Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Progress of Oridonin and Its Derivatives for the Treatment of Acute Myelogenous Leukemia

Author(s): Xu Hu, Yan Wang, Xiang Gao, Shengtao Xu, Linghe Zang, Yan Xiao, Zhanlin Li, Huiming Hua*, Jinyi Xu and Dahong Li*

Volume 20, Issue 6, 2020

Page: [483 - 497] Pages: 15

DOI: 10.2174/1389557519666191029121809

Price: $65

Abstract

First stage human clinical trial (CTR20150246) for HAO472, the L-alanine-(14-oridonin) ester trifluoroacetate, was conducted by a Chinese company, Hengrui Medicine Co. Ltd, to develop a new treatment for acute myelogenous leukemia. Two patents, WO2015180549A1 and CN201410047904.X, covered the development of the I-type crystal, stability experiment, conversion rate research, bioavailability experiment, safety assessment, and solubility study. HAO472 hewed out new avenues to explore the therapeutic properties of oridonin derivatives and develop promising treatment of cancer originated from naturally derived drug candidates. Herein, we sought to overview recent progress of the synthetic, physiological, and pharmacological investigations of oridonin and its derivatives, aiming to disclose the therapeutic potentials and broaden the platform for the discovery of new anticancer drugs.

Keywords: Oridonin, HAO472, acute myelogenous leukemia, cytotoxic effects, structural modification, pharmacology.

Graphical Abstract
[1]
Greim, H.; Kaden, D.A.; Larson, R.A.; Palermo, C.M.; Rice, J.M.; Ross, D.; Snyder, R. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann. N. Y. Acad. Sci., 2014, 1310, 7-31.
[http://dx.doi.org/10.1111/nyas.12362] [PMID: 24495159]
[2]
Estey, E.; Döhner, H. Acute myeloid leukaemia. Lancet, 2006, 368(9550), 1894-1907.
[http://dx.doi.org/10.1016/S0140-6736(06)69780-8] [PMID: 17126723]
[3]
Bajaj, J.; Konuma, T.; Lytle, N.K.; Kwon, H.Y.; Ablack, J.N.; Cantor, J.M.; Rizzieri, D.; Chuah, C.; Oehler, V.G.; Broome, E.H.; Ball, E.D.; van der Horst, E.H.; Ginsberg, M.H.; Reya, T. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell, 2016, 30(5), 792-805.
[http://dx.doi.org/10.1016/j.ccell.2016.10.003] [PMID: 27908736]
[4]
McGill, C.M.; Tomco, P.L.; Ondrasik, R.M.; Belknap, K.C.; Dwyer, G.K.; Quinlan, D.J.; Kircher, T.A.; Andam, C.P.; Brown, T.J.; Claxton, D.F.; Barth, B.M. Therapeutic effect of Northern Labrador tea extracts for acute myeloid leukemia. Phytother. Res., 2018, 32(8), 1636-1641.
[http://dx.doi.org/10.1002/ptr.6091] [PMID: 29701283]
[5]
Wang, L.; Zhao, W.L.; Yan, J.S.; Liu, P.; Sun, H.P.; Zhou, G.B.; Weng, Z.Y.; Wu, W.L.; Weng, X.Q.; Sun, X.J.; Chen, Z.; Sun, H.D.; Chen, S.J. Eriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-kappaB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ., 2007, 14(2), 306-317.
[http://dx.doi.org/10.1038/sj.cdd.4401996] [PMID: 16778832]
[6]
Zhou, G.B.; Kang, H.; Wang, L.; Gao, L.; Liu, P.; Xie, J.; Zhang, F.X.; Weng, X.Q.; Shen, Z.X.; Chen, J.; Gu, L.J.; Yan, M.; Zhang, D.E.; Chen, S.J.; Wang, Z.Y.; Chen, Z. Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 2007, 109(8), 3441-3450.
[http://dx.doi.org/10.1182/blood-2006-06-032250] [PMID: 17197433]
[7]
Zhang, Y.; Wang, L.; Zi, Y.; Zhang, L.; Guo, Y.; Huang, Y. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells. Saudi J. Biol. Sci., 2017, 24(3), 678-686.
[http://dx.doi.org/10.1016/j.sjbs.2017.01.042] [PMID: 28386196]
[8]
Hassan, H.T. Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy. Leuk. Res., 2004, 28(7), 667-671.
[http://dx.doi.org/10.1016/j.leukres.2003.10.008] [PMID: 15158086]
[9]
Zahedpanah, M.; Shaiegan, M.; Ghaffari, S.H.; Nikbakht, M.; Nikugoftar, M.; Mohammadi, S. Parthenolide induces apoptosis in committed progenitor AML cell line U937 via reduction in osteopontin. Rep. Biochem. Mol. Biol., 2016, 4(2), 82-88.
[PMID: 27536701]
[10]
Yang, Z.; Kuang, B.; Kang, N.; Ding, Y.; Ge, W.; Lian, L.; Gao, Y.; Wei, Y.; Chen, Y.; Zhang, Q. Synthesis and anti-acute myeloid leukemia activity of C-14 modified parthenolide derivatives. Eur. J. Med. Chem., 2017, 127, 296-304.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.044] [PMID: 28068601]
[11]
Neelakantan, S.; Nasim, S.; Guzman, M.L.; Jordan, C.T.; Crooks, P.A. Aminoparthenolides as novel anti-leukemic agents: Discovery of the NF-kappaB inhibitor, DMAPT (LC-1). Bioorg. Med. Chem. Lett., 2009, 19(15), 4346-4349.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.092] [PMID: 19505822]
[12]
Guzman, M.L.; Rossi, R.M.; Neelakantan, S.; Li, X.; Corbett, C.A.; Hassane, D.C.; Becker, M.W.; Bennett, J.M.; Sullivan, E.; Lachowicz, J.L.; Vaughan, A.; Sweeney, C.J.; Matthews, W.; Carroll, M.; Liesveld, J.L.; Crooks, P.A.; Jordan, C.T. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood, 2007, 110(13), 4427-4435.
[http://dx.doi.org/10.1182/blood-2007-05-090621] [PMID: 17804695]
[13]
Albayati, Z.A.F.; Janganati, V.; Chen, Z.; Ponder, J.; Breen, P.J.; Jordan, C.T.; Crooks, P.A. Identification of a melampomagnolide B analog as a potential lead molecule for treatment of acute myelogenous leukemia. Bioorg. Med. Chem., 2017, 25(3), 1235-1241.
[http://dx.doi.org/10.1016/j.bmc.2016.12.036] [PMID: 28049618]
[14]
Janganati, V.; Ponder, J.; Jordan, C.T.; Borrelli, M.J.; Penthala, N.R.; Crooks, P.A. Dimers of melampomagnolide B exhibit potent anticancer activity against hematological and solid tumor cells. J. Med. Chem., 2015, 58(22), 8896-8906.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01187] [PMID: 26540463]
[15]
Robak, T.; Szmigielska-Kapłon, A.; Pluta, A.; Grzybowska-Izydorczyk, O.; Wolska, A.; Czemerska, M.; Wierzbowska, A. Novel and emerging drugs for acute myeloid leukemia: pharmacology and therapeutic activity. Curr. Med. Chem., 2011, 18(5), 638-666.
[http://dx.doi.org/10.2174/092986711794480104] [PMID: 21182488]
[16]
Stein, E.M.; Tallman, M.S. Novel and emerging drugs for acute myeloid leukemia. Curr. Cancer Drug Targets, 2012, 12(5), 522-530.
[http://dx.doi.org/10.2174/156800912800673248] [PMID: 22483153]
[17]
Stein, E.M.; Tallman, M.S. Emerging therapeutic drugs for AML. Blood, 2016, 127(1), 71-78.
[http://dx.doi.org/10.1182/blood-2015-07-604538] [PMID: 26660428]
[18]
Marcelletti, J.F.; Sikic, B.I.; Cripe, L.D.; Paietta, E. Evidence of a role for functional heterogeneity in multidrug resistance transporters in clinical trials of P-glycoprotein modulation in acute myeloid leukemia. Cytometry B Clin. Cytom., 2019, 96(1), 57-66.
[http://dx.doi.org/10.1002/cyto.b.21737] [PMID: 30334334]
[19]
Lancet. J.E.; Baer, M.R.; Duran, G.E.; List, A.F.; Fielding, R.; Marcelletti, J.F.; Multani, P.S.; Sikic, B.I.. A phase l trial of continuous infusion of the multidrug resistance inhibitor zosuquidar with daunorubicin and cytarabine in acute myeloid leukemia. Leuk. Res., 2009, 33, 1055-1061.
[http://dx.doi.org/10.1016/j.leukres.2008.09.015] [PMID: 19108889]
[20]
Visani, G.; Milligan, D.; Leoni, F.; Chang, J.; Kelsey, S.; Marcus, R.; Powles, R.; Schey, S.; Covelli, A.; Isidori, A.; Litchman, M.; Piccaluga, P.P.; Mayer, H.; Malagola, M.; Pfister, C. Combined action of PSC 833 (Valspodar), a novel MDR reversing agent, with mitoxantrone, etoposide and cytarabine in poor-prognosis acute myeloid leukemia. Leukemia, 2001, 15(5), 764-771.
[http://dx.doi.org/10.1038/sj.leu.2402117] [PMID: 11368437]
[21]
Shen, Y.; Qiang, S.; Ma, S. The recent development of farnesyltransferase inhibitors as anticancer and antimalarial agents. Mini Rev. Med. Chem., 2015, 15(10), 837-857.
[http://dx.doi.org/10.2174/1389557515666150511152433] [PMID: 25963569]
[22]
Lancet. J.E.; Gojo, I.; Gotlib, J.; Feldman, E.J.; Greer, J.; Liesveld, J.L.; Bruzek, L.M.; Morris, L.; Park, Y.; Adjei, A.A.; Kaufmann, S.H.; Garrett-Mayer, E.; Greenberg, P.L.; Wright, J.J.; Karp, J.E.. A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood, 2007, 109, 1387-1394.
[23]
Harousseau, J.L.; Martinelli, G.; Jedrzejczak, W.W.; Brandwein, J.M.; Bordessoule, D.; Masszi, T.; Ossenkoppele, G.J.; Alexeeva, J.A.; Beutel, G.; Maertens, J.; Vidriales, M.B.; Dombret, H.; Thomas, X.; Burnett, A.K.; Robak, T.; Khuageva, N.K.; Golenkov, A.K.; Tothova, E.; Mollgard, L.; Park, Y.C.; Bessems, A.; De Porre, P.; Howes, A.J. FIGHT-AML-301 Investigators. A randomized phase 3 study of tipifarnib compared with best supportive care, including hydroxyurea, in the treatment of newly diagnosed acute myeloid leukemia in patients 70 years or older. Blood, 2009, 114(6), 1166-1173.
[http://dx.doi.org/10.1182/blood-2009-01-198093] [PMID: 19470696]
[24]
Ravoet, C.; Mineur, P.; Robin, V.; Debusscher, L.; Bosly, A.; André, M.; El Housni, H.; Soree, A.; Bron, D.; Martiat, P. Farnesyl transferase inhibitor (lonafarnib) in patients with myelodysplastic syndrome or secondary acute myeloid leukaemia: a phase II study. Ann. Hematol., 2008, 87(11), 881-885.
[http://dx.doi.org/10.1007/s00277-008-0536-2] [PMID: 18641985]
[25]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives. Eur. J. Med. Chem., 2017, 125, 299-314.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.049] [PMID: 27688185]
[26]
Heinrich, M.C. Targeting FLT3 kinase in acute myelogenous leukemia: progress, perils, and prospects. Mini Rev. Med. Chem., 2004, 4(3), 255-271.
[http://dx.doi.org/10.2174/1389557043487394] [PMID: 15032673]
[27]
Knapper, S.; Burnett, A.K.; Littlewood, T.; Kell, W.J.; Agrawal, S.; Chopra, R.; Clark, R.; Levis, M.J.; Small, D. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood, 2006, 108(10), 3262-3270.
[http://dx.doi.org/10.1182/blood-2006-04-015560] [PMID: 16857985]
[28]
DeAngelo, D.J.; Stone, R.M.; Heaney, M.L.; Nimer, S.D.; Paquette, R.L.; Klisovic, R.B.; Caligiuri, M.A.; Cooper, M.R.; Lecerf, J.M.; Karol, M.D.; Sheng, S.; Holford, N.; Curtin, P.T.; Druker, B.J.; Heinrich, M.C. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood, 2006, 108(12), 3674-3681.
[http://dx.doi.org/10.1182/blood-2006-02-005702] [PMID: 16902153]
[29]
Furukawa, Y.; Vu, H.A.; Akutsu, M.; Odgerel, T.; Izumi, T.; Tsunoda, S.; Matsuo, Y.; Kirito, K.; Sato, Y.; Mano, H.; Kano, Y. Divergent cytotoxic effects of PKC412 in combination with conventional antileukemic agents in FLT3 mutation-positive versus -negative leukemia cell lines. Leukemia, 2007, 21(5), 1005-1014.
[http://dx.doi.org/10.1038/sj.leu.2404593] [PMID: 17330105]
[30]
Fiedler, W.; Kayser, S.; Kebenko, M.; Janning, M.; Krauter, J.; Schittenhelm, M.; Götze, K.; Weber, D.; Göhring, G.; Teleanu, V.; Thol, F.; Heuser, M.; Döhner, K.; Ganser, A.; Döhner, H.; Schlenk, R.F. A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations. Br. J. Haematol., 2015, 169(5), 694-700.
[http://dx.doi.org/10.1111/bjh.13353] [PMID: 25818407]
[31]
Fiedler, W.; Mesters, R.; Tinnefeld, H.; Loges, S.; Staib, P.; Duhrsen, U.; Flasshove, M.; Ottmann, O.G.; Jung, W.; Cavalli, F.; Kuse, R.; Thomalla, J.; Serve, H.; O’Farrell, A.M.; Jacobs, M.; Brega, N.M.; Scigalla, P.; Hossfeld, D.K.; Berdel, W.E. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood, 2003, 102(8), 2763-2767.
[http://dx.doi.org/10.1182/blood-2002-10-2998] [PMID: 12843001]
[32]
Campregher, P.V.; Mattos, V.R.P.; Salvino, M.A.; Santos, F.P.S.; Hamerschlak, N. Successful treatment of post-transplant relapsed acute myeloid leukemia with FLT3 internal tandem duplication using the combination of induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Report of three cases. Einstein (Sao Paulo), 2017, 15(3), 355-358.
[http://dx.doi.org/10.1590/s1679-45082017rc3784] [PMID: 28746590]
[33]
Giles, F.J.; Bellamy, W.T.; Estrov, Z.; O’Brien, S.M.; Verstovsek, S.; Ravandi, F.; Beran, M.; Bycott, P.; Pithavala, Y.; Steinfeldt, H.; Reich, S.D.; List, A.F.; Yee, K.W. The anti-angiogenesis agent, AG-013736, has minimal activity in elderly patients with poor prognosis acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Leuk. Res., 2006, 30(7), 801-811.
[http://dx.doi.org/10.1016/j.leukres.2005.10.024] [PMID: 16332390]
[34]
Campregher, P.V.; Halley, N.D.S.; Vieira, G.A.; Fernandes, J.F.; Velloso, E.D.R.P.; Ali, S.; Mughal, T.; Miller, V.; Mangueira, C.L.P.; Odone, V.; Hamerschlak, N. Identification of a novel fusion TBL1XR1-PDGFRB in a patient with acute myeloid leukemia harboring the DEK-NUP214 fusion and clinical response to dasatinib. Leuk. Lymphoma, 2017, 58(12), 2969-2972.
[http://dx.doi.org/10.1080/10428194.2017.1318437] [PMID: 28509585]
[35]
Smith, C.C.; Paguirigan, A.; Jeschke, G.R.; Lin, K.C.; Massi, E.; Tarver, T.; Chin, C.S.; Asthana, S.; Olshen, A.; Travers, K.J.; Wang, S.; Levis, M.J.; Perl, A.E.; Radich, J.P.; Shah, N.P. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood, 2017, 130(1), 48-58.
[http://dx.doi.org/10.1182/blood-2016-04-711820] [PMID: 28490572]
[36]
Fathi, A.T. Emergence of crenolanib for FLT3-mutant AML. Blood, 2013, 122(22), 3547-3548.
[http://dx.doi.org/10.1182/blood-2013-10-528992] [PMID: 24263951]
[37]
Perl, A.E.; Altman, J.K.; Cortes, J.; Smith, C.; Litzow, M.; Baer, M.R.; Claxton, D.; Erba, H.P.; Gill, S.; Goldberg, S.; Jurcic, J.G.; Larson, R.A.; Liu, C.; Ritchie, E.; Schiller, G.; Spira, A.I.; Strickland, S.A.; Tibes, R.; Ustun, C.; Wang, E.S.; Stuart, R.; Röllig, C.; Neubauer, A.; Martinelli, G.; Bahceci, E.; Levis, M. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol., 2017, 18(8), 1061-1075.
[http://dx.doi.org/10.1016/S1470-2045(17)30416-3] [PMID: 28645776]
[38]
Short, N.J.; Kantarjian, H.; Ravandi, F.; Huang, X.; Xiao, L.; Garcia-Manero, G.; Plunkett, W.; Gandhi, V.; Sasaki, K.; Pemmaraju, N.; Daver, N.G.; Borthakur, G.; Jain, N.; Konopleva, M.; Estrov, Z.; Kadia, T.M.; Wierda, W.G.; DiNardo, C.D.; Brandt, M.; O’Brien, S.M.; Cortes, J.E.; Jabbour, E. A phase I/II randomized trial of clofarabine or fludarabine added to idarubicin and cytarabine for adults with relapsed or refractory acute myeloid leukemia. Leuk. Lymphoma, 2017, 18, 1-8.
[PMID: 28718728]
[39]
Quintás-Cardama, A.; Cortes, J. Evaluation of the L-stereoisomeric nucleoside analog troxacitabine for the treatment of acute myeloid leukemia. Expert Opin. Investig. Drugs, 2007, 16(4), 547-557.
[http://dx.doi.org/10.1517/13543784.16.4.547] [PMID: 17371201]
[40]
Norkin, M.; Richards, A.I. Sapacitabine in the treatment of acute myeloid leukemia. Expert Rev. Anticancer Ther., 2015, 15(11), 1261-1266.
[http://dx.doi.org/10.1586/14737140.2015.1102064] [PMID: 26523431]
[41]
Schuh, A.C.; Döhner, H.; Pleyer, L.; Seymour, J.F.; Fenaux, P.; Dombret, H. Azacitidine in adult patients with acute myeloid leukemia. Crit. Rev. Oncol. Hematol., 2017, 116, 159-177.
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.010] [PMID: 28693797]
[42]
Lech-Maranda, E.; Korycka, A.; Robak, T. Clofarabine as a novel nucleoside analogue approved to treat patients with haematological malignancies: mechanism of action and clinical activity. Mini Rev. Med. Chem., 2009, 9(7), 805-812.
[http://dx.doi.org/10.2174/138955709788452586] [PMID: 19519505]
[43]
Davood, Z.A.; Shamsi, S.; Ghaedi, H.; Sahand, R.I.; Mojtaba, G.; Mahdi, T.; Reza, M.; Ebrahimi, M.J.; Miri-Moosavi, R.S.; Boosaliki, S.; Davood, O.M. Valproic acid may exerts its cytotoxic effect through rassf1a expression induction in acute myeloid leukemia. Tumour Biol., 2016, 37(8), 11001-11006.
[http://dx.doi.org/10.1007/s13277-016-4985-2] [PMID: 26894600]
[44]
Odenike, O.M.; Alkan, S.; Sher, D.; Godwin, J.E.; Huo, D.; Brandt, S.J.; Green, M.; Xie, J.; Zhang, Y.; Vesole, D.H.; Stiff, P.; Wright, J.; Larson, R.A.; Stock, W. Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin. Cancer Res., 2008, 14(21), 7095-7101.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1007] [PMID: 18981008]
[45]
How, J.; Minden, M.D.; Brian, L.; Chen, E.X.; Brandwein, J.; Schuh, A.C.; Schimmer, A.D.; Gupta, V.; Webster, S.; Degelder, T.; Haines, P.; Stayner, L.A.; McGill, S.; Wang, L.; Piekarz, R.; Wong, T.; Siu, L.L.; Espinoza-Delgado, I.; Holleran, J.L.; Egorin, M.J.; Yee, K.W. A phase I trial of two sequence-specific schedules of decitabine and vorinostat in patients with acute myeloid leukemia. Leuk. Lymphoma, 2015, 56(10), 2793-2802.
[http://dx.doi.org/10.3109/10428194.2015.1018248] [PMID: 25682963]
[46]
Morabito, F.; Voso, M.T.; Hohaus, S.; Gentile, M.; Vigna, E.; Recchia, A.G.; Iovino, L.; Benedetti, E.; Lo-Coco, F.; Galimberti, S. Panobinostat for the treatment of acute myelogenous leukemia. Expert Opin. Investig. Drugs, 2016, 25(9), 1117-1131.
[http://dx.doi.org/10.1080/13543784.2016.1216971] [PMID: 27485472]
[47]
Zhou, L.; Ruvolo, V.R.; McQueen, T.; Chen, W.; Samudio, I.J.; Conneely, O.; Konopleva, M.; Andreeff, M. HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia, 2013, 27(6), 1358-1368.
[http://dx.doi.org/10.1038/leu.2012.366] [PMID: 23247046]
[48]
Garcia-Manero, G.; Assouline, S.; Cortes, J.; Estrov, Z.; Kantarjian, H.; Yang, H.; Newsome, W.M.; Miller, W.H., Jr; Rousseau, C.; Kalita, A.; Bonfils, C.; Dubay, M.; Patterson, T.A.; Li, Z.; Besterman, J.M.; Reid, G.; Laille, E.; Martell, R.E.; Minden, M. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood, 2008, 112(4), 981-989.
[http://dx.doi.org/10.1182/blood-2007-10-115873] [PMID: 18495956]
[49]
Novotny-Diermayr, V.; Hart, S.; Goh, K.C.; Cheong, A.; Ong, L.C.; Hentze, H.; Pasha, M.K.; Jayaraman, R.; Ethirajulu, K.; Wood, J.M. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer J., 2012, 2(5)e69
[http://dx.doi.org/10.1038/bcj.2012.14] [PMID: 22829971]
[50]
Liu, Y.N.; Wan, R.Z.; Liu, Z.P. Recent developments of small molecule PI3K/mTOR dual inhibitors. Mini Rev. Med. Chem., 2013, 13(14), 2047-2059.
[http://dx.doi.org/10.2174/13895575113136660105] [PMID: 24195664]
[51]
Tiong, I.S.; Tan, P.; McManus, J.; Cummings, N.; Sadawarte, S.; Catalano, J.; Hills, R.; Wei, A. Phase Ib study of the mTOR inhibitor everolimus with low dose cytarabine in elderly acute myeloid leukemia. Leuk. Lymphoma, 2017, 8, 1-4.
[PMID: 28592158]
[52]
Chiarini, F.; Lonetti, A.; Teti, G.; Orsini, E.; Bressanin, D.; Cappellini, A.; Ricci, F.; Tazzari, P.L.; Ognibene, A.; Falconi, M.; Pagliaro, P.; Iacobucci, I.; Martinelli, G.; Amadori, S.; McCubrey, J.A.; Martelli, A.M. A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget, 2012, 3(12), 1615-1628.
[http://dx.doi.org/10.18632/oncotarget.762] [PMID: 23271044]
[53]
Rizzieri, D.A.; Feldman, E.; Dipersio, J.F.; Gabrail, N.; Stock, W.; Strair, R.; Rivera, V.M.; Albitar, M.; Bedrosian, C.L.; Giles, F.J. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res., 2008, 14(9), 2756-2762.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1372] [PMID: 18451242]
[54]
Perini, G.F.; Santos, F.P.; Esteves, I.; Nascimento, C.M.; Rodrigues, M.; Assis, R.A.; Helman, R.; Kutner, J.M.; Ribeiro, A.A.; Hamerschlak, N. Use of gemtuzumab ozogamycin combined with conventional chemotherapy in patients with acute myeloid leukemia. Einstein (Sao Paulo), 2011, 9(2), 190-195.
[http://dx.doi.org/10.1590/s1679-45082011ao1987] [PMID: 26760814]
[55]
Raza, A.; Jurcic, J.G.; Roboz, G.J.; Maris, M.; Stephenson, J.J.; Wood, B.L.; Feldman, E.J.; Galili, N.; Grove, L.E.; Drachman, J.G.; Sievers, E.L. Complete remissions observed in acute myeloid leukemia following prolonged exposure to lintuzumab: a phase 1 trial. Leuk. Lymphoma, 2009, 50(8), 1336-1344.
[http://dx.doi.org/10.1080/10428190903050013] [PMID: 19557623]
[56]
Zahiragic, L.; Schliemann, C.; Bieker, R.; Thoennissen, N.H.; Burow, K.; Kramer, C.; Zühlsdorf, M.; Berdel, W.E.; Mesters, R.M. Bevacizumab reduces VEGF expression in patients with relapsed and refractory acute myeloid leukemia without clinical antileukemic activity. Leukemia, 2007, 21(6), 1310-1312.
[http://dx.doi.org/10.1038/sj.leu.2404632] [PMID: 17330095]
[57]
Rosenblat, T.L.; McDevitt, M.R.; Mulford, D.A.; Pandit-Taskar, N.; Divgi, C.R.; Panageas, K.S.; Heaney, M.L.; Chanel, S.; Morgenstern, A.; Sgouros, G.; Larson, S.M.; Scheinberg, D.A.; Jurcic, J.G. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res., 2010, 16(21), 5303-5311.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0382] [PMID: 20858843]
[58]
Kung S., M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122, 1455-1463.
[59]
Paubelle, E.; Zylbersztejn, F.; Thomas, X. The preclinical discovery of vosaroxin for the treatment of acute myeloid leukemia. Expert Opin. Drug Discov., 2017, 12(7), 747-753.
[http://dx.doi.org/10.1080/17460441.2017.1331215] [PMID: 28504025]
[60]
Walker, A.R.; Wang, H.; Walsh, K.; Bhatnagar, B.; Vasu, S.; Garzon, R.; Canning, R.; Geyer, S.; Wu, Y.Z.; Devine, S.M.; Klisovic, R.; Blum, W.; Marcucci, G. Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leuk. Lymphoma, 2016, 57(9), 2100-2108.
[http://dx.doi.org/10.3109/10428194.2015.1135435] [PMID: 26784138]
[61]
Sun, H.D.; Huang, S.X.; Han, Q.B. Diterpenoids from Isodon species and their biological activities. Nat. Prod. Rep., 2006, 23(5), 673-698.
[http://dx.doi.org/10.1039/b604174d] [PMID: 17003905]
[62]
Cheng, W.Y.; Huang, C.H.; Ma, W.F.; Tian, X.; Zhang, X.J. Recent development of oridonin derivatives with diverse pharmacological activities. Mini Rev. Med. Chem., 2017, 17, 1-11.
[PMID: 28425866]
[63]
He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Chem., 2017, 8, 68153-68164.
[64]
Huang, W.; Huang, M.; Ouyang, H.; Peng, J.; Liang, J. Oridonin inhibits vascular inflammation by blocking NF-κB and MAPK activation. Eur. J. Pharmacol., 2018, 826, 133-139.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.044] [PMID: 29518395]
[65]
Xie, Z.; Yu, H.; Sun, X.; Tang, P.; Jie, Z.; Chen, S.; Wang, J.; Qin, A.; Fan, S. A novel diterpenoid suppresses osteoclastogenesis and promotes osteogenesis by inhibiting Ifrd1-mediated and IκBα-mediated p65 nuclear translocation. J. Bone Miner. Res., 2018, 33(4), 667-678.
[http://dx.doi.org/10.1002/jbmr.3334] [PMID: 29091322]
[66]
Tian, L.; Xie, K.; Sheng, D.; Wan, X.; Zhu, G. Antiangiogenic effects of oridonin. BMC Complement. Altern. Med., 2017, 17(1), 192.
[http://dx.doi.org/10.1186/s12906-017-1706-3] [PMID: 28376864]
[67]
Zhou, M.; Yi, Y.; Hong, L. Oridonin ameliorates lipopolysaccharide-induced endometritis in mice via inhibition of the TLR-4/NF-κB pathway. Inflammation, 2019, 42(1), 81-90.
[http://dx.doi.org/10.1007/s10753-018-0874-8] [PMID: 30132202]
[68]
Wu, Q.J.; Zheng, X.C.; Wang, T.; Zhang, T.Y. Effects of oridonin on immune cells, Th1/Th2 balance and the expression of BLys in the spleens of broiler chickens challenged with Salmonella pullorum. Res. Vet. Sci., 2018, 119, 262-267.
[http://dx.doi.org/10.1016/j.rvsc.2018.07.008] [PMID: 30056311]
[69]
Zhang, Y.W.; Zheng, X.W.; Liu, Y.J.; Fang, L.; Pan, Z.F.; Bao, M.H.; Huang, P. Effect of oridonin on cytochrome P450 expression and activities in HepaRG cell. Pharmacology, 2018, 101(5-6), 246-254.
[http://dx.doi.org/10.1159/000486600] [PMID: 29393278]
[70]
Li, W.; Ma, L. Synergistic antitumor activity of oridonin and valproic acid on HL-60 leukemia cells. J. Cell. Biochem., 2019, 120(4), 5620-5627.
[http://dx.doi.org/10.1002/jcb.27845] [PMID: 30320906]
[71]
Liu, X.; Kang, J.; Wang, H.; Huang, T. Mitochondrial ROS contribute to oridonin-induced HepG2 apoptosis through PARP activation. Oncol. Lett., 2018, 15(3), 2881-2888.
[PMID: 29435014]
[72]
Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T. Oridonin induced autophagy in human cervical carcinoma HeLa cells through Ras, JNK, and P38 regulation. J. Pharmacol. Sci., 2007, 105(4), 317-325.
[http://dx.doi.org/10.1254/jphs.FP0070336] [PMID: 18094523]
[73]
Bao, R.; Shu, Y.; Wu, X.; Weng, H.; Ding, Q.; Cao, Y.; Li, M.; Mu, J.; Wu, W.; Ding, Q.; Tan, Z.; Liu, T.; Jiang, L.; Hu, Y.; Gu, J.; Liu, Y. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway. BMC Cancer, 2014, 14, 217-229.
[http://dx.doi.org/10.1186/1471-2407-14-217] [PMID: 24655726]
[74]
Shi, M.; Lu, X.J.; Zhang, J.; Diao, H.; Li, G.; Xu, L.; Wang, T.; Wei, J.; Meng, W.; Ma, J.L.; Yu, H.; Wang, Y.G. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms. Oncotarget, 2016, 7(16), 22623-22631.
[http://dx.doi.org/10.18632/oncotarget.8033] [PMID: 26980707]
[75]
Gao, F.H.; Liu, F.; Wei, W.; Liu, L.B.; Xu, M.H.; Guo, Z.Y.; Li, W.; Jiang, B.; Wu, Y.L. Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int. J. Mol. Med., 2012, 29(4), 649-655.
[http://dx.doi.org/10.3892/ijmm.2012.895] [PMID: 22294162]
[76]
Kwan, H.Y.; Yang, Z.; Fong, W.F.; Hu, Y.M.; Yu, Z.L.; Hsiao, W.L. The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J. Gastroenterol., 2013, 48(2), 182-192.
[http://dx.doi.org/10.1007/s00535-012-0612-1] [PMID: 22722903]
[77]
Lu, J.; Chen, X.; Qu, S.; Yao, B.; Xu, Y.; Wu, J.; Jin, Y.; Ma, C. Oridonin induces G2/M cell cycle arrest and apoptosis via the PI3K/Akt signaling pathway in hormone-independent prostate cancer cells. Oncol. Lett., 2017, 13(4), 2838-2846.
[http://dx.doi.org/10.3892/ol.2017.5751] [PMID: 28454475]
[78]
Yang, J.; Ren, X.; Zhang, L.; Li, Y.; Cheng, B.; Xia, J. Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway. Biomed. Pharmacother., 2018, 100, 226-232.
[http://dx.doi.org/10.1016/j.biopha.2018.02.011] [PMID: 29432993]
[79]
Lu, Y.; Sun, Y.; Zhu, J.; Yu, L.; Jiang, X.; Zhang, J.; Dong, X.; Ma, B.; Zhang, Q. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-γ and inhibiting Nrf2 pathway. Cell Death Dis., 2018, 9(1), 15.
[http://dx.doi.org/10.1038/s41419-017-0031-6] [PMID: 29323103]
[80]
Li, D.; Cui, Q.; Chen, S.G.; Wu, L.J.; Tashiro, S.; Onodera, S.; Ikejima, T. Inactivation of ras and changes of mitochondrial membrane potential contribute to oridonin-induced autophagy in a431 cells. J. Pharmacol. Sci., 2007, 105(1), 22-33.
[http://dx.doi.org/10.1254/jphs.FPJ06022X] [PMID: 17895587]
[81]
Cao, S.; Xia, M.; Mao, Y.; Zhang, Q.; Donkor, P.O.; Qiu, F.; Kang, N. Combined oridonin with cetuximab treatment shows synergistic anticancer effects on laryngeal squamous cell carcinoma: involvement of inhibition of EGFR and activation of reactive oxygen species-mediated JNK pathway. Int. J. Oncol., 2016, 49(5), 2075-2087.
[http://dx.doi.org/10.3892/ijo.2016.3696] [PMID: 27667173]
[82]
Zheng, W.; Zhou, C.Y.; Zhu, X.Q.; Wang, X.J.; Li, Z.Y.; Chen, X.C.; Chen, F.; Che, X.Y.; Xie, X. Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed. Pharmacother., 2018, 106, 175-182.
[http://dx.doi.org/10.1016/j.biopha.2018.06.111] [PMID: 29958141]
[83]
Jiang, J.H.; Pi, J.; Jin, H.; Cai, J.Y. Oridonin-induced mitochondria-dependent apoptosis in esophageal cancer cells by inhibiting PI3K/AKT/mTOR and Ras/Raf pathways. J. Cell. Biochem., 2019, 120(3), 3736-3746.
[http://dx.doi.org/10.1002/jcb.27654] [PMID: 30229997]
[84]
Zhou, G.B.; Chen, S.J.; Wang, Z.Y.; Chen, Z. Back to the future of oridonin: again, compound from medicinal herb shows potent antileukemia efficacies in vitro and in vivo. Cell Res., 2007, 17(4), 274-276.
[http://dx.doi.org/10.1038/cr.2007.21] [PMID: 17426700]
[85]
Zhen, T.; Wu, C.F.; Liu, P.; Wu, H.Y.; Zhou, G.B.; Lu, Y.; Liu, J.X.; Liang, Y.; Li, K.K.; Wang, Y.Y.; Xie, Y.Y.; He, M.M.; Cao, H.M.; Zhang, W.N.; Chen, L.M.; Petrie, K.; Chen, S.J.; Chen, Z. Targeting of AML1-ETO in t(8;21) leukemia by oridonin generates a tumor suppressor-like protein. Sci. Transl. Med., 2012, 4(127)127ra38
[http://dx.doi.org/10.1126/scitranslmed.3003562] [PMID: 22461642]
[86]
Yi, S.; Chen, Y.; Wen, L.; Yang, L.; Cui, G. Downregulation of nucleoporin 88 and 214 induced by oridonin may protect OCIM2 acute erythroleukemia cells from apoptosis through regulation of nucleocytoplasmic transport of NF-κB. Int. J. Mol. Med., 2012, 30(4), 877-883.
[http://dx.doi.org/10.3892/ijmm.2012.1067] [PMID: 22824908]
[87]
Li, F.F.; Yi, S.; Wen, L.; He, J.; Yang, L.J.; Zhao, J.; Zhang, B.P.; Cui, G.H.; Chen, Y. Oridonin induces NPM mutant protein translocation and apoptosis in NPM1c+ acute myeloid leukemia cells in vitro. Acta Pharmacol. Sin., 2014, 35(6), 806-813.
[http://dx.doi.org/10.1038/aps.2014.25] [PMID: 24902788]
[88]
Spirin, P.; Lebedev, T.; Orlova, N.; Morozov, A.; Poymenova, N.; Dmitriev, S.E.; Buzdin, A.; Stocking, C.; Kovalchuk, O.; Prassolov, V. Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors. Oncotarget, 2017, 8(34), 56991-57002.
[http://dx.doi.org/10.18632/oncotarget.18503] [PMID: 28915648]
[89]
Ding, C.; Zhang, Y.; Chen, H.; Yang, Z.; Wild, C.; Chu, L.; Liu, H.; Shen, Q.; Zhou, J. Novel nitrogen-enriched oridonin analogues with thiazole-fused A-ring: protecting group-free synthesis, enhanced anticancer profile, and improved aqueous solubility. J. Med. Chem., 2013, 56(12), 5048-5058.
[http://dx.doi.org/10.1021/jm400367n] [PMID: 23746196]
[90]
Xu, J.; Zhao, J.; Wang, J.; Feng, N.; Tan, R.; Liu, Y. [Study on stability of oridonin solution Zhongguo Zhongyao Zazhi, 2009, 34(1), 47-49.
[PMID: 19382449]
[91]
Xu, J.; Yang, J.; Ran, Q.; Wang, L.; Liu, J.; Wang, Z.; Wu, X.; Hua, W.; Yuan, S.; Zhang, L.; Shen, M.; Ding, Y. Synthesis and biological evaluation of novel 1-O- and 14-O-derivatives of oridonin as potential anticancer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(16), 4741-4744.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.097] [PMID: 18644718]
[92]
Wang, L.; Ran, Q.; Li, D.H.; Yao, H.Q.; Zhang, Y.H.; Yuan, S.T.; Zhang, L.Y.; Qin, S.M.; Xu, J.Y. Synthesis and anti-tumor activity of 14-O-derivatives of natural oridonin. Chin. J. Nat. Med., 2011, 9, 194-198.
[93]
Li, D.; Wang, L.; Cai, H.; Zhang, Y.; Xu, J. Synthesis and biological evaluation of novel furozan-based nitric oxide-releasing derivatives of oridonin as potential anti-tumor agents. Molecules, 2012, 17(6), 7556-7568.
[http://dx.doi.org/10.3390/molecules17067556] [PMID: 22710829]
[94]
Xu, S.; Pei, L.; Wang, C.; Zhang, Y.K.; Li, D.; Yao, H.; Wu, X.; Chen, Z.S.; Sun, Y.; Xu, J. Novel hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer drug candidates. ACS Med. Chem. Lett., 2014, 5(7), 797-802.
[http://dx.doi.org/10.1021/ml500141f] [PMID: 25050168]
[95]
Shen, J.; Zhang, D.; Zhao, Z.; Jia, L.; Zheng, D.; Liu, G.; Hao, L.; Zhang, Q.; Tian, X.; Li, C.; Guo, H. Synthesis, characterization, in vitro and in vivo evaluation of PEGylated oridonin conjugates. Int. J. Pharm., 2013, 456(1), 80-86.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.014] [PMID: 23973480]
[96]
Xu, S.; Luo, S.; Yao, H.; Cai, H.; Miao, X.; Wu, F.; Yang, D.H.; Wu, X.; Xie, W.; Yao, H.; Chen, Z.S.; Xu, J. Probing the anticancer action of oridonin with fluorescent analogues: Visualizing subcellular localization to mitochondria. J. Med. Chem., 2016, 59(10), 5022-5034.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00408] [PMID: 27089099]
[97]
Li, Y.; Wang, Y.; Wang, S.; Gao, Y.; Zhang, X.; Lu, C. Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells. Med. Oncol., 2015, 32(1), 365-372.
[http://dx.doi.org/10.1007/s12032-014-0365-1] [PMID: 25491140]
[98]
Xu, S.; Yao, H.; Luo, S.; Zhang, Y.K.; Yang, D.H.; Li, D.; Wang, G.; Hu, M.; Qiu, Y.; Wu, X.; Yao, H.; Xie, W.; Chen, Z.S.; Xu, J. A novel potent anticancer compound optimized from a natural oridonin scaffold induces apoptosis and cell cycle arrest through the mitochondrial pathway. J. Med. Chem., 2017, 60(4), 1449-1468.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01652] [PMID: 28165738]
[99]
Wu, J.; Ding, Y.; Chen, C.H.; Zhou, Z.; Ding, C.; Chen, H.; Zhou, J.; Chen, C. A new oridonin analog suppresses triple-negative breast cancer cells and tumor growth via the induction of death receptor 5. Cancer Lett., 2016, 380(2), 393-402.
[http://dx.doi.org/10.1016/j.canlet.2016.06.024] [PMID: 27387452]
[100]
Ding, C.; Wang, L.; Chen, H.; Wild, C.; Ye, N.; Ding, Y.; Wang, T.; White, M.A.; Shen, Q.; Zhou, J. ent-Kaurane-based regio- and stereoselective inverse electron demand hetero-Diels-Alder reactions: synthesis of dihydropyran-fused diterpenoids. Org. Biomol. Chem., 2014, 12(42), 8442-8452.
[http://dx.doi.org/10.1039/C4OB01040J] [PMID: 25225052]
[101]
Ding, C.; Zhang, Y.; Chen, H.; Yang, Z.; Wild, C.; Ye, N.; Ester, C.D.; Xiong, A.; White, M.A.; Shen, Q.; Zhou, J. Oridonin ring A-based diverse constructions of enone functionality: identification of novel dienone analogues effective for highly aggressive breast cancer by inducing apoptosis. J. Med. Chem., 2013, 56(21), 8814-8825.
[http://dx.doi.org/10.1021/jm401248x] [PMID: 24128046]
[102]
Ding, C.; Zhang, Y.; Chen, H.; Wild, C.; Wang, T.; White, M.A.; Shen, Q.; Zhou, J. Overcoming synthetic challenges of oridonin A-ring structural diversification: regio- and stereoselective installation of azides and 1,2,3-triazoles at the C-1, C-2, or C-3 position. Org. Lett., 2013, 15(14), 3718-3721.
[http://dx.doi.org/10.1021/ol4015865] [PMID: 23834026]
[103]
Ma, Y.C.; Ke, Y.; Zi, X.; Zhao, F.; Yuan, L.; Zhu, Y.L.; Fan, X.X.; Zhao, N.M.; Li, Q.Y.; Qin, Y.H.; Liu, H.M. Induction of the mitochondria-mediated apoptosis in human esophageal cancer cells by DS2, a newly synthetic diterpenoid analog, is regulated by Bax and caused by generation of reactive oxygen species. Oncotarget, 2016, 7(52), 86211-86224.
[http://dx.doi.org/10.18632/oncotarget.13367] [PMID: 27863415]
[104]
Ding, Y.; Li, D.; Ding, C.; Wang, P.; Liu, Z.; Wold, E.A.; Ye, N.; Chen, H.; White, M.A.; Shen, Q.; Zhou, J. Regio- and stereospecific synthesis of oridonin D-ring aziridinated analogues for the treatment of triple-negative breast cancer via mediated irreversible covalent warheads. J. Med. Chem., 2018, 61(7), 2737-2752.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01514] [PMID: 29528645]
[105]
Li, D.; Wang, H.; Ding, Y.; Zhang, Z.; Zheng, Z.; Dong, J.; Kim, H.; Meng, X.; Zhou, Q.; Zhou, J.; Fang, L.; Shen, Q. Targeting the NRF-2/RHOA/ROCK signaling pathway with a novel aziridonin, YD0514, to suppress breast cancer progression and lung metastasis. Cancer Lett., 2018, 424, 97-108.
[http://dx.doi.org/10.1016/j.canlet.2018.03.029] [PMID: 29580806]
[106]
Shen, Q.K.; Chen, Z.A.; Zhang, H.J.; Li, J.L.; Liu, C.F.; Gong, G.H.; Quan, Z.S. Design and synthesis of novel oridonin analogues as potent anticancer agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 324-333.
[http://dx.doi.org/10.1080/14756366.2017.1419219] [PMID: 29303372]
[107]
Luo, D.D.; Peng, K.; Yang, J.Y.; Piyachaturawat, P.; Saengsawang, W.; Ao, L.; Zhao, W.Z.; Tang, Y.; Wan, S.B. Structural modification of oridonin via DAST induced rearrangement. RSC Advances, 2018, 8, 29548.
[http://dx.doi.org/10.1039/C8RA05728A]
[108]
Wang, L.; Li, D.; Wang, C.; Zhang, Y.; Xu, J. Recent progress in the development of natural ent-kaurane diterpenoids with anti-tumor activity. Mini Rev. Med. Chem., 2011, 11(10), 910-919.
[http://dx.doi.org/10.2174/138955711796575416] [PMID: 21781025]
[109]
Li, D.H.; Han, T.; Liao, J.; Hu, X.; Xu, S.T.; Tian, K.T.; Gu, X.K.; Cheng, K.G.; Li, Z.L.; Hua, H.M.; Xu, J.Y. Oridonin, a promising ent-karuane diterpenoid lead compound. Int. J. Mol. Sci., 2016, 17, 1395.
[http://dx.doi.org/10.3390/ijms17091395]
[110]
Xu, S.; Yao, H.; Pei, L.; Hu, M.; Li, D.; Qiu, Y.; Wang, G.; Wu, L.; Yao, H.; Zhu, Z.; Xu, J. Design, synthesis, and biological evaluation of NAD(P)H: Quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation. Eur. J. Med. Chem., 2017, 132, 310-321.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.055] [PMID: 28395199]
[111]
Xu, S.; Wang, G.; Lin, Y.; Zhang, Y.; Pei, L.; Yao, H.; Hu, M.; Qiu, Y.; Huang, Z.; Zhang, Y.; Xu, J. Novel anticancer oridonin derivatives possessing a diazen-1-ium-1,2-diolate nitric oxide donor moiety: Design, synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. Lett., 2016, 26(12), 2795-2800.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.068] [PMID: 27158140]
[112]
Li, D.; Hu, X.; Han, T.; Liao, J.; Xiao, W.; Xu, S.; Li, Z.; Wang, Z.; Hua, H.; Xu, J. NO-releasing enmein-type diterpenoid derivatives with selective antiproliferative activity and effects on apoptosis-related proteins. Molecules, 2016, 21(9), 1193.
[http://dx.doi.org/10.3390/molecules21091193] [PMID: 27617998]
[113]
Li, D.; Han, T.; Tian, K.; Tang, S.; Xu, S.; Hu, X.; Wang, L.; Li, Z.; Hua, H.; Xu, J. Novel nitric oxide-releasing spirolactone-type diterpenoid derivatives with in vitro synergistic anticancer activity as apoptosis inducer. Bioorg. Med. Chem. Lett., 2016, 26(17), 4191-4196.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.059] [PMID: 27491707]
[114]
Li, D.; Hu, X.; Han, T.; Xu, S.; Zhou, T.; Wang, Z.; Cheng, K.; Li, Z.; Hua, H.; Xiao, W.; Xu, J. Synthesis, biological activity, and apoptotic properties of NO-donor/enmein-type ent-kauranoid hybrids. Int. J. Mol. Sci., 2016, 17(6), 747.
[http://dx.doi.org/10.3390/ijms17060747] [PMID: 27231893]
[115]
Li, D.; Han, T.; Xu, S.; Zhou, T.; Tian, K.; Hu, X.; Cheng, K.; Li, Z.; Hua, H.; Xu, J. Antitumor and antibacterial derivatives of oridonin: A main composition of Dong-Ling-Cao. Molecules, 2016, 21(5), 575.
[http://dx.doi.org/10.3390/molecules21050575] [PMID: 27144553]
[116]
Xu, S.; Li, D.; Pei, L.; Yao, H.; Wang, C.; Cai, H.; Yao, H.; Wu, X.; Xu, J. Design, synthesis and antimycobacterial activity evaluation of natural oridonin derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2811-2814.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.119] [PMID: 24835198]
[117]
Li, D.; Xu, S.; Cai, H.; Pei, L.; Zhang, H.; Wang, L.; Yao, H.; Wu, X.; Jiang, J.; Sun, Y.; Xu, J. Enmein-type diterpenoid analogs from natural kaurene-type oridonin: Synthesis and their antitumor biological evaluation. Eur. J. Med. Chem., 2013, 64, 215-221.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.012] [PMID: 23644204]
[118]
Li, D.; Cai, H.; Jiang, B.; Liu, G.; Wang, Y.; Wang, L.; Yao, H.; Wu, X.; Sun, Y.; Xu, J. Synthesis of spirolactone-type diterpenoid derivatives from kaurene-type oridonin with improved antiproliferative effects and their apoptosis-inducing activity in human hepatoma Bel-7402 cells. Eur. J. Med. Chem., 2013, 59, 322-328.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.002] [PMID: 23274570]
[119]
Wang, L.; Li, D.; Xu, S.; Cai, H.; Yao, H.; Zhang, Y.; Jiang, J.; Xu, J. The conversion of oridonin to spirolactone-type or enmein-type diterpenoid: synthesis and biological evaluation of ent-6,7-seco-oridonin derivatives as novel potential anticancer agents. Eur. J. Med. Chem., 2012, 52, 242-250.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.024] [PMID: 22483090]
[120]
Li, D.; Xu, S.; Cai, H.; Pei, L.; Wang, L.; Wu, X.; Yao, H.; Jiang, J.; Sun, Y.; Xu, J. Library construction and biological evaluation of enmein-type diterpenoid analogues as potential anticancer agents. ChemMedChem, 2013, 8(5), 812-818.
[http://dx.doi.org/10.1002/cmdc.201200559] [PMID: 23520191]
[121]
Xu, S.; Pei, L.; Li, D.; Yao, H.; Cai, H.; Yao, H.; Wu, X.; Xu, J. Synthesis and antimycobacterial evaluation of natural oridonin and its enmein-type derivatives. Fitoterapia, 2014, 99, 300-306.
[http://dx.doi.org/10.1016/j.fitote.2014.10.005] [PMID: 25316557]
[122]
Li, D.H.; Hu, P.; Xu, S.T.; Fang, C.Y.; Tang, S.; Wang, X.Y.; Sun, X.Y.; Li, H.; Xu, Y.; Gu, X.K.; Xu, J.Y. Lasiokaurin derivatives: synthesis, antimicrobial and antitumor biological evaluation, and apoptosis-inducing effects. Arch. Pharm. Res., 2017, 40(7), 796-806.
[http://dx.doi.org/10.1007/s12272-016-0867-9] [PMID: 28110416]
[123]
Xu, S.; Yao, H.; Hu, M.; Li, D.; Zhu, Z.; Xie, W.; Yao, H.; Wu, L.; Chen, Z.S.; Xu, J. 6,7-Seco-ent-kauranoids derived from oridonin as potential anticancer agents. J. Nat. Prod., 2017, 80(9), 2391-2398.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00057] [PMID: 28901767]
[124]
Sun, P.Y.; Wu, G.L.; Qiu, Z.J.; Chen, Y.J.; Shen, L.J. I-type crystal of L-alanine-(14-oridonin) ester trifluoroacetate and preparation method. WO2015180549A1. 2015.
[125]
Sun, P.Y.; Wu, G.L.; Qiu, Z.J.; Chen, Y.J. The preparation method and application of L-alanine-(14-oridonin) ester trifluoroacetate. CN201410047904.X.,. 2014.
[126]
Sun, P.Y.; Wu, G.L.; Qiu, Z.J.; Chen, Y.J.; Shen, L.J. I-type crystal of L-alanine-(14-oridonin) ester trifluoroacetate and preparation method. CN201410240920.0.,. 2015.
[127]
Ding, Y.; Ding, C.; Ye, N.; Liu, Z.; Wold, E.A.; Chen, H.; Wild, C.; Shen, Q.; Zhou, J. Discovery and development of natural product oridonin-inspired anticancer agents. Eur. J. Med. Chem., 2016, 122, 102-117.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.015] [PMID: 27344488]
[128]
Saifee, M.; Inamda, N.; Dhamecha, D.L.; Rathi, A.A. Drug polymorphism: a review. Int. J. Health Res., 2009, 2, 291-306.
[129]
Takehira, R.; Momose, Y.; Yamamura, S. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern. Int. J. Pharm., 2010, 398(1-2), 33-38.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.043] [PMID: 20674727]
[130]
Soares, F.L.F.; Carneiro, R.L. Evaluation of analytical tools and multivariate methods for quantification of co-former crystals in ibuprofen-nicotinamide co-crystals. J. Pharm. Biomed. Anal., 2014, 89, 166-175.
[http://dx.doi.org/10.1016/j.jpba.2013.11.005] [PMID: 24291798]
[131]
Liu, Q.Q.; Wang, H.L.; Chen, K.; Wang, S.B.; Xu, Y.; Ye, Q.; Sun, Y.W. Oridonin derivative ameliorates experimental colitis by inhibiting activated T-cells and translocation of nuclear factor-kappa B. J. Dig. Dis., 2016, 17(2), 104-112.
[http://dx.doi.org/10.1111/1751-2980.12314] [PMID: 26718746]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy