Review Article

了解树状聚合物的抗癌药物传递方面。

卷 21, 期 6, 2020

页: [528 - 540] 页: 13

弟呕挨: 10.2174/1389450120666191031092259

价格: $65

Open Access Journals Promotions 2
摘要

树枝状大分子是新兴的用于靶向药物递送系统的纳米颗粒。这些是径向对称的分子,具有定义明确,均匀且单分散的结构。由于纳米尺寸,它们可以轻松穿过生物膜并提高生物利用度。表面官能化促进了特定作用部位的靶向,有助于高药物负载并提高了药物的治疗效率。这些性质使树枝状聚合物优于常规药物递送系统。本文介绍了树枝状大分子的特点及其合成方法,如发散生长法,会聚生长法,双指数混合法,超核和支链法。树状聚合物有效地用于抗癌递送,并且可以通过主动或被动靶向而靶向于肿瘤部位。药物与树枝状聚合物相互作用的机理有三种,分别是药物分子的物理包封,静电相互作用,化学结合。树枝状大分子复合物之间的体内共价键在体内裂解,或通过物理变化或刺激(例如pH,温度等)从树枝状大分子释放药物。

关键词: 树枝状大分子,抗癌药,肿瘤,纳米颗粒,会聚生长法,发散生长法。

图形摘要
[1]
Bredel, M.; Zentner, J. Brain-tumour drug resistance: the bare essentials. Lancet Oncol., 2002, 3(7), 397-406. [http://dx.doi.org/10.1016/S1470-2045(02)00786-6]. [PMID: 12142169].
[2]
Chittasupho, C.; Anuchapreeda, S.; Sarisuta, N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. European journal of pharmaceutics and biopharmaceutics. Eur. J. Pharm. Biopharm., 2017, 119, 310-321. [http://dx.doi.org/10.1016/j.ejpb.2017.07.003].
[3]
Pardridge, W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14. [http://dx.doi.org/10.1602/neurorx.2.1.3].
[4]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972. [http://dx.doi.org/10.1038/jcbfm.2012.126]. [PMID: 22929442].
[5]
Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 2015, 10(1), 13-23. [http://dx.doi.org/10.1016/j.ajps.2014.08.005].
[6]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S. A new class of polymers: starburst-dendritic macromolecules. Polym. J., 1985, 17, 117. [http://dx.doi.org/10.1295/polymj.17.117].
[7]
Newkome, G.R.; Yao, Z.; Baker, G.R.; Gupta, V.K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem., 1985, 50(11), 2003-2004. [http://dx.doi.org/10.1021/jo00211a052].
[8]
Pushkar, S.P.A.; Pathak, K.; Pathak, D. Dendrimers: Nanotechnology derived novel polymers in drug delivery. Indian Journal of Pharmaceutical Education and Research, 2006, 40(3), 153.
[9]
Patri, A.K.; Kukowska-Latallo, J.F.; Baker, J.R., Jr Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev., 2005, 57(15), 2203-2214. [http://dx.doi.org/10.1016/j.addr.2005.09.014]. [PMID: 16290254].
[10]
Yarema, SGSKJ Dendrimers in cancer treatment and diagnosis, 2007.
[11]
Kesavan, A.; Pakala, S.B.; Rayala, S.K.; Venkatraman, G. Effective strategies and applications of dendrimers in the treatment of ovarian cancer. Curr. Pharm. Des., 2017, 23(21), 3099-3104. [http://dx.doi.org/10.2174/1381612823666170223165541]. [PMID: 28240171].
[12]
Gillies, E.R.; Fréchet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43. [http://dx.doi.org/10.1016/S1359-6446(04)03276-3]. [PMID: 15676297].
[13]
Agarwal, A.; Asthana, A.; Gupta, U.; Jain, N.K. Tumour and dendrimers: a review on drug delivery aspects. J. Pharm. Pharmacol., 2008, 60(6), 671-688. [http://dx.doi.org/10.1211/jpp.60.6.0001]. [PMID: 18498702].
[14]
Ardestani, M.S.; Fordoei, A.S.; Abdoli, A. Nanosilver based anionic linear globular dendrimer with a special significant antiretroviral activity. J. Mater. Sci. Mater. Med., 2015, 26(5), 179. [http://dx.doi.org/10.1007/s10856-015-5510-7]. [PMID: 25893388].
[15]
Dwivedi, N.; Shah, J.; Mishra, V. Dendrimer-mediated approaches for the treatment of brain tumor. J. Biomater. Sci. Polym. Ed., 2016, 27(7), 557-580. [http://dx.doi.org/10.1080/09205063.2015.1133155]. [PMID: 26928261].
[16]
Mishra, V.; Kesharwani, P. Dendrimer technologies for brain tumor. Drug Discov. Today, 2016, 21(5), 766-778. [http://dx.doi.org/10.1016/j.drudis.2016.02.006]. [PMID: 26891979].
[17]
Jain, A.; Jain, K.; Kesharwani, P.; Jain, N.K. Low density lipoproteins mediated nanoplatforms for cancer targeting. J. Nanopart. Res., 2013, 15(9), 1888. [http://dx.doi.org/10.1007/s11051-013-1888-7].
[18]
Jain, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J. Nanopart. Res., 2013, 15(10), 2003. [http://dx.doi.org/10.1007/s11051-013-2003-9].
[19]
Mignani, S.; Rodrigues, J.; Tomas, H. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev., 2018, 47(2), 514-532. [http://dx.doi.org/10.1039/C7CS00550D]. [PMID: 29154385].
[20]
Gupta, U.; Dwivedi, S.K.; Bid, H.K.; Konwar, R.; Jain, N.K. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int. J. Pharm., 2010, 393(1-2), 185-196. [http://dx.doi.org/10.1016/j.ijpharm.2010.04.002]. [PMID: 20382210].
[21]
Singh, J.; Jain, K.; Mehra, N.K.; Jain, N.K. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif. Cells Nanomed. Biotechnol., 2016, 44(7), 1626-1634. [http://dx.doi.org/10.3109/21691401.2015.1129625]. [PMID: 26747336].
[22]
Tomalia, D.A.; Fréchet, J.M.J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci. A Polym. Chem., 2002, 40(16), 2719-2728. [http://dx.doi.org/10.1002/pola.10301].
[23]
Gajbhiye, V.; Palanirajan, V.K.; Tekade, R.K.; Jain, N.K. Dendrimers as therapeutic agents: a systematic review. J. Pharm. Pharmacol., 2009, 61(8), 989-1003. [http://dx.doi.org/10.1211/jpp.61.08.0002]. [PMID: 19703342].
[24]
Atav, R. 8 - Dendritic molecules and their use in water repellency treatments of textile materials; Waterproof and Water Repellent Textiles and Clothing, 2018, pp. 191-214. [http://dx.doi.org/10.1016/B978-0-08-101212-3.00007-1]
[25]
Fischer, M.; Vögtle, F. Dendrimers: from design to application-a progress report. Angew. Chem. Int. Ed. Engl., 1999, 38(7), 884-905. [http://dx.doi.org/10.1002/(SICI)1521-3773(19990401)38:7<884: AID-ANIE884>3.0.CO;2-K]. [PMID: 29711851].
[26]
Cadena, L-E.S.; Gauthier, M. Phase-segregated dendrigraft copolymer architectures. Polymers (Basel), 2010, 2(4), 596. [http://dx.doi.org/10.3390/polym2040596].
[27]
Bolu, B.S.; Sanyal, R.; Sanyal, A. Drug delivery systems from self-assembly of dendron-polymer conjugates. Molecules, 2018, 23(7)E1570 [http://dx.doi.org/10.3390/molecules23071570]. [PMID: 29958437].
[28]
Chaumette, J-L.; Laufersweiler, M.J.; Parquette, J.R. Synthesis and chiroptical properties of dendrimers elaborated from a chiral, nonracemic central core. J. Org. Chem., 1998, 63(25), 9399-9405. [http://dx.doi.org/10.1021/jo981508b].
[29]
Jain, K.; Verma, A.K.; Mishra, P.R.; Jain, N.K. Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine (Lond.), 2015, 11(3), 705-713. [http://dx.doi.org/10.1016/j.nano.2014.11.008]. [PMID: 25596078].
[30]
Meier, W. Polymer nanocapsules. Chem. Soc. Rev., 2000, 29(5), 295-303. [http://dx.doi.org/10.1039/a809106d].
[31]
Jain, K.; Gupta, U.; Jain, N.K. Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur. J. Pharm. Biopharm., 2014, 87(3), 500-509. [http://dx.doi.org/10.1016/j.ejpb.2014.03.015].
[32]
He, X.; Alves, C.S.; Oliveira, N. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surf. B Biointerfaces, 2015, 125, 82-89. [http://dx.doi.org/10.1016/j.colsurfb.2014.11.004]. [PMID: 25437067].
[33]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9)E1401 [http://dx.doi.org/10.3390/molecules22091401]. [PMID: 28832535].
[34]
Liu, Y.; Pang, Y.; Toh, M.R.; Chiu, G.N.C. Dual-functionalized poly(amidoamine) dendrimers with poly(ethylene glycol) conjugation and thiolation improved blood compatibility. J. Pharm. Pharmacol., 2015, 67(11), 1492-1502. [http://dx.doi.org/10.1111/jphp.12457]. [PMID: 26303576].
[35]
She, W.; Pan, D.; Luo, K. PEGylated dendrimer-doxorubicin cojugates as ph-sensitive drug delivery systems: synthesis and in vitro characterization. J. Biomed. Nanotechnol., 2015, 11(6), 964-978. [http://dx.doi.org/10.1166/jbn.2015.1865]. [PMID: 26353586].
[36]
Esfand, R.; Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6(8), 427-436. [http://dx.doi.org/10.1016/S1359-6446(01)01757-3]. [PMID: 11301287].
[37]
Lalwani, S.; Chouai, A.; Perez, L.M.; Santiago, V.; Shaunak, S.; Simanek, E.E. Mimicking PAMAM Dendrimers with Ampholytic, Hybrid Triazine Dendrimers: A Comparison of Dispersity and Stability. Macromolecules, 2009, 42(17), 6723-3732. [http://dx.doi.org/10.1021/ma9011818]. [PMID: 20711424].
[38]
Xu, L.; Yeudall, W.A.; Yang, H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery. Acta Biomater., 2017, 57, 251-261. [http://dx.doi.org/10.1016/j.actbio.2017.04.023]. [PMID: 28438704].
[39]
Shukla, S.K.; Govender, P.P.; Tiwari, A. Chapter six - polymeric micellar structures for biosensor technology. Advances in Biomembranes and Lipid Self-Assembly, 2016, 24, 143-161.
[40]
Wu, J.; Huang, W.; He, Z. Dendrimers as carriers for siRNA delivery and gene silencing: a review. ScientificWorldJournal, 2013, •••2013630654 [http://dx.doi.org/10.1155/2013/630654]. [PMID: 24288498].
[41]
Ohsaki, M.; Okuda, T.; Wada, A.; Hirayama, T.; Niidome, T.; Aoyagi, H. In vitro gene transfection using dendritic poly(L-lysine). Bioconjug. Chem., 2002, 13(3), 510-517. [http://dx.doi.org/10.1021/bc015525a]. [PMID: 12009940].
[42]
Kaminskas, LM; Kelly, BD; McLeod, VM; Sberna, G; Owen, DJ; Boyd, BJ et al. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. Journal of controlled release: official journal of the Controlled Release Society 2011; 152(2): 241-8.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.005]
[43]
Deschenaux, R.; Donnio, B.; Guillon, D. Liquid-crystalline fullerodendrimers. New J. Chem., 2007, 31(7), 1064-1073. [http://dx.doi.org/10.1039/b617671m].
[44]
Meier, H.; Lehmann, M.; Kolb, U. Stilbenoid dendrimers. Chemistry, 2000, 6(13), 2462-2469. [http://dx.doi.org/10.1002/1521-3765(20000703)6:13<2462:AID-CHEM2462>3.0.CO;2-A]. [PMID: 10939748].
[45]
Zhu, J.; Faria, J.L.; Figueiredo, J.L.; Thomas, A. Reaction mechanism of aerobic oxidation of alcohols conducted on activated-carbon-supported cobalt oxide catalysts. Chemistry, 2011, 17(25), 7112-7117. [http://dx.doi.org/10.1002/chem.201003025]. [PMID: 21557343].
[46]
Lim, J.; Simanek, E.E. Synthesis of water-soluble dendrimers based on melamine bearing 16 paclitaxel groups. Org. Lett., 2008, 10(2), 201-204. [http://dx.doi.org/10.1021/ol7024907]. [PMID: 18088131].
[47]
Rasines, B; Hernandez-Ros, JM; de las Cuevas, N; Copa-Patino, JL; Soliveri, J; Munoz-Fernandez, MA Water-stable ammonium-terminated carbosilane dendrimers as efficient antibacterial agents. Dalton transactions (Cambridge, England 2003) 2009; 2009(40): 8704-13.,
[http://dx.doi.org/10.1039/b909955g]
[48]
Yamada, A.; Hatano, K.; Matsuoka, K.; Koyama, T.; Esumi, Y.; Koshino, H. Syntheses and Vero toxin-binding activities of carbosilane dendrimers periphery-functionalized with galabiose. Tetrahedron, 2006, 62(21), 5074-5083. [http://dx.doi.org/10.1016/j.tet.2006.03.042].
[49]
Ferenc, M.; Pedziwiatr-Werbicka, E.; Nowak, K.E.; Klajnert, B.; Majoral, J.P.; Bryszewska, M. Phosphorus dendrimers as carriers of siRNA--characterisation of dendriplexes. Molecules, 2013, 18(4), 4451-4466. [http://dx.doi.org/10.3390/molecules18044451]. [PMID: 23591925].
[50]
Solassol, J.; Crozet, C.; Perrier, V. Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. J. Gen. Virol., 2004, 85(Pt 6), 1791-1799. [http://dx.doi.org/10.1099/vir.0.19726-0]. [PMID: 15166465].
[51]
Dvornic, P.R. PAMAMOS: The first commercial silicon-containing dendrimers and their applications. J. Polym. Sci. A Polym. Chem., 2006, 44(9), 2755-2773. [http://dx.doi.org/10.1002/pola.21368].
[52]
Tomalia, D.A. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci., 2005, 30(3), 294-324. [http://dx.doi.org/10.1016/j.progpolymsci.2005.01.007].
[53]
Jackson, C.L.; Chanzy, H.D.; Booy, F.P.; Drake, B.J.; Tomalia, D.A.; Bauer, B.J. Visualization of dendrimer molecules by transmission electron microscopy (tem): staining methods and cryo-tem of vitrified solutions. Macromolecules, 1998, 31(18), 6259-6265. [http://dx.doi.org/10.1021/ma9806155].
[54]
Maciejewski, M. Concepts of trapping topologically by shell molecules. J Macromolecular Science: Part A - Chemistry, 1982, 17(4), 689-703. [http://dx.doi.org/10.1080/00222338208062416].
[55]
Chaplot, S.P.; Rupenthal, I.D. Dendrimers for gene delivery--a potential approach for ocular therapy? J. Pharm. Pharmacol., 2014, 66(4), 542-556. [http://dx.doi.org/10.1111/jphp.12104]. [PMID: 24635556].
[56]
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci., 2008, 97(1), 123-143. [http://dx.doi.org/10.1002/jps.21079]. [PMID: 17721949].
[57]
Silva, A.C.; Lopes, C.M.; Lobo, J.M.; Amaral, M.H. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers. Curr. Pharm. Biotechnol., 2015, 16(11), 955-965. [http://dx.doi.org/10.2174/1389201016666150817094637]. [PMID: 26278524].
[58]
Mourey, T.H.; Turner, S.R.; Rubinstein, M.; Frechet, J.M.J.; Hawker, C.J.; Wooley, K.L. Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules, 1992, 25(9), 2401-2406. [http://dx.doi.org/10.1021/ma00035a017].
[59]
Fréchet, J.M. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 1994, 263(5154), 1710-1715. [http://dx.doi.org/10.1126/science.8134834]. [PMID: 8134834].
[60]
Jansen, J.F.; de Brabander-van den Berg, E.M.; Meijer, E.W. Encapsulation of guest molecules into a dendritic box. Science, 1994, 266(5188), 1226-1229. [http://dx.doi.org/10.1126/science.266.5188.1226]. [PMID: 17810265].
[61]
Ekkelenkamp, A.E.; Elzes, M.R.; Engbersen, J.F.J.; Paulusse, J.M.J. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(2), 210-235. [http://dx.doi.org/10.1039/C7TB02239E].
[62]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237. [http://dx.doi.org/10.1016/j.addr.2005.09.019]. [PMID: 16297497].
[63]
Ríhová, B.; Ulbrich, K.; Kopecek, J.; Mancal, P. Immunogenicity of N-(2-hydroxypropyl)-methacrylamide copolymers--potential hapten or drug carriers. Folia Microbiol. (Praha), 1983, 28(3), 217-227. [http://dx.doi.org/10.1007/BF02884085]. [PMID: 6873772].
[64]
Seymour, L.W.; Duncan, R.; Strohalm, J.; Kopecek, J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J. Biomed. Mater. Res., 1987, 21(11), 1341-1358. [http://dx.doi.org/10.1002/jbm.820211106]. [PMID: 3680316].
[65]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications--reflections on the field. Adv. Drug Deliv. Rev., 2005, 57(15), 2106-2129. [http://dx.doi.org/10.1016/j.addr.2005.09.018]. [PMID: 16305813].
[66]
Yu, G.S.; Bae, Y.M.; Choi, H.; Kong, B.; Choi, I.S.; Choi, J.S. Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency. Bioconjug. Chem., 2011, 22(6), 1046-1055. [http://dx.doi.org/10.1021/bc100479t]. [PMID: 21528924].
[67]
Majoros, I.J.; Williams, C.R.; Tomalia, D.A.; Baker, J.R., Jr New Dendrimers: Synthesis and Characterization of Popam - Pamam Hybrid Dendrimers. Macromolecules, 2008, 41(22), 8372-8379. [http://dx.doi.org/10.1021/ma801843a]. [PMID: 21258604].
[68]
Hawker, C.J.; Frechet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112(21), 7638-7647. [http://dx.doi.org/10.1021/ja00177a027].
[69]
Liu, M.; Fréchet, J.M. Designing dendrimers for drug delivery. Pharm. Sci. Technol. Today, 1999, 2(10), 393-401. [http://dx.doi.org/10.1016/S1461-5347(99)00203-5]. [PMID: 10498919].
[70]
Kawaguchi, T.; Walker, K.L.; Wilkins, C.L.; Moore, J.S. Double Exponential Dendrimer Growth. J. Am. Chem. Soc., 1995, 117(8), 2159-2165. [http://dx.doi.org/10.1021/ja00113a005].
[71]
Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38(6), 2168-2203. [http://dx.doi.org/10.1039/c3nj01239e].
[72]
Pasut, G.; Veronese, F.M. Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci., 2007, 32(8), 933-961. [http://dx.doi.org/10.1016/j.progpolymsci.2007.05.008].
[73]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247. [http://dx.doi.org/10.1186/1556-276X-9-247]. [PMID: 24994950].
[74]
Lammers, T; Kiessling, F; Hennink, WE; Storm, G Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. Journal of controlled release: official journal of the Controlled Release Society 2012; 161(2): 175-87.
[75]
Holback, H.; Yeo, Y. Intratumoral drug delivery with nanoparticulate carriers. Pharm. Res., 2011, 28(8), 1819-1830. [http://dx.doi.org/10.1007/s11095-010-0360-y]. [PMID: 21213021].
[76]
Markovsky, E.; Baabur-Cohen, H.; Eldar-Boock, A.; Omer, L.; Tiram, G.; Ferber, S. Administration, distribution, metabolism and elimination of polymer therapeutics. J. Control. Release, 2012, 161(2), 446-460. [http://dx.doi.org/10.1016/j.jconrel.2011.12.021].
[77]
Bertrand, N.; Leroux, J.C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release, 2012, 161(2), 152-163. [http://dx.doi.org/10.1016/j.jconrel.2011.09.098].
[78]
Medina, S.H.; El-Sayed, M.E.H. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev., 2009, 109(7), 3141-3157. [http://dx.doi.org/10.1021/cr900174j]. [PMID: 19534493].
[79]
Maeda, H; Wu, J; Sawa, T; Matsumura, Y; Hori, K Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release: official journal of the Controlled Release Society 2000; 65(1-2): 271-84.,
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5]
[80]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392. [PMID: 2946403].
[81]
El-Sayed, M.; Kiani, M.F.; Naimark, M.D.; Hikal, A.H.; Ghandehari, H. Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharm. Res., 2001, 18(1), 23-28. [http://dx.doi.org/10.1023/A:1011066408283]. [PMID: 11336349].
[82]
Battah, S.; Balaratnam, S.; Casas, A. Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol. Cancer Ther., 2007, 6(3), 876-885. [http://dx.doi.org/10.1158/1535-7163.MCT-06-0359]. [PMID: 17363482].
[83]
Nigavekar, S.S.; Sung, L.Y.; Llanes, M. 3H dendrimer nanoparticle organ/tumor distribution. Pharm. Res., 2004, 21(3), 476-483. [http://dx.doi.org/10.1023/B:PHAM.0000019302.26097.cc]. [PMID: 15070099].
[84]
Howell, B.A.; Fan, D. Poly(amidoamine) dendrimer-supported organoplatinum antitumour agents. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2010, 466(2117), 1515-1526. [http://dx.doi.org/10.1098/rspa.2009.0359].
[85]
Shi, C.; He, Y.; Feng, X.; Fu, D. ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals. J. Biomater. Sci. Polym. Ed., 2015, 26(18), 1343-1356. [http://dx.doi.org/10.1080/09205063.2015.1095023]. [PMID: 26381379].
[86]
Wijagkanalan, W.; Kawakami, S.; Hashida, M. Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm. Res., 2011, 28(7), 1500-1519. [http://dx.doi.org/10.1007/s11095-010-0339-8]. [PMID: 21181549].
[87]
Kesharwani, P.; Tekade, R.K.; Gajbhiye, V.; Jain, K.; Jain, N.K. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine (Lond.), 2011, 7(3), 295-304. [http://dx.doi.org/10.1016/j.nano.2010.10.010]. [PMID: 21070888].
[88]
Avti, P.K.; Kakkar, A. Dendrimers as anti-inflammatory agents. Braz. J. Pharm. Sci., 2013, 49, 57-65. [http://dx.doi.org/10.1590/S1984-82502013000700006].
[89]
Taratula, O.; Schumann, C.; Naleway, M.A.; Pang, A.J.; Chon, K.J.; Taratula, O. A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol. Pharm., 2013, 10(10), 3946-3958. [http://dx.doi.org/10.1021/mp400397t]. [PMID: 24020847].
[90]
Tomalia, D.A.; Naylor, A.M.; Goddard, W.A., III Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl., 1990, 29(2), 138-175. [http://dx.doi.org/10.1002/anie.199001381].
[91]
Milhem, O.M.; Myles, C.; McKeown, N.B.; Attwood, D.; D’Emanuele, A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int. J. Pharm., 2000, 197(1-2), 239-241. [http://dx.doi.org/10.1016/S0378-5173(99)00463-9]. [PMID: 10704811].
[92]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150. [http://dx.doi.org/10.4103/0975-7406.130965]. [PMID: 25035633].
[93]
Luo, T.; Loira-Pastoriza, C.; Patil, H.P.; Ucakar, B.; Muccioli, G.G.; Bosquillon, C. PEGylation of paclitaxel largely improves its safety and anti-tumor efficacy following pulmonary delivery in a mouse model of lung carcinoma. J. Control. Release, 2016, 239, 62-71. [http://dx.doi.org/10.1016/j.jconrel.2016.08.008].
[94]
Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol., 2017, 8, 261. [http://dx.doi.org/10.3389/fphar.2017.00261]. [PMID: 28559844].
[95]
Zhong, Q.; Bielski, E.R.; Rodrigues, L.S.; Brown, M.R.; Reineke, J.J.; da Rocha, S.R. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol. Pharm., 2016, 13(7), 2363-2375. [http://dx.doi.org/10.1021/acs.molpharmaceut.6b00126]. [PMID: 27253493].
[96]
Kulhari, H.; Pooja, D.; Shrivastava, S. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6, 23179. [http://dx.doi.org/10.1038/srep23179]. [PMID: 27052896].
[97]
Sanyakamdhorn, S.; Bekale, L.; Agudelo, D.; Tajmir-Riahi, H.A. Structural analysis of doxorubicin-polymer conjugates. Colloids Surf. B Biointerfaces, 2015, 135, 175-182. [http://dx.doi.org/10.1016/j.colsurfb.2015.07.070]. [PMID: 26255162].
[98]
Sanyakamdhorn, S.; Agudelo, D.; Bekale, L.; Tajmir-Riahi, H.A. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers. Colloids Surf. B Biointerfaces, 2016, 145, 55-63. [http://dx.doi.org/10.1016/j.colsurfb.2016.04.035]. [PMID: 27137803].
[99]
Wolinsky, J.B.; Grinstaff, M.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev., 2008, 60(9), 1037-1055. [http://dx.doi.org/10.1016/j.addr.2008.02.012]. [PMID: 18448187].
[100]
Kesharwani, P.; Tekade, R.K.; Jain, N.K. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm. Res., 2015, 32(4), 1438-1450. [http://dx.doi.org/10.1007/s11095-014-1549-2]. [PMID: 25330744].
[101]
Jain, N.K.; Tare, M.S.; Mishra, V.; Tripathi, P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine (Lond.), 2015, 11(1), 207-218. [http://dx.doi.org/10.1016/j.nano.2014.09.006]. [PMID: 25262579].
[102]
Al-Jamal, K.T.; Al-Jamal, W.T.; Wang, J.T. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano, 2013, 7(3), 1905-1917. [http://dx.doi.org/10.1021/nn305860k]. [PMID: 23527750].
[103]
Niidome, T.; Yamauchi, H.; Takahashi, K. Hydrophobic cavity formed by oligopeptide for doxorubicin delivery based on dendritic poly(L-lysine). J. Biomater. Sci. Polym. Ed., 2014, 25(13), 1362-1373. [http://dx.doi.org/10.1080/09205063.2014.938979]. [PMID: 25040893].
[104]
Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release, 2000, 65(1-2), 133-148.
[105]
Padilla De Jesús, O.L.; Ihre, H.R.; Gagne, L.; Fréchet, J.M.; Szoka, F.C., Jr Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem., 2002, 13(3), 453-461. [http://dx.doi.org/10.1021/bc010103m]. [PMID: 12009933].
[106]
Ihre, H.R.; Padilla De Jesús, O.L.; Szoka, F.C., Jr; Fréchet, J.M. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug. Chem., 2002, 13(3), 443-452. [http://dx.doi.org/10.1021/bc010102u]. [PMID: 12009932].
[107]
Sadekar, S.; Ghandehari, H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv. Drug Deliv. Rev., 2012, 64(6), 571-588. [http://dx.doi.org/10.1016/j.addr.2011.09.010]. [PMID: 21983078].
[108]
Chen, H.T.; Neerman, M.F.; Parrish, A.R.; Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc., 2004, 126(32), 10044-10048. [http://dx.doi.org/10.1021/ja048548j]. [PMID: 15303879].
[109]
Roberts, J.C.; Bhalgat, M.K.; Zera, R.T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res., 1996, 30(1), 53-65. [http://dx.doi.org/10.1002/(SICI)1097-4636(199601)30:1<53:AID-JBM8>3.0.CO;2-Q]. [PMID: 8788106].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy