Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling

Author(s): Yan Liu, Shan Wang, Jun Kan, Jingzhi Zhang, Lisa Zhou, Yuli Huang * and Yunlong Zhang *

Volume 18, Issue 4, 2020

Page: [260 - 276] Pages: 17

DOI: 10.2174/1570159X17666191101125530

Price: $65

Abstract

Glutamate is the major excitatory neurotransmitter in the central nervous system, and its signaling is critical for excitatory synaptic transmission. The well-established glutamate system involves glutamate synthesis, presynaptic glutamate release, glutamate actions on the ionotropic glutamate receptors (NMDA, AMPA, and kainate receptors) and metabotropic glutamate receptors, and glutamate uptake by glutamate transporters. When the glutamate system becomes dysfunctional, it contributes to the pathogenesis of neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease, depression, epilepsy, and ischemic stroke. In this review, based on regulating glutamate signaling, we summarize the effects and underlying mechanisms of natural constituents from Chinese herbal medicines on neurological disorders. Natural constituents from Chinese herbal medicine can prevent the glutamate-mediated excitotoxicity via suppressing presynaptic glutamate release, decreasing ionotropic and metabotropic glutamate receptors expression in the excitatory synapse, and promoting astroglial glutamate transporter expression to increase glutamate clearance from the synaptic cleft. However, some natural constituents from Chinese herbal medicine have the ability to restore the collapse of excitatory synapses by promoting presynaptic glutamate release and increasing ionotropic and metabotropic glutamate receptors expression. These regulatory processes involve various signaling pathways, which lead to different mechanistic routes of protection against neurological disorders. Hence, our review addresses the underlying mechanisms of natural constituents from Chinese herbal medicines that regulate glutamate systems and serve as promising agents for the treatment of the above-mentioned neurological disorders.

Keywords: Neurological disorders, natural constituents, chinese herbal medicine, glutamate, glutamate receptors, glutamate transporters.

Graphical Abstract
[1]
Krnjević, K. Glutamate and gamma-aminobutyric acid in brain. Nature, 1970, 228(5267), 119-124.
[http://dx.doi.org/10.1038/228119a0] [PMID: 4394110]
[2]
Volk, L.; Chiu, S.L.; Sharma, K.; Huganir, R.L. Glutamate synapses in human cognitive disorders. Annu. Rev. Neurosci., 2015, 38, 127-149.
[http://dx.doi.org/10.1146/annurev-neuro-071714-033821] [PMID: 25897873]
[3]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[4]
Chang, P.K.; Verbich, D.; McKinney, R.A. AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook. Eur. J. Neurosci., 2012, 35(12), 1908-1916.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08165.x] [PMID: 22708602]
[5]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[6]
Ribeiro, F.M.; Vieira, L.B.; Pires, R.G.; Olmo, R.P.; Ferguson, S.S. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol. Res., 2017, 115, 179-191.
[http://dx.doi.org/10.1016/j.phrs.2016.11.013] [PMID: 27872019]
[7]
Butcher, S.P.; Hamberger, A. In vivo studies on the extracellular, and veratrine-releasable, pools of endogenous amino acids in the rat striatum: effects of corticostriatal deafferentation and kainic acid lesion. J. Neurochem., 1987, 48(3), 713-721.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb05575.x] [PMID: 2879888]
[8]
Dunlop, J. Glutamate-based therapeutic approaches: targeting the glutamate transport system. Curr. Opin. Pharmacol., 2006, 6(1), 103-107.
[http://dx.doi.org/10.1016/j.coph.2005.09.004] [PMID: 16368269]
[9]
Sreenivasmurthy, S.G.; Liu, J.Y.; Song, J.X.; Yang, C.B.; Malampati, S.; Wang, Z.Y.; Huang, Y.Y.; Li, M. Neurogenic traditional Chinese medicine as a promising strategy for the treatment of Alzheimer’s disease. Int. J. Mol. Sci., 2017, 18(2) E272
[http://dx.doi.org/10.3390/ijms18020272] [PMID: 28134846]
[10]
Ke, Z.; Zhang, X.; Cao, Z.; Ding, Y.; Li, N.; Cao, L.; Wang, T.; Zhang, C.; Ding, G.; Wang, Z.; Xu, X.; Xiao, W. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs. Biomed. Pharmacother., 2016, 78, 272-279.
[11]
Liang, W.; Lam, W.P.; Tang, H.C.; Leung, P.C.; Yew, D.T. Current evidence of chinese herbal constituents with effects on NMDA receptor blockade. Pharmaceuticals (Basel), 2013, 6(8), 1039-1054.
[http://dx.doi.org/10.3390/ph6081039] [PMID: 24276380]
[12]
Walker, M.C.; van der Donk, W.A. The many roles of glutamate in metabolism. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 419-430.
[http://dx.doi.org/10.1007/s10295-015-1665-y] [PMID: 26323613]
[13]
Umbarger, H.E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem., 1978, 47, 532-606.
[http://dx.doi.org/10.1146/annurev.bi.47.070178.002533] [PMID: 354503]
[14]
Sieber, S.A.; Marahiel, M.A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev., 2005, 105(2), 715-738.
[http://dx.doi.org/10.1021/cr0301191] [PMID: 15700962]
[15]
Moore, B.S.; Hertweck, C. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat. Prod. Rep., 2002, 19(1), 70-99.
[http://dx.doi.org/10.1039/b003939j] [PMID: 11902441]
[16]
Shigeri, Y.; Seal, R.P.; Shimamoto, K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res. Brain Res. Rev., 2004, 45(3), 250-265.
[http://dx.doi.org/10.1016/j.brainresrev.2004.04.004] [PMID: 15210307]
[17]
Cheng, Q.; Song, S.H.; Augustine, G.J. Molecular mechanisms of Short-term plasticity: Role of synapsin Phosphorylation in augmentation and potentiation of spontaneous glutamate release. Front. Synaptic Neurosci., 2018, 10, 33.
[http://dx.doi.org/10.3389/fnsyn.2018.00033] [PMID: 30425632]
[18]
Hackett, J.T.; Ueda, T. Glutamate release. Neurochem. Res., 2015, 40(12), 2443-2460.
[http://dx.doi.org/10.1007/s11064-015-1622-1] [PMID: 26012367]
[19]
Lüscher, C.; Malenka, R.C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol., 2012, 4(6)a005710
[http://dx.doi.org/10.1101/cshperspect.a005710] [PMID: 22510460]
[20]
Vyklicky, V.; Korinek, M.; Smejkalova, T.; Balik, A.; Krausova, B.; Kaniakova, M.; Lichnerova, K.; Cerny, J.; Krusek, J.; Dittert, I.; Horak, M.; Vyklicky, L. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res., 2014, 63(Suppl. 1), S191-S203.
[PMID: 24564659]
[21]
Anggono, V.; Huganir, R.L. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol., 2012, 22(3), 461-469.
[http://dx.doi.org/10.1016/j.conb.2011.12.006] [PMID: 22217700]
[22]
Diering, G.H.; Huganir, R.L. The AMPA receptor code of synaptic plasticity. Neuron, 2018, 100(2), 314-329.
[http://dx.doi.org/10.1016/j.neuron.2018.10.018] [PMID: 30359599]
[23]
Lerma, J.; Marques, J.M. Kainate receptors in health and disease. Neuron, 2013, 80(2), 292-311.
[http://dx.doi.org/10.1016/j.neuron.2013.09.045] [PMID: 24139035]
[24]
Conn, P.J.; Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37, 205-237.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.205] [PMID: 9131252]
[25]
Gerber, U.; Gee, C.E.; Benquet, P. Metabotropic glutamate receptors: Intracellular signaling pathways. Curr. Opin. Pharmacol., 2007, 7(1), 56-61.
[http://dx.doi.org/10.1016/j.coph.2006.08.008] [PMID: 17055336]
[26]
Schoepp, D.D. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther., 2001, 299(1), 12-20.
[PMID: 11561058]
[27]
Kanai, Y.; Hediger, M.A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature, 1992, 360(6403), 467-471.
[http://dx.doi.org/10.1038/360467a0] [PMID: 1280334]
[28]
Arriza, J.L.; Fairman, W.A.; Wadiche, J.I.; Murdoch, G.H.; Kavanaugh, M.P.; Amara, S.G. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci., 1994, 14(9), 5559-5569.
[http://dx.doi.org/10.1523/JNEUROSCI.14-09-05559.1994] [PMID: 7521911]
[29]
Pines, G.; Danbolt, N.C.; Bjørås, M.; Zhang, Y.; Bendahan, A.; Eide, L.; Koepsell, H.; Storm-Mathisen, J.; Seeberg, E.; Kanner, B.I. Cloning and expression of a rat brain L-glutamate transporter. Nature, 1992, 360(6403), 464-467.
[http://dx.doi.org/10.1038/360464a0] [PMID: 1448170]
[30]
Zhang, Y.; Tan, F.; Xu, P.; Qu, S. Recent advance in the relationship between excitatory amino acid transporters and Parkinson’s disease. Neural Plast., 2016, 20168941327
[http://dx.doi.org/10.1155/2016/8941327] [PMID: 26981287]
[31]
Zhang, Y.; He, X.; Meng, X.; Wu, X.; Tong, H.; Zhang, X.; Qu, S. Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis., 2017, 8(2)e2574
[http://dx.doi.org/10.1038/cddis.2016.454] [PMID: 28151476]
[32]
Zhang, Y.; He, X.; Wu, X.; Lei, M.; Wei, Z.; Zhang, X.; Wen, L.; Xu, P.; Li, S.; Qu, S. Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson’s disease. Cell Death Dis., 2017, 8(2)e2611
[http://dx.doi.org/10.1038/cddis.2016.491] [PMID: 28182002]
[33]
Olney, J. W. Excitotoxicity: an overview. Canada diseases weekly report = Rapport hebdomadaire des maladies au Canada,, 1990, 16(Suppl 1E), 47-57.
[34]
Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, 115, 157-188.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.006] [PMID: 24361499]
[35]
Mehta, A.; Prabhakar, M.; Kumar, P.; Deshmukh, R.; Sharma, P.L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol., 2013, 698(1-3), 6-18.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.032] [PMID: 23123057]
[36]
Tehse, J.; Taghibiglou, C. The overlooked aspect of excitotoxicity: Glutamate-independent excitotoxicity in traumatic brain injuries. Eur. J. Neurosci., 2019, 49(9), 1157-1170.
[PMID: 30554430]
[37]
Hermans, E.; Challiss, R.A. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem. J., 2001, 359(Pt 3), 465-484.
[http://dx.doi.org/10.1042/bj3590465] [PMID: 11672421]
[38]
Freire, M.A. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med. J., 2012, 61(7), 751-755.
[PMID: 23620976]
[39]
Kaur, P.; Sharma, S. Recent advances in pathophysiology of traumatic brain injury. Curr. Neuropharmacol., 2018, 16(8), 1224-1238.
[http://dx.doi.org/10.2174/1570159X15666170613083606] [PMID: 28606040]
[40]
Magi, S.; Piccirillo, S.; Amoroso, S. The dual face of glutamate: from a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell. Mol. Life Sci., 2019, 76(8), 1473-1488.
[http://dx.doi.org/10.1007/s00018-018-3002-x]
[41]
Lucey, B.P.; Fagan, A.M.; Holtzman, D.M.; Morris, J.C.; Bateman, R.J. Diurnal oscillation of CSF Aβ and other AD biomarkers. Mol. Neurodegener., 2017, 12(1), 36.
[http://dx.doi.org/10.1186/s13024-017-0161-4] [PMID: 28478762]
[42]
Hynd, M.R.; Scott, H.L.; Dodd, P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 2004, 45(5), 583-595.
[http://dx.doi.org/10.1016/j.neuint.2004.03.007] [PMID: 15234100]
[43]
Eitan, E.; Hutchison, E.R.; Marosi, K.; Comotto, J.; Mustapic, M.; Nigam, S.M.; Suire, C.; Maharana, C.; Jicha, G.A.; Liu, D.; Machairaki, V.; Witwer, K.W.; Kapogiannis, D.; Mattson, M.P. Extracellular vesicle-associated Aβ mediates trans-neuronal bioenergetic and Ca2+-Handling deficits in Alzheimer’s disease models. NPJ Aging Mech. Dis., 2016, 2, 2.
[http://dx.doi.org/10.1038/npjamd.2016.19] [PMID: 27928512]
[44]
Zhao, W.Q.; Santini, F.; Breese, R.; Ross, D.; Zhang, X.D.; Stone, D.J.; Ferrer, M.; Townsend, M.; Wolfe, A.L.; Seager, M.A.; Kinney, G.G.; Shughrue, P.J.; Ray, W.J. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J. Biol. Chem., 2010, 285(10), 7619-7632.
[http://dx.doi.org/10.1074/jbc.M109.057182] [PMID: 20032460]
[45]
Decker, H.; Lo, K.Y.; Unger, S.M.; Ferreira, S.T.; Silverman, M.A. Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J. Neurosci., 2010, 30(27), 9166-9171.
[http://dx.doi.org/10.1523/JNEUROSCI.1074-10.2010] [PMID: 20610750]
[46]
Renner, M.; Lacor, P.N.; Velasco, P.T.; Xu, J.; Contractor, A.; Klein, W.L.; Triller, A. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron, 2010, 66(5), 739-754.
[http://dx.doi.org/10.1016/j.neuron.2010.04.029] [PMID: 20547131]
[47]
Priller, C.; Mitteregger, G.; Paluch, S.; Vassallo, N.; Staufenbiel, M.; Kretzschmar, H.A.; Jucker, M.; Herms, J. Excitatory synaptic transmission is depressed in cultured hippocampal neurons of APP/PS1 mice. Neurobiol. Aging, 2009, 30(8), 1227-1237.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.10.016] [PMID: 18077058]
[48]
Um, J.W.; Nygaard, H.B.; Heiss, J.K.; Kostylev, M.A.; Stagi, M.; Vortmeyer, A.; Wisniewski, T.; Gunther, E.C.; Strittmatter, S.M. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci., 2012, 15(9), 1227-1235.
[http://dx.doi.org/10.1038/nn.3178] [PMID: 22820466]
[49]
De Felice, F.G.; Velasco, P.T.; Lambert, M.P.; Viola, K.; Fernandez, S.J.; Ferreira, S.T.; Klein, W.L. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J. Biol. Chem., 2007, 282(15), 11590-11601.
[http://dx.doi.org/10.1074/jbc.M607483200] [PMID: 17308309 ]
[50]
Jacob, C.P.; Koutsilieri, E.; Bartl, J.; Neuen-Jacob, E.; Arzberger, T.; Zander, N.; Ravid, R.; Roggendorf, W.; Riederer, P.; Grünblatt, E. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J. Alzheimers Dis., 2007, 11(1), 97-116.
[http://dx.doi.org/10.3233/JAD-2007-11113] [PMID: 17361039]
[51]
Takahashi, K.; Kong, Q.; Lin, Y.; Stouffer, N.; Schulte, D.A.; Lai, L.; Liu, Q.; Chang, L.C.; Dominguez, S.; Xing, X.; Cuny, G.D.; Hodgetts, K.J.; Glicksman, M.A.; Lin, C.L. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J. Exp. Med., 2015, 212(3), 319-332.
[http://dx.doi.org/10.1084/jem.20140413] [PMID: 25711212]
[52]
Viola, K.L.; Klein, W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol., 2015, 129(2), 183-206.
[http://dx.doi.org/10.1007/s00401-015-1386-3] [PMID: 25604547]
[53]
Paula-Lima, A.C.; Brito-Moreira, J.; Ferreira, S.T. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J. Neurochem., 2013, 126(2), 191-202.
[http://dx.doi.org/10.1111/jnc.12304] [PMID: 23668663]
[54]
Sgambato-Faure, V.; Cenci, M.A. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog. Neurobiol., 2012, 96(1), 69-86.
[http://dx.doi.org/10.1016/j.pneurobio.2011.10.005] [PMID: 22075179]
[55]
Garcia, B.G.; Neely, M.D.; Deutch, A.Y. Cortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss. Cereb. Cortex, 2010, 20(10), 2423-2432.
[http://dx.doi.org/10.1093/cercor/bhp317] [PMID: 20118184]
[56]
Rothstein, J.D.; Tsai, G.; Kuncl, R.W.; Clawson, L.; Cornblath, D.R.; Drachman, D.B.; Pestronk, A.; Stauch, B.L.; Coyle, J.T. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol., 1990, 28(1), 18-25.
[http://dx.doi.org/10.1002/ana.410280106] [PMID: 2375630]
[57]
Fuchs, A.; Kutterer, S.; Mühling, T.; Duda, J.; Schütz, B.; Liss, B.; Keller, B.U.; Roeper, J. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J. Physiol., 2013, 591(10), 2723-2745.
[http://dx.doi.org/10.1113/jphysiol.2012.247981] [PMID: 23401612]
[58]
Rothstein, J.D.; Martin, L.J.; Kuncl, R.W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med., 1992, 326(22), 1464-1468.
[http://dx.doi.org/10.1056/NEJM199205283262204] [PMID: 1349424]
[59]
Pardo, A.C.; Wong, V.; Benson, L.M.; Dykes, M.; Tanaka, K.; Rothstein, J.D.; Maragakis, N.J. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp. Neurol., 2006, 201(1), 120-130.
[http://dx.doi.org/10.1016/j.expneurol.2006.03.028] [PMID: 16753145]
[60]
Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: progress and prospects. Nat. Rev. Drug Discov., 2017, 16(7), 472-486.
[http://dx.doi.org/10.1038/nrd.2017.16] [PMID: 28303025]
[61]
Gerhard, D.M.; Wohleb, E.S.; Duman, R.S. Emerging treatment mechanisms for depression: Focus on glutamate and synaptic plasticity. Drug Discov. Today, 2016, 21(3), 454-464.
[http://dx.doi.org/10.1016/j.drudis.2016.01.016] [PMID: 26854424]
[62]
Rubio-Casillas, A.; Fernández-Guasti, A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev. Neurosci., 2016, 27(6), 599-622.
[http://dx.doi.org/10.1515/revneuro-2015-0066] [PMID: 27096778]
[63]
Jaso, B.A.; Niciu, M.J.; Iadarola, N.D.; Lally, N.; Richards, E.M.; Park, M.; Ballard, E.D.; Nugent, A.C.; Machado-Vieira, R.; Zarate, C.A. Therapeutic modulation of glutamate receptors in major depressive disorder. Curr. Neuropharmacol., 2017, 15(1), 57-70.
[http://dx.doi.org/10.2174/1570159X14666160321123221] [PMID: 26997505]
[64]
Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci., 1999, 22(9), 391-397.
[http://dx.doi.org/10.1016/S0166-2236(99)01401-0] [PMID: 10441299]
[65]
Graham, S.H.; Shiraishi, K.; Panter, S.S.; Simon, R.P.; Faden, A.I. Changes in extracellular amino acid neurotransmitters produced by focal cerebral ischemia. Neurosci. Lett., 1990, 110(1-2), 124-130.
[http://dx.doi.org/10.1016/0304-3940(90)90799-F] [PMID: 1970140]
[66]
Lewerenz, J.; Maher, P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front. Neurosci., 2015, 9, 469.
[http://dx.doi.org/10.3389/fnins.2015.00469] [PMID: 26733784]
[67]
Hettinger, J.C.; Lee, H.; Bu, G.; Holtzman, D.M.; Cirrito, J.R. AMPA-ergic regulation of amyloid-β levels in an Alzheimer’s disease mouse model. Mol. Neurodegener., 2018, 13(1), 22.
[http://dx.doi.org/10.1186/s13024-018-0256-6] [PMID: 29764453]
[68]
Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[69]
Blasco, H.; Mavel, S.; Corcia, P.; Gordon, P.H. The glutamate hypothesis in ALS: pathophysiology and drug development. Curr. Med. Chem., 2014, 21(31), 3551-3575.
[http://dx.doi.org/10.2174/0929867321666140916120118] [PMID: 25245510]
[70]
Wang, R.; Tang, X.C. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals, 2005, 14(1-2), 71-82.
[http://dx.doi.org/10.1159/000085387] [PMID: 15956816]
[71]
Wang, R.; Yan, H.; Tang, X.C. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol. Sin., 2006, 27(1), 1-26.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00255.x] [PMID: 16364207]
[72]
Ved, H.S.; Koenig, M.L.; Dave, J.R.; Doctor, B.P. Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. Neuroreport, 1997, 8(4), 963-968.
[http://dx.doi.org/10.1097/00001756-199703030-00029] [PMID: 9141073]
[73]
Mao, X.Y.; Zhou, H.H.; Li, X.; Liu, Z.Q.; Huperzine, A. Huperzine A alleviates oxidative glutamate toxicity in hippocampal HT22 Cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway. Cell. Mol. Neurobiol., 2016, 36(6), 915-925.
[http://dx.doi.org/10.1007/s10571-015-0276-5] [PMID: 26440805]
[74]
Gordon, R.K.; Nigam, S.V.; Weitz, J.A.; Dave, J.R.; Doctor, B.P.; Ved, H.S. The NMDA receptor ion channel: a site for binding of huperzine A. J. Appl. Toxicol., 2001, 21(Suppl. 1), S47-S51.
[http://dx.doi.org/10.1002/jat.805] [PMID: 11920920]
[75]
Coleman, B.R.; Ratcliffe, R.H.; Oguntayo, S.A.; Shi, X.; Doctor, B.P.; Gordon, R.K.; Nambiar, M.P. [+]-Huperzine A treatment protects against N-methyl-D-aspartate-induced seizure/status epilepticus in rats. Chem. Biol. Interact., 2008, 175(1-3), 387-395.
[http://dx.doi.org/10.1016/j.cbi.2008.05.023] [PMID: 18588864]
[76]
Cui, W.; Hu, S.; Chan, H.H.; Luo, J.; Li, W.; Mak, S.; Choi, T.C.; Rong, J.; Carlier, P.R.; Han, Y. Bis(12)-hupyridone, a novel acetylcholinesterase inhibitor, protects against glutamate-induced neuronal excitotoxicity via activating α7 nicotinic acetylcholine receptor/phosphoinositide 3-kinase/Akt cascade. Chem. Biol. Interact., 2013, 203(1), 365-370.
[http://dx.doi.org/10.1016/j.cbi.2012.10.003] [PMID: 23085120]
[77]
Kim, H.S.; Lee, J.H.; Goo, Y.S.; Nah, S.Y. Effects of ginsenosides on Ca2+ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res. Bull., 1998, 46(3), 245-251.
[http://dx.doi.org/10.1016/S0361-9230(98)00014-8] [PMID: 9667819]
[78]
Kim, S.; Kim, T.; Ahn, K.; Park, W.K.; Nah, S.Y.; Rhim, H. Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem. Biophys. Res. Commun., 2004, 323(2), 416-424.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.106] [PMID: 15369768]
[79]
Kim, S.; Ahn, K.; Oh, T.H.; Nah, S.Y.; Rhim, H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem. Biophys. Res. Commun., 2002, 296(2), 247-254.
[http://dx.doi.org/10.1016/S0006-291X(02)00870-7] [PMID: 12163009]
[80]
Lee, E.; Kim, S.; Chung, K.C.; Choo, M.K.; Kim, D.H.; Nam, G.; Rhim, H. 20(S)-ginsenoside Rh2, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur. J. Pharmacol., 2006, 536(1-2), 69-77.
[http://dx.doi.org/10.1016/j.ejphar.2006.02.038] [PMID: 16563373]
[81]
Radad, K.; Gille, G.; Moldzio, R.; Saito, H.; Rausch, W.D. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res., 2004, 1021(1), 41-53.
[http://dx.doi.org/10.1016/j.brainres.2004.06.030] [PMID: 15328030]
[82]
Zhang, Y.L.; Liu, Y.; Kang, X.P.; Dou, C.Y.; Zhuo, R.G.; Huang, S.Q.; Peng, L.; Wen, L. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson’s disease. Neuropharmacology, 2018, 131, 223-237.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.012] [PMID: 29241654]
[83]
Qu, S.; Meng, X.; Liu, Y.; Zhang, X.; Zhang, Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway. Aging (Albany NY), 2019, 11(7), 1934-1964.
[http://dx.doi.org/10.18632/aging.101884] [PMID: 30958793]
[84]
Liu, Y.; Zong, X.; Huang, J.; Guan, Y.; Li, Y.; Du, T.; Liu, K.; Kang, X.; Dou, C.; Sun, X.; Wu, R.; Wen, L.; Zhang, Y. Ginsenoside Rb1 regulates prefrontal cortical GABAergic transmission in MPTP-treated mice. Aging (Albany NY), 2019, 11(14), 5008-5034.
[http://dx.doi.org/10.18632/aging.102095] [PMID: 31314744]
[85]
Wu, J.; Jeong, H.K.; Bulin, S.E.; Kwon, S.W.; Park, J.H.; Bezprozvanny, I. Ginsenosides protect striatal neurons in a cellular model of Huntington’s disease. J. Neurosci. Res., 2009, 87(8), 1904-1912.
[http://dx.doi.org/10.1002/jnr.22017] [PMID: 19185022]
[86]
Liu, Y.; Wong, T.P.; Aarts, M.; Rooyakkers, A.; Liu, L.; Lai, T.W.; Wu, D.C.; Lu, J.; Tymianski, M.; Craig, A.M.; Wang, Y.T. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci., 2007, 27(11), 2846-2857.
[http://dx.doi.org/10.1523/JNEUROSCI.0116-07.2007] [PMID: 17360906]
[87]
Liu, L.; Wong, T.P.; Pozza, M.F.; Lingenhoehl, K.; Wang, Y.; Sheng, M.; Auberson, Y.P.; Wang, Y.T. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 2004, 304(5673), 1021-1024.
[http://dx.doi.org/10.1126/science.1096615] [PMID: 15143284]
[88]
Parsons, M.P.; Raymond, L.A. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron, 2014, 82(2), 279-293.
[http://dx.doi.org/10.1016/j.neuron.2014.03.030] [PMID: 24742457]
[89]
Thomas, C.G.; Miller, A.J.; Westbrook, G.L. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J. Neurophysiol., 2006, 95(3), 1727-1734.
[http://dx.doi.org/10.1152/jn.00771.2005] [PMID: 16319212]
[90]
Gu, B.; Nakamichi, N.; Zhang, W.S.; Nakamura, Y.; Kambe, Y.; Fukumori, R.; Takuma, K.; Yamada, K.; Takarada, T.; Taniura, H.; Yoneda, Y. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly. J. Neurosci. Res., 2009, 87(9), 2145-2156.
[http://dx.doi.org/10.1002/jnr.22021] [PMID: 19224577]
[91]
Yang, Y.; Ji, W.G.; Zhu, Z.R.; Wu, Y.L.; Zhang, Z.Y.; Qu, S.C. Rhynchophylline suppresses soluble Aβ1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology, 2018, 135, 100-112.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.007] [PMID: 29510187]
[92]
Shao, H.; Yang, Y.; Mi, Z.; Zhu, G.X.; Qi, A.P.; Ji, W.G.; Zhu, Z.R. Anticonvulsant effect of rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience, 2016, 337, 355-369.
[http://dx.doi.org/10.1016/j.neuroscience.2016.09.029] [PMID: 27670903]
[93]
Zhang, K.; Li, Y.J.; Yang, Q.; Gerile, O.; Yang, L.; Li, X.B.; Guo, Y.Y.; Zhang, N.; Feng, B.; Liu, S.B.; Zhao, M.G. Neuroprotective effects of oxymatrine against excitotoxicity partially through down-regulation of NR2B-containing NMDA receptors. Phytomedicine, 2013, 20(3-4), 343-350.
[94]
Xie, W.; Yang, Y.; Gu, X.; Zheng, Y.; Sun, Y.E.; Liang, Y.; Bo, J.; Ma, Z. Senegenin attenuates hepatic ischemia-reperfusion induced cognitive dysfunction by increasing hippocampal NR2B expression in rats. PLoS One, 2012, 7(9)e45575
[http://dx.doi.org/10.1371/journal.pone.0045575] [PMID: 23029109]
[95]
Chang, C.Z.; Wu, S.C.; Kwan, A.L.; Lin, C.L. Magnesium Lithospermate B Implicates 3′-5′-Cyclic Adenosine monophosphate/protein kinase a pathway and N-Methyl-d-aspartate receptors in an experimental traumatic brain injury. World Neurosurg., 2015, 84(4), 954-963.
[http://dx.doi.org/10.1016/j.wneu.2015.05.075] [PMID: 26093361]
[96]
Kawakami, Z.; Ikarashi, Y.; Kase, Y. Isoliquiritigenin is a novel NMDA receptor antagonist in kampo medicine yokukansan. Cell. Mol. Neurobiol., 2011, 31(8), 1203-1212.
[http://dx.doi.org/10.1007/s10571-011-9722-1] [PMID: 21691759]
[97]
Sun, T.; Wang, J.; Li, X.; Li, Y.J.; Feng, D.; Shi, W.L.; Zhao, M.G.; Wang, J.B.; Wu, Y.M. Gastrodin relieved complete Freund’s adjuvant-induced spontaneous pain by inhibiting inflammatory response. Int. Immunopharmacol., 2016, 41, 66-73.
[http://dx.doi.org/10.1016/j.intimp.2016.10.020] [PMID: 27816787]
[98]
Liu, S.J.; Yang, C.; Zhang, Y.; Su, R.Y.; Chen, J.L.; Jiao, M.M.; Chen, H.F.; Zheng, N.; Luo, S.; Chen, Y.B.; Quan, S.J.; Wang, Q. Neuroprotective effect of β-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des. Devel. Ther., 2016, 10, 1461-1469.
[http://dx.doi.org/10.2147/DDDT.S93559] [PMID: 27143853]
[99]
Kang, S.Y.; Lee, K.Y.; Koo, K.A.; Yoon, J.S.; Lim, S.W.; Kim, Y.C.; Sung, S.H. ESP-102, a standardized combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, significantly improved scopolamine-induced memory impairment in mice. Life Sci., 2005, 76(15), 1691-1705.
[http://dx.doi.org/10.1016/j.lfs.2004.07.029] [PMID: 15698848]
[100]
Kim, H.B.; Hwang, E.S.; Choi, G.Y.; Lee, S.; Park, T.S.; Lee, C.W.; Lee, E.S.; Kim, Y.C.; Kim, S.S.; Lee, S.O.; Park, J.H. Combined herbal extract of Angelica gigas, Saururus chinensis, and Schisandra chinensis, changes synaptic pPlasticity and attenuates scopolamine-induced memory impairment in Rat hippocampus tissue. Evid. Based Complement. Alternat. Med., 2016. 8793095
[101]
Zhu, G.; Wang, Y.; Li, J.; Wang, J. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice. Neuroscience, 2015, 292, 81-89.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.031] [PMID: 25724866]
[102]
Huang, C.C.; Tsai, M.H.; Wu, Y.C.; Chen, K.T.; Chuang, H.W.; Chen, Y.; Tseng, G.W.; Fu, P.I.; Wei, I.H. Activity dependent mammalian target of rapamycin pathway and brain derived neurotrophic factor release is required for the Rapid Antidepressant Effects of Puerarin. Am. J. Chin. Med., 2018, 4, 1-16.
[http://dx.doi.org/10.1142/S0192415X18500787] [PMID: 30284466]
[103]
Sun, X.; Li, X.; Pan, R.; Xu, Y.; Wang, Q.; Song, M. Total Saikosaponins of Bupleurum yinchowense reduces depressive, anxiety-like behavior and increases synaptic proteins expression in chronic corticosterine-treated mice. BMC Complement. Altern. Med., 2018, 18(1), 117.
[http://dx.doi.org/10.1186/s12906-018-2186-9] [PMID: 29609584]
[104]
Bao, H.; Sun, L.; Zhu, Y.; Ran, P.; Hu, W.; Zhu, K.; Li, B.; Hou, Y.; Nie, J.; Gao, T.; Shan, L.; Du, K.; Zheng, S.; Zheng, B.; Xiao, C.; Du, J. Lentinan produces a robust antidepressant-like effect via enhancing the prefrontal dectin-1/AMPA receptor signaling pathway. Behav. Brain Res., 2017, 317, 263-271.
[http://dx.doi.org/10.1016/j.bbr.2016.09.062] [PMID: 27693847]
[105]
Li, B.; Hou, Y.; Zhu, M.; Bao, H.; Nie, J.; Zhang, G.Y.; Shan, L.; Yao, Y.; Du, K.; Yang, H.; Li, M.; Zheng, B.; Xu, X.; Xiao, C.; Du, J. 3′-Deoxyadenosine (Cordycepin) produces a rapid and robust antidepressant effect via enhancing Prefrontal AMPA Receptor signaling pathway. Int. J. Neuropsychopharmacol., 2016, 19(4)pyv112
[http://dx.doi.org/10.1093/ijnp/pyv112] [PMID: 26443809]
[106]
Huang, L.F.; Shi, H.L.; Gao, B.; Wu, H.; Yang, L.; Wu, X.J.; Wang, Z.T. Decichine enhances hemostasis of activated platelets via AMPA receptors. Thromb. Res., 2014, 133(5), 848-854.
[http://dx.doi.org/10.1016/j.thromres.2014.02.009] [PMID: 24630643]
[107]
Wang, Y.N.; Liu, M.F.; Hou, W.Z.; Xu, R.M.; Gao, J.; Lu, A.Q.; Xie, M.P.; Li, L.; Zhang, J.J.; Peng, Y.; Ma, L.L.; Wang, X.L.; Shi, J.G.; Wang, S.J. Bioactive benzofuran derivatives from cortex mori radicis, and their neuroprotective and analgesic activities mediated by mGluR1. Molecules, 2017, 22(2)E236
[http://dx.doi.org/10.3390/molecules22020236] [PMID: 28208727]
[108]
Hino, H.; Takahashi, H.; Suzuki, Y.; Tanaka, J.; Ishii, E.; Fukuda, M. Anticonvulsive effect of paeoniflorin on experimental febrile seizures in immature rats: possible application for febrile seizures in children. PLoS One, 2012, 7(8)e42920
[http://dx.doi.org/10.1371/journal.pone.0042920] [PMID: 22916181]
[109]
Jiang, L.; Zhang, X.; Chen, X.; He, Y.; Qiao, L.; Zhang, Y.; Li, G.; Xiang, Y. Virtual screening and molecular dynamics Study of Potential negative allosteric modulators of mGluR1 from chinese herbs. Molecules, 2015, 20(7), 12769-12786.
[http://dx.doi.org/10.3390/molecules200712769] [PMID: 26184151]
[110]
Chang, Y.; Huang, W.J.; Tien, L.T.; Wang, S.J. Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes). Eur. J. Pharmacol., 2008, 578(1), 28-36.
[http://dx.doi.org/10.1016/j.ejphar.2007.09.023] [PMID: 17949708]
[111]
Liu, Z.J.; Zhao, M.; Zhang, Y.; Xue, J.F.; Chen, N.H. Ginsenoside Rg1 promotes glutamate release via a calcium/calmodulin-dependent protein kinase II-dependent signaling pathway. Brain Res., 2010, 1333, 1-8.
[http://dx.doi.org/10.1016/j.brainres.2010.03.096] [PMID: 20381470]
[112]
Lee, S.D.; Lo, M.J. Ginsenoside Rb1 promotes PC12 cell cycle kinetics through an adenylate cyclase-dependent protein kinase A pathway. Nutr. Res., 2010, 30(9), 660-666.
[http://dx.doi.org/10.1016/j.nutres.2010.09.002] [PMID: 20934608]
[113]
Thorajak, P.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Effects of aged garlic extract on cholinergic, glutamatergic and GABAergic systems with Regard to cognitive impairment in Aβ-Induced rats. Nutrients, 2017, 9(7) E686
[http://dx.doi.org/10.3390/nu9070686] [PMID: 28671572]
[114]
Lin, T.Y.; Lu, C.W.; Huang, S.K.; Wang, S.J. Tanshinone IIA, a constituent of danshen, inhibits the release of glutamate in rat cerebrocortical nerve terminals. J. Ethnopharmacol., 2013, 147(2), 488-496.
[http://dx.doi.org/10.1016/j.jep.2013.03.045] [PMID: 23542145]
[115]
Lu, C.W.; Lin, T.Y.; Huang, S.K.; Wang, S.J. Echinacoside Inhibits glutamate release by suppressing voltage-dependent Ca(2+) entry and protein kinase C in rat cerebrocortical nerve terminals. Int. J. Mol. Sci., 2016, 17(7)E1006
[http://dx.doi.org/10.3390/ijms17071006] [PMID: 27347934]
[116]
Lu, C.W.; Huang, S.K.; Lin, T.Y.; Wang, S.J. Echinacoside, an active constituent of Herba Cistanche, suppresses epileptiform activity in hippocampal CA3 pyramidal neurons. Korean J. Physiol. Pharmacol., 2018, 22(3), 249-255.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.249] [PMID: 29719447]
[117]
Lin, T.Y.; Huang, W.J.; Wu, C.C.; Lu, C.W.; Wang, S.J. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats. PLoS One, 2014, 9(2)e88644
[http://dx.doi.org/10.1371/journal.pone.0088644] [PMID: 24520409]
[118]
Yang, R.; Chen, K.; Zhao, Y.; Tian, P.; Duan, F.; Sun, W.; Liu, Y.; Yan, Z.; Li, S. Analysis of potential amino acid biomarkers in brain tissue and the effect of galangin on cerebral ischemia. Molecules, 2016, 21(4), 438.
[http://dx.doi.org/10.3390/molecules21040438] [PMID: 27058522]
[119]
Ban, J.Y.; Jeon, S.Y.; Nguyen, T.T.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective effect of oxyresveratrol from smilacis chinae rhizome on amyloid Beta protein (25-35)-induced neurotoxicity in cultured rat cortical neurons. Biol. Pharm. Bull., 2006, 29(12), 2419-2424.
[http://dx.doi.org/10.1248/bpb.29.2419] [PMID: 17142975]
[120]
Ban, J.Y.; Jeon, S.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25-35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci., 2006, 79(24), 2251-2259.
[http://dx.doi.org/10.1016/j.lfs.2006.07.021] [PMID: 16978655]
[121]
Zhang, Y.; Pi, Z.; Song, F.; Liu, Z. Ginsenosides attenuate d-galactose- and AlCl3-inducedspatial memory impairment by restoring the dysfunction of the neurotransmitter systems in the rat model of Alzheimer’s disease. J. Ethnopharmacol., 2016, 194, 188-195.
[http://dx.doi.org/10.1016/j.jep.2016.09.007] [PMID: 27612432]
[122]
Xu, M.; Dong, Y.; Wan, S.; Yan, T.; Cao, J.; Wu, L.; Bi, K.; Jia, Y. Schisantherin B ameliorates Aβ1-42-induced cognitive decline via restoration of GLT-1 in a mouse model of Alzheimer’s disease. Physiol. Behav., 2016, 167, 265-273.
[http://dx.doi.org/10.1016/j.physbeh.2016.09.018] [PMID: 27660034]
[123]
Xu, M.; Xiao, F.; Wang, M.; Yan, T.; Yang, H.; Wu, B.; Bi, K.; Jia, Y. Schisantherin, B improves the pathological manifestations of mice caused by behavior desperation in different ages-depression with Cognitive Impairment. Biomol. Ther. (Seoul), 2019, 27(2), 160-167.
[PMID: 30261717]
[124]
Yang, Z.B.; Luo, X.J.; Ren, K.D.; Peng, J.J.; Tan, B.; Liu, B.; Lou, Z.; Xiong, X.M.; Zhang, X.J.; Ren, X.; Peng, J. Beneficial effect of magnesium lithospermate B on cerebral ischemia-reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway. Eur. J. Pharmacol., 2015, 766, 91-98.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.042] [PMID: 26420356]
[125]
Gu, Q.; Du, H.; Ma, C.; Fotis, H.; Wu, B.; Huang, C.; Schwarz, W. Effects of alpha-asarone on the glutamate transporter EAAC1 in Xenopus oocytes. Planta Med., 2010, 76(6), 595-598.
[http://dx.doi.org/10.1055/s-0029-1240613] [PMID: 19937551]
[126]
Zhang, X.; Shi, M.; Bjørås, M.; Wang, W.; Zhang, G.; Han, J.; Liu, Z.; Zhang, Y.; Wang, B.; Chen, J.; Zhu, Y.; Xiong, L.; Zhao, G. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front. Pharmacol., 2013, 4, 152.
[http://dx.doi.org/10.3389/fphar.2013.00152] [PMID: 24376419]
[127]
Wang, S.; Li, M.; Guo, Y.; Li, C.; Wu, L.; Zhou, X.F.; Luo, Y.; An, D.; Li, S.; Luo, H.; Pu, L. Effects of Panax notoginseng ginsenoside Rb1 on abnormal hippocampal microenvironment in rats. J. Ethnopharmacol., 2017, 202, 138-146.
[http://dx.doi.org/10.1016/j.jep.2017.01.005] [PMID: 28065779]
[128]
Son, J.W.; Kim, H.J.; Oh, D.K. Ginsenoside Rd production from the major ginsenoside Rb(1) by beta-glucosidase from Thermus caldophilus. Biotechnol. Lett., 2008, 30(4), 713-716.
[http://dx.doi.org/10.1007/s10529-007-9590-4] [PMID: 17989924]
[129]
Hong, H.; Cui, C.H.; Kim, J.K.; Jin, F.X.; Kim, S.C.; Im, W.T. Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res., 2012, 36(4), 418-424.
[http://dx.doi.org/10.5142/jgr.2012.36.4.418] [PMID: 23717145]
[130]
Keynes, R.G.; Garthwaite, J. Nitric oxide and its role in ischaemic brain injury. Curr. Mol. Med., 2004, 4(2), 179-191.
[http://dx.doi.org/10.2174/1566524043479176] [PMID: 15032712]
[131]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[132]
Love, S. Oxidative stress in brain ischemia. Brain Pathol., 1999, 9(1), 119-131.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00214.x] [PMID: 9989455]
[133]
Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: Understanding the therapeutics strategies. Mol. Neurobiol., 2016, 53(1), 648-661.
[http://dx.doi.org/10.1007/s12035-014-9053-6] [PMID: 25511446]
[134]
Streit, W.J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia, 2002, 40(2), 133-139.
[http://dx.doi.org/10.1002/glia.10154] [PMID: 12379901]
[135]
Cao, W.; Zheng, H. Peripheral immune system in aging and Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 51.
[http://dx.doi.org/10.1186/s13024-018-0284-2] [PMID: 30285785]
[136]
Bye, N.; Habgood, M.D.; Callaway, J.K.; Malakooti, N.; Potter, A.; Kossmann, T.; Morganti-Kossmann, M.C. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp. Neurol., 2007, 204(1), 220-233.
[http://dx.doi.org/10.1016/j.expneurol.2006.10.013] [PMID: 17188268]
[137]
Guimarães, J.S.; Freire, M.A.; Lima, R.R.; Picanço-Diniz, C.W.; Pereira, A.; Gomes-Leal, W. Minocycline treatment reduces white matter damage after excitotoxic striatal injury. Brain Res., 2010, 1329, 182-193.
[http://dx.doi.org/10.1016/j.brainres.2010.03.007] [PMID: 20226770]
[138]
Lopes, R.S.; Cardoso, M.M.; Sampaio, A.O.; Barbosa, M.S., Jr; Souza, C.C.; DA , Silva M.C.; Ferreira, E.M.; Freire, M.A.; Lima, R.R.; Gomes-Leal, W.. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J. Biosci., 2016, 41(3), 381-394.
[http://dx.doi.org/10.1007/s12038-016-9621-1] [PMID: 27581930]
[139]
Burd, I.; Welling, J.; Kannan, G.; Johnston, M.V. Excitotoxicity as a common mechanism for fetal neuronal injury with hypoxia and intrauterine inflammation. Adv. Pharmacol., 2016, 76, 85-101.
[http://dx.doi.org/10.1016/bs.apha.2016.02.003] [PMID: 27288075]
[140]
Liu, Y.M.; Niu, L.; Wang, L.L.; Bai, L.; Fang, X.Y.; Li, Y.C.; Yi, L.T. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice. Brain Res. Bull., 2017, 134, 220-227.
[http://dx.doi.org/10.1016/j.brainresbull.2017.08.008] [PMID: 28842306]
[141]
Gao, H.; Cui, Y.; Kang, N.; Liu, X.; Liu, Y.; Zou, Y.; Zhang, Z.; Li, X.; Yang, S.; Li, J.; Wang, C.; Xu, Q.M.; Chen, X. Isoacteoside, a dihydroxyphenylethyl glycoside, exhibits anti-inflammatory effects through blocking toll-like receptor 4 dimerization. Br. J. Pharmacol., 2017, 174(17), 2880-2896.
[http://dx.doi.org/10.1111/bph.13912] [PMID: 28616865]
[142]
Li, H.; Zhang, X.; Zhu, X.; Qi, X.; Lin, K.; Cheng, L. The effects of Icariin on enhancing motor recovery through attenuating pro-inflammatory factors and oxidative stress via mitochondrial apoptotic pathway in the mice model of spinal cord injury. Front. Physiol., 2018, 9, 1617.
[http://dx.doi.org/10.3389/fphys.2018.01617] [PMID: 30505282]
[143]
Yang, G.; Wang, Y.; Tian, J.; Liu, J.P. Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One, 2013, 8(9)e74916
[http://dx.doi.org/10.1371/journal.pone.0074916] [PMID: 24086396]
[144]
Ha, G.T.; Wong, R.K.; Zhang, Y. Huperzine a as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem. Biodivers., 2011, 8(7), 1189-1204.
[http://dx.doi.org/10.1002/cbdv.201000269] [PMID: 21766442]
[145]
Rafii, M.S.; Walsh, S.; Little, J.T.; Behan, K.; Reynolds, B.; Ward, C.; Jin, S.; Thomas, R.; Aisen, P.S. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology, 2011, 76(16), 1389-1394.
[http://dx.doi.org/10.1212/WNL.0b013e318216eb7b] [PMID: 21502597]
[146]
Jiang, H.; Luo, X.; Bai, D. Progress in clinical, pharmacological, chemical and structural biological studies of huperzine A: a drug of traditional chinese medicine origin for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2003, 10(21), 2231-2252.
[http://dx.doi.org/10.2174/0929867033456747] [PMID: 14529340]
[147]
Kim, H.K. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J. Ginseng Res., 2013, 37(4), 451-456.
[http://dx.doi.org/10.5142/jgr.2013.37.451] [PMID: 24235859]
[148]
Chang, W.H.; Tsai, Y.L.; Huang, C.Y.; Hsieh, C.C.; Chaunchaiyakul, R.; Fang, Y.; Lee, S.D.; Kuo, C.H. Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery. J. Int. Soc. Sports Nutr., 2015, 12, 34.
[http://dx.doi.org/10.1186/s12970-015-0095-6] [PMID: 26300710]
[149]
Chang, W.; Teng, J. Combined application of tenuigenin and β-asarone improved the efficacy of memantine in treating moderate-to-severe Alzheimer’s disease. Drug Des. Devel. Ther., 2018, 12, 455-462.
[http://dx.doi.org/10.2147/DDDT.S155567] [PMID: 29551889]
[150]
Ji, B.; Zhou, F.; Han, L.; Yang, J.; Fan, H.; Li, S.; Li, J.; Zhang, X.; Wang, X.; Chen, X.; Xu, Y. Sodium tanshinone IIA sulfonate enhances effectiveness Rt-PA treatment in acute ischemic stroke patients associated with ameliorating blood-brain barrier damage. Transl. Stroke Res., 2017, 8(4), 334-340.
[http://dx.doi.org/10.1007/s12975-017-0526-6] [PMID: 28243834]
[151]
Li, S.; Jiao, Y.; Wang, H.; Shang, Q.; Lu, F.; Huang, L.; Liu, J.; Xu, H.; Chen, K. Sodium tanshinone IIA sulfate adjunct therapy reduces high-sensitivity C-reactive protein level in coronary artery disease patients: a randomized controlled trial. Sci. Rep., 2017, 7(1), 17451.
[http://dx.doi.org/10.1038/s41598-017-16980-4] [PMID: 29234038]
[152]
Tan, D.; Wu, J.R.; Zhang, X.M.; Liu, S.; Zhang, B. Sodium Tanshinone II A sulfonate injection as adjuvant treatment for unstable Angina Pectoris: A meta-analysis of 17 randomized controlled trials. Chin. J. Integr. Med., 2018, 24(2), 156-160.
[http://dx.doi.org/10.1007/s11655-017-2424-x] [PMID: 29181731]
[153]
Zheng, Q.H.; Li, X.L.; Mei, Z.G.; Xiong, L.; Mei, Q.X.; Wang, J.F.; Tan, L.J.; Yang, S.B.; Feng, Z.T. Efficacy and safety of puerarin injection in curing acute ischemic stroke: A meta-analysis of randomized controlled trials. Medicine (Baltimore), 2017, 96(1)e5803
[http://dx.doi.org/10.1097/MD.0000000000005803] [PMID: 28072733]
[154]
Liu, B.; Tan, Y.; Wang, D.; Liu, M. Puerarin for ischaemic stroke. Cochrane Database Syst. Rev., 2016, 2 CD004955
[PMID: 26891451]
[155]
Strohl, W.R. The role of natural products in a modern drug discovery program. Drug Discov. Today, 2000, 5(2), 39-41.
[http://dx.doi.org/10.1016/S1359-6446(99)01443-9] [PMID: 10652450]
[156]
Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 2015, 4(1), 27-30.
[PMID: 2819747]
[157]
Li, J.W.; Vederas, J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325(5937), 161-165.
[http://dx.doi.org/10.1126/science.1168243] [PMID: 19589993]
[158]
Wills, R.B.; Bone, K.; Morgan, M. Herbal products: active constituents, modes of action and quality control. Nutr. Res. Rev., 2000, 13(1), 47-77.
[http://dx.doi.org/10.1079/095442200108729007] [PMID: 19087433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy