Title:In-Vitro and In-Vivo Evaluation of Supersaturable Self-Nanoemulsifying Drug Delivery System (SNEDDS) of Dutasteride
Volume: 17
Issue: 1
Author(s): Poonguzhali Subramanian, P. S. Rajnikanth*, Manish Kumar and Kumarappan Chidambram
Affiliation:
- School of Pharmacy, Taylor’s University Lake view Campus, Subang Jaya, Selangor,Malaysia
Keywords:
Supersaturated Self-Nanoemulsifying Drug Delivery (S-SNEDDS), Hydroxy Propyl Methyl Cellulose (HPMC),
Dutasteride, higher self-emulsification efficiency, Poor Aqueous Solubility, Nano-emulsion.
Abstract: Objective: A novel, Supersaturable Self-Nanoemulsifying Drug Delivery System (S-SNEDDS)
has been prepared to improve the Dutasteride's poor aqueous solubility.
Methods: By adding Hydroxy Propyl Methyl Cellulose (HPMC) as a precipitation inhibitor to conventional
SNEDDS, a supersaturable system was prepared. Firstly, the prepared SNEDDS played an important
role in increasing the aqueous solubility and hence oral absorption due to nano-range size. Secondly,
the S-SNEDDS found to be advantageous over SNEDDS for having a higher drug load and inhibition
of dilution precipitation of Dutasteride. Formulated S-SNEDDS (F1-F9) ranged from 37.42 ±
1.02 to 68.92 ± 0.09 nm with PDI 0.219-0.34 and drug loading of over 95 percent.
Results: The study of in-vitro dissolution revealed higher dissolution for S-SNEDDS compared to
SNEDDS and Avodart soft gelatin capsule as a commercial product. In addition, higher absorption was
observed for S-SNEDDS showing approximately 1.28 and 1.27 fold AUC (0-24h) and Cmax compared to
commercial products. Therefore, S-SNEDDS has proven as a novel drug delivery system with a higher
drug load, higher self-emulsification efficiency, higher stability, higher dissolution and pronounced
absorption.
Conclusion: In conclusion, S-SNEDDS could be a newly emerging approach to enhance aqueous solubility
in many folds for drugs belonging to BCS Class II and IV and thus absorption and oral bioavailability.