.; Falková, I.; Bačíková, A.; Klejdus, B.; Pagáčová, E.; Štefančíková, L.; Weiterová, L.; Angelis, K.J.; Kozubek, S.; Dušek, L.; Galbavý, Š. Two new faces of amifostine: Protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J. Med. Chem., 2016, 59(7), 3003-3017.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01628] [PMID: 26978566]
[122]
Graham, K.; Unger, E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomedicine, 2018, 13, 6049-6058.
[http://dx.doi.org/10.2147/IJN.S140462] [PMID: 30323592]
[123]
Ueno, M.; Matsumoto, S.; Matsumoto, A.; Manda, S.; Nakanishi, I.; Matsumoto, K.I.; Mitchell, J.B.; Krishna, M.C.; Anzai, K. Effect of amifostine, a radiation-protecting drug, on oxygen concentration in tissue measured by EPR oximetry and imaging. J. Clin. Biochem. Nutr., 2017, 60(3), 151-155.
[http://dx.doi.org/10.3164/jcbn.15-130] [PMID: 28584395]
[124]
Kavaz, E.; Perişanoğlu, U.; Ekinci, N.; Özdemır, Y. Determination of energy absorption and exposure buildup factors by using G-P fitting approximation for radioprotective agents. Int. J. Radiat. Biol., 2016, 92(7), 380-387.
[http://dx.doi.org/10.1080/09553002.2016.1175681] [PMID: 27124103]
[125]
Felice, P.A.; Gong, B.; Ahsan, S.; Deshpande, S.S.; Nelson, N.S.; Donneys, A.; Tchanque-Fossuo, C.; Morris, M.D.; Buchman, S.R. Raman spectroscopy delineates radiation-induced injury and partial rescue by amifostine in bone: a murine mandibular model. J. Bone Miner. Metab., 2015, 33(3), 279-284.
[http://dx.doi.org/10.1007/s00774-014-0599-1] [PMID: 25319554]
[126]
Akkus Yildirim, B.; Çetin, E.; Topkan, E.; Ozyigit, G.; Cengiz, M.; Surucu, S.; Usubutun, A.; Akyol, F. Prevention of Radiation-Induced Retinopathy with Amifostine in Wistar Albino Rats. Retina, 2015, 35(7), 1458-1464.
[http://dx.doi.org/10.1097/IAE.0000000000000493] [PMID: 25768249]
[127]
Ferraiolo, D.M.; Veitz-Keenan, A. Insufficient evidence for interventions to prevent dry mouth and salivary gland dysfunction post head and neck radiotherapy. Evid. Based Dent., 2018, 19(1), 30-31.
[http://dx.doi.org/10.1038/sj.ebd.6401295] [PMID: 29568026]
[128]
Devine, A.; Marignol, L. Potential of Amifostine for Chemoradiotherapy and Radiotherapy-associated Toxicity Reduction in Advanced NSCLC: A Meta-Analysis. Anticancer Res., 2016, 36(1), 5-12.
[PMID: 26722022]
[129]
McLaughlin, M.F.; Donoviel, D.B.; Jones, J.A. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp. Med. Hum. Perform., 2017, 88(7), 665-676.
[http://dx.doi.org/10.3357/AMHP.4735.2017] [PMID: 28641684]
[130]
Ranganathan, K.; Simon, E.; Lynn, J.; Snider, A.; Zhang, Y.; Nelson, N.; Donneys, A.; Rodriguez, J.; Buchman, L.; Reyna, D.; Lipka, E.; Buchman, S.R. Novel formulation strategy to improve the feasibility of amifostine administration. Pharm. Res., 2018, 35(5), 99.
[http://dx.doi.org/10.1007/s11095-018-2386-5] [PMID: 29556791]
[131]
Lawrie, T.A.; Green, J.T.; Beresford, M.; Wedlake, L.; Burden, S.; Davidson, S.E.; Lal, S.; Henson, C.C.; Andreyev, H.J.N. Interventions to reduce acute and late adverse gastrointestinal effects of pelvic radiotherapy for primary pelvic cancers. Cochrane Database Syst. Rev., 2018., 1CD012529
[http://dx.doi.org/10.1002/14651858.CD012529.pub2] [PMID: 29360138]
[132]
Chen, C.H.; Kuo, M.L.; Wang, J.L.; Liao, W.C.; Chang, L.C.; Chan, L.P.; Lin, J. CCM-AMI, a Polyethylene Glycol Micelle with Amifostine, as an Acute Radiation Syndrome Protectant in C57BL/6 Mice. Health Phys., 2015, 109(3), 242-248.
[http://dx.doi.org/10.1097/HP.0000000000000326] [PMID: 26222219]
[133]
Xie, J.; Wang, C.; Zhao, F.; Gu, Z.; Zhao, Y. Application of multifunctional nanomaterials in radioprotection of healthy tissues. Adv. Healthc. Mater., 2018, 7(20) e1800421
[http://dx.doi.org/10.1002/adhm.201800421] [PMID: 30019546]
[134]
Hofer, M.; Hoferová, Z.; Depeš, D.; Falk, M. Combining pharmacological countermeasures to attenuate the Acute Radiation Syndrome-A concise review. Molecules, 2017, 22(5), E834
[http://dx.doi.org/10.3390/molecules22050834] [PMID: 28534834]
[135]
Rodgers, K.E.; Dizerega, G.S. Contribution of the local RAS to hematopoietic function: A novel therapeutic target. Front. Endocrinol. (Lausanne), 2013, 4, 157.
[http://dx.doi.org/10.3389/fendo.2013.00157] [PMID: 24167502]
[136]
van der Veen, S.J.; Ghobadi, G.; de Boer, R.A.; Faber, H.; Cannon, M.V.; Nagle, P.W.; Brandenburg, S.; Langendijk, J.A.; van Luijk, P.; Coppes, R.P. ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiother. Oncol., 2015, 114(1), 96-103.
[http://dx.doi.org/10.1016/j.radonc.2014.11.017] [PMID: 25465731]
[137]
Small, W., Jr; James, J.L.; Moore, T.D.; Fintel, D.J.; Lutz, S.T.; Movsas, B.; Suntharalingam, M.; Garces, Y.I.; Ivker, R.; Moulder, J.; Pugh, S.; Berk, L.B. Utility of the ACE inhibitor captopril in mitigating radiation-associated pulmonary toxicity in lung cancer: Results from NRG oncology RTOG 0123. Am. J. Clin. Oncol., 2018, 41(4), 396-401.
[PMID: 27100959]
[138]
McCart, E.A.; Lee, Y.H.; Jha, J.; Mungunsukh, O.; Rittase, W.B.; Summers, T.A., Jr; Muir, J.; Day, R.M. Delayed captopril administration mitigates hematopoietic injury in a murine model of total body irradiation. Sci. Rep., 2019, 9(1), 2198.
[http://dx.doi.org/10.1038/s41598-019-38651-2] [PMID: 30778109]
[139]
Islam, A.; Bolduc, D.L.; Zhai, M.; Kiang, J.G.; Swift, J.M. Captopril increases survival after whole-body ionizing irradiation but decreases survival when combined with skin-burn trauma in mice. Radiat. Res., 2015, 184(3), 273-279.
[http://dx.doi.org/10.1667/RR14113.1] [PMID: 26305295]
[140]
Kiang, J.G.; Jiao, W.; Cary, L.H.; Mog, S.R.; Elliott, T.B.; Pellmar, T.C.; Ledney, G.D. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection. Radiat. Res., 2010, 173(3), 319-332.
[http://dx.doi.org/10.1667/RR1892.1] [PMID: 20199217]
[141]
Wu, W.; Abraham, L.; Ogony, J.; Matthews, R.; Goldstein, G.; Ercal, N. Effects of N-acetylcysteine amide (NACA), a thiol antioxidant on radiation-induced cytotoxicity in Chinese hamster ovary cells. Life Sci., 2008, 82(21-22), 1122-1130.
[http://dx.doi.org/10.1016/j.lfs.2008.03.016] [PMID: 18448127]
[142]
Ercal, N.; Luo, X.; Matthews, R.H.; Armstrong, D.W. In vitro study of the metabolic effects of D-amino acids. Chirality, 1996, 8(1), 24-29.
[http://dx.doi.org/10.1002/(SICI)1520-636X(1996)8:1<24:AID-CHIR6>3.0.CO;2-G] [PMID: 8845278]
[143]
Neal, R.; Matthews, R.H.; Lutz, P.; Ercal, N. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation. Free Radic. Biol. Med., 2003, 34(6), 689-695.
[http://dx.doi.org/10.1016/S0891-5849(02)01372-2] [PMID: 12633746]
[144]
Corcoran, G.B.; Wong, B.K. Role of glutathione in prevention of acetaminophen-induced hepatotoxicity by N-acetyl-L-cysteine in vivo: studies with N-acetyl-D-cysteine in mice. J. Pharmacol. Exp. Ther., 1986, 238(1), 54-61.
[PMID: 3723405]
[145]
Yin, J.; Ren, W.; Yang, G.; Duan, J.; Huang, X.; Fang, R.; Li, C.; Li, T.; Yin, Y.; Hou, Y.; Kim, S.W.; Wu, G. L-Cysteine metabolism and its nutritional implications. Mol. Nutr. Food Res., 2016, 60(1), 134-146.
[http://dx.doi.org/10.1002/mnfr.201500031] [PMID: 25929483]
[146]
Brand, M.; Sommer, M.; Ellmann, S.; Wuest, W.; May, M.S.; Eller, A.; Vogt, S.; Lell, M.M.; Kuefner, M.A.; Uder, M. Influence of different antioxidants on X-Ray induced DNA double-strand breaks (DSBs) Using γ-H2AX Immunofluorescence microscopy in a preliminary study. PLoS One, 2015, 10(5), e0127142
[http://dx.doi.org/10.1371/journal.pone.0127142] [PMID: 25996998]
[147]
Velauthapillai, N.; Barfett, J.; Jaffer, H.; Mikulis, D.; Murphy, K. Antioxidants taken orally prior to diagnostic radiation exposure can prevent DNA injury. J. Vasc. Interv. Radiol., 2017, 28(3), 406-411.
[http://dx.doi.org/10.1016/j.jvir.2016.10.022] [PMID: 28034704]
[148]
Council, N.R. Health Effects of Exposure to Radon: BEIR VI; The National Academies Press: Washington, DC, 1999, p. 516.
[149]
Wu, J.; Zhang, B.; Wuu, Y.R.; Davidson, M.M.; Hei, T.K. Targeted cytoplasmic irradiation and autophagy. Mutat. Res., 2017, 806, 88-97.
[http://dx.doi.org/10.1016/j.mrfmmm.2017.02.004] [PMID: 28283188]
[150]
Buer, J.K. To stop the erosion of hope: the DMARD category and the place of semantics in modern rheumatology. Inflammopharmacology, 2017, 25(2), 185-190.
[http://dx.doi.org/10.1007/s10787-017-0320-9] [PMID: 28194545]
[151]
Mahlich, J.; Sruamsiri, R. Treatment patterns of rheumatoid arthritis in Japanese hospitals and predictors of the initiation of biologic agents. Curr. Med. Res. Opin., 2017, 33(1), 101-107.
[http://dx.doi.org/10.1080/03007995.2016.1239191] [PMID: 27647105]
[152]
Machado-Alba, J.E.; Ruiz, A.F.; Machado-Duque, M.E. Effectiveness of treatment with biologic- and disease-modifying antirheumatic drugs in rheumatoid arthritis patients in Colombia. Int. J. Clin. Pract., 2016, 70(6), 506-511.
[http://dx.doi.org/10.1111/ijcp.12809] [PMID: 27238964]
[153]
Muthukumar, P.; Dhanapriya, J.; Gopalakrishnan, N.; Dineshkumar, T.; Sakthirajan, R.; Balasubramaniyan, T. Evaluation of renal lesions and clinicopathologic correlation in rheumatoid arthritis. Saudi J. Kidney Dis. Transpl., 2017, 28(1), 44-50.
[http://dx.doi.org/10.4103/1319-2442.198118] [PMID: 28098102]
[154]
Lange, E.; Blizzard, L.; Venn, A.; Francis, H.; Jones, G. Disease-modifying anti-rheumatic drugs and non-melanoma skin cancer in inflammatory arthritis patients: a retrospective cohort study. Rheumatology (Oxford), 2016, 55(9), 1594-1600.
[http://dx.doi.org/10.1093/rheumatology/kew214] [PMID: 27185957]
[155]
Brancaleone, V.; Esposito, I.; Gargiulo, A.; Vellecco, V.; Asimakopoulou, A.; Citi, V.; Calderone, V.; Gobbetti, T.; Perretti, M.; Papapetropoulos, A.; Bucci, M.; Cirino, G. D-Penicillamine modulates hydrogen sulfide (H2S) pathway through selective inhibition of cystathionine-γ-lyase. Br. J. Pharmacol., 2016, 173(9), 1556-1565.
[http://dx.doi.org/10.1111/bph.13459] [PMID: 26890936]
[156]
Muniraj, N.; Stamp, L.K.; Badiei, A.; Hegde, A.; Cameron, V.; Bhatia, M. Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int. J. Rheum. Dis., 2017, 20(2), 182-189.
[http://dx.doi.org/10.1111/1756-185X.12472] [PMID: 25196086]
[157]
Rhodes, H.L.; Yarram-Smith, L.; Rice, S.J.; Tabaksert, A.; Edwards, N.; Hartley, A.; Woodward, M.N.; Smithson, S.L.; Tomson, C.; Welsh, G.I.; Williams, M.; Thwaites, D.T.; Sayer, J.A.; Coward, R.J. Clinical and genetic analysis of patients with cystinuria in the United Kingdom. Clin. J. Am. Soc. Nephrol., 2015, 10(7), 1235-1245.
[http://dx.doi.org/10.2215/CJN.10981114] [PMID: 25964309]
[158]
Malieckal, D.A.; Modersitzki, F.; Mara, K.; Enders, F.T.; Asplin, J.R.; Goldfarb, D.S. Effect of increasing doses of cystine-binding thiol drugs on cystine capacity in patients with cystinuria. Urolithiasis, 2019, 47(6), 549-555.
[http://dx.doi.org/10.1007/s00240-019-01128-y] [PMID: 30980122]
[159]
Castañeda-Arriaga, R.; Vivier-Bunge, A.; Raul Alvarez-Idaboy, J. Primary antioxidant and metal-binding effects of tiopronin: A theoretical investigation of its action mechanism. Comput. Theor. Chem., 2016, 1077, 48-57.
[http://dx.doi.org/10.1016/j.comptc.2015.10.012]
[160]
Jiang, T-Y.; Sun, C-S.; Shen, X.; Wang, T-Y.; Wang, S-L. Development of a poloxamer analogs/bioadhesive polymers-based in situ gelling ophthalmic delivery system for tiopronin. J. Appl. Polym. Sci., 2009, 114(2), 775-783.
[http://dx.doi.org/10.1002/app.30520]
[161]
Ichikawa, H.; Imaizumi, K.; Tazawa, Y.; Obara, Y.; Ishikawa, Y.; Tobari, I.; Tanabe, Y. Effect of tiopronin on senile cataracts. A double-blind clinical study. Ophthalmologica, 1980, 180(5), 293-298.
[http://dx.doi.org/10.1159/000308990] [PMID: 7010262]
[162]
Kubo, S.H.; Cody, R.J. Clinical pharmacokinetics of the angiotensin converting enzyme inhibitors. A review. Clin. Pharmacokinet., 1985, 10(5), 377-391.
[http://dx.doi.org/10.2165/00003088-198510050-00001] [PMID: 2994938]
[163]
Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood pressure lowering on outcome incidence in hypertension: 4. Effects of various classes of antihypertensive drugs--overview and meta-analyses. J. Hypertens., 2015, 33(2), 195-211.
[http://dx.doi.org/10.1097/HJH.0000000000000447] [PMID: 25485720]
[164]
Natesh, R.; Schwager, S.L.; Evans, H.R.; Sturrock, E.D.; Acharya, K.R. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry, 2004, 43(27), 8718-8724.
[http://dx.doi.org/10.1021/bi049480n] [PMID: 15236580]
[165]
Chang, C.H.; Lin, J.W.; Caffrey, J.L.; Wu, L.C.; Lai, M.S. Different Angiotensin-converting enzyme inhibitors and the associations with overall and cause-specific mortalities in patients with hypertension. Am. J. Hypertens., 2015, 28(6), 823-830.
[http://dx.doi.org/10.1093/ajh/hpu237] [PMID: 25498540]
[166]
Igreja, B.; Pires, N.M.; Bonifácio, M.J.; Loureiro, A.I.; Fernandes-Lopes, C.; Wright, L.C.; Soares-da-Silva, P. Blood pressure-decreasing effect of etamicastat alone and in combination with antihypertensive drugs in the spontaneously hypertensive rat. Hypertens. Res., 2015, 38(1), 30-38.
[http://dx.doi.org/10.1038/hr.2014.143] [PMID: 25298210]
[167]
Büttner, D.; Kramer, J.S.; Klingler, F.M.; Wittmann, S.K.; Hartmann, M.R.; Kurz, C.G.; Kohnhäuser, D.; Weizel, L.; Brüggerhoff, A.; Frank, D.; Steinhilber, D.; Wichelhaus, T.A.; Pogoryelov, D.; Proschak, E. Challenges in the Development of a Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases. ACS Infect. Dis., 2018, 4(3), 360-372.
[http://dx.doi.org/10.1021/acsinfecdis.7b00129] [PMID: 29172434]
[168]
Brem, J.; van Berkel, S.S.; Zollman, D.; Lee, S.Y.; Gileadi, O.; McHugh, P.J.; Walsh, T.R.; McDonough, M.A.; Schofield, C.J. Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Antimicrob. Agents Chemother., 2015, 60(1), 142-150.
[http://dx.doi.org/10.1128/AAC.01335-15] [PMID: 26482303]
[169]
Yusof, Y.; Tan, D.T.C.; Arjomandi, O.K.; Schenk, G.; McGeary, R.P. Captopril analogues as metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(6), 1589-1593.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.007] [PMID: 26883147]
[170]
Minarini, A.; Ferrari, S.; Galletti, M.; Giambalvo, N.; Perrone, D.; Rioli, G.; Galeazzi, G.M. N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(3), 279-292.
[http://dx.doi.org/10.1080/17425255.2017.1251580] [PMID: 27766914]
[171]
Deepmala; Slattery, J.; Kumar, N.; Delhey, L.; Berk, M.; Dean, O.; Spielholz, C.; Frye, R. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rev., 2015, 55, 294-321.
[http://dx.doi.org/10.1016/j.neubiorev.2015.04.015]
[172]
Price, T.O.; Uras, F.; Banks, W.A.; Ercal, N. A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells. Exp. Neurol., 2006, 201(1), 193-202.
[http://dx.doi.org/10.1016/j.expneurol.2006.03.030] [PMID: 16750528]
[173]
Abareshi, A.; Hosseini, M.; Beheshti, F.; Norouzi, F.; Khazaei, M.; Sadeghnia, H.R.; Boskabady, M.H.; Shafei, M.N.; Anaeigoudari, A. The effects of captopril on lipopolysaccharide induced learning and memory impairments and the brain cytokine levels and oxidative damage in rats. Life Sci., 2016, 167, 46-56.
[http://dx.doi.org/10.1016/j.lfs.2016.10.026] [PMID: 27794490]
[174]
Torika, N.; Asraf, K.; Roasso, E.; Danon, A.; Fleisher-Berkovich, S. Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: Possible implications for Alzheimer’s Disease. J. Neuroimmune Pharmacol., 2016, 11(4), 774-785.
[http://dx.doi.org/10.1007/s11481-016-9703-8] [PMID: 27562846]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy