Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Anti-tumor Activity of Propofol: A Focus on MicroRNAs

Author(s): Milad Ashrafizadeh, Zahra Ahmadi, Tahereh Farkhondeh and Saeed Samarghandian*

Volume 20, Issue 2, 2020

Page: [104 - 114] Pages: 11

DOI: 10.2174/1568009619666191023100046

Price: $65

Abstract

Background: MicroRNAs are endogenous, short, non-coding RNAs with the length as low as 20 to 25 nucleotides. These RNAs are able to negatively affect the gene expression at the post-transcriptional level. It has been demonstrated that microRNAs play a significant role in cell proliferation, cell migration, cell death, cell differentiation, infection, immune response, and metabolism. Besides, the dysfunction of microRNAs has been observed in a variety of cancers. So, modulation of microRNAs is of interest in the treatment of disorders.

Objective: The aim of the current review is to investigate the modulatory effect of propofol on microRNAs in cancer therapy.

Methods: This review was performed at PubMed, SCOPUS and Web of Science data-bases using keywords “propofol’, “microRNA”, “cancer therapy”, “propofol + microRNA” and “propofol + miR”.

Results: It was found that propofol dually down-regulates/upregulates microRNAs to exert its antitumor activity. In terms of oncogenesis microRNAs, propofol exert an inhibitory effect, while propofol significantly enhances the expression of oncosuppressor microRNAs.

Conclusion: It seems that propofol is a potential modulator of microRNAs and this capability can be used in the treatment of various cancers.

Keywords: Propofol, microRNA, cancer therapy, signaling pathway, pharmacological targeting, anti-tumor activity.

Next »
Graphical Abstract
[1]
Yaribeygi, H.; Katsiki, N.; Behnam, B.; Iranpanah, H.; Sahebkar, A. MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism, 2018, 87, 48-55.
[http://dx.doi.org/10.1016/j.metabol.2018.07.001] [PMID: 30253864]
[2]
Paseban, M.; Marjaneh, R.M.; Banach, M.; Riahi, M.M.; Bo, S.; Sahebkar, A. Modulation of microRNAs by aspirin in cardiovascular disease. , Trends Cardiovasc. Med., 2019. S1050-1738(19)30114- 8
[http://dx.doi.org/10.1016/j.tcm.2019.08.005] [PMID: 31444100]
[3]
Tajbakhsh, A.; Bianconi, V.; Pirro, M.; Gheibi Hayat, S.M.; Johnston, T.P.; Sahebkar, A. Efferocytosis and atherosclerosis: regulation of phagocyte function by microRNAs. Trends Endocrinol. Metab., 2019, 30(9), 672-683.
[http://dx.doi.org/10.1016/j.tem.2019.07.006] [PMID: 31383556]
[4]
Mohajeri, M.; Banach, M.; Atkin, S.L.; Butler, A.E.; Ruscica, M.; Watts, G.F.; Sahebkar, A. MicroRNAs: Novel molecular targets and response modulators of statin therapy. Trends Pharmacol. Sci., 2018, 39(11), 967-981.
[http://dx.doi.org/10.1016/j.tips.2018.09.005] [PMID: 30249403]
[5]
Nakanishi, H.; Miki, K.; Komatsu, K.R.; Umeda, M.; Mochizuki, M.; Inagaki, A.; Yoshida, Y.; Saito, H. Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials, 2017, 128, 121-135.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.033] [PMID: 28325684]
[6]
Shefler, I.; Salamon, P.; Mekori, Y.A. MicroRNA involvement in allergic and non-allergic mast cell activation. Int. J. Mol. Sci., 2019, 20(9), 2145.
[http://dx.doi.org/10.3390/ijms20092145] [PMID: 31052286]
[7]
Goradel, N.H.; Mohammadi, N.; Haghi-Aminjan, H.; Farhood, B.; Negahdari, B.; Sahebkar, A. Regulation of tumor angiogenesis by microRNAs: State of the art. J. Cell. Physiol., 2019, 234(2), 1099-1110.
[http://dx.doi.org/10.1002/jcp.27051] [PMID: 30070704]
[8]
Ayati, S.H.; Fazeli, B.; Momtazi-Borojeni, A.A.; Cicero, A.F.G.; Pirro, M.; Sahebkar, A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit. Rev. Oncol. Hematol., 2017, 116, 147-158.
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.008] [PMID: 28693796]
[9]
Mehrpour, O.; Dolati, M.; Soltaninejad, K.; Shadnia, Sh.; Nazparvar, B. Evaluation of histopathological changes in fatal aluminum phosphide poisoning. Indian Journal of Forensic Medicine & Toxicology, 2008, 2, 34-36.
[10]
Mirzaei, H.; Masoudifar, A.; Sahebkar, A.; Zare, N.; Sadri Nahand, J.; Rashidi, B.; Mehrabian, E.; Mohammadi, M.; Mirzaei, H.R.; Jaafari, M.R.; Micro, R.N.A. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol., 2018, 233(4), 3004-3015.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[11]
Byun, Y.; Choi, Y-C.; Jeong, Y.; Lee, G.; Yoon, S.; Jeong, Y.; Yoon, J.; Baek, K. MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells. Cell. Mol. Biol. Lett., 2019, 24(1), 28.
[http://dx.doi.org/10.1186/s11658-019-0152-2] [PMID: 31061665]
[12]
Bai, S.Y.; Ji, R.; Wei, H.; Guo, Q.H.; Yuan, H.; Chen, Z.F.; Wang, Y.P.; Liu, Z.; Yang, X.Y.; Zhou, Y.N. Serum miR-551b-3p is a potential diagnostic biomarker for gastric cancer. The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology, 2019, 30(5), 415-419.
[http://dx.doi.org/10.5152/tjg.2019.17875]
[13]
Bahreyni, A.; Rezaei, M.; Bahrami, A.; Khazaei, M.; Fiuji, H.; Ryzhikov, M.; Ferns, G.A.; Avan, A.; Hassanian, S.M. Diagnostic, prognostic, and therapeutic potency of microRNA 21 in the pathogenesis of colon cancer, current status and prospective. J. Cell. Physiol., 2019, 234(6), 8075-8081.
[http://dx.doi.org/10.1002/jcp.27580] [PMID: 30317621]
[14]
Hasanzadeh, M.; Movahedi, M.; Rejali, M.; Maleki, F.; Moetamani-Ahmadi, M.; Seifi, S.; Hosseini, Z.; Khazaei, M.; Amerizadeh, F.; Ferns, G.A.; Rezayi, M.; Avan, A. The potential prognostic and therapeutic application of tissue and circulating microRNAs in cervical cancer. J. Cell. Physiol., 2019, 234(2), 1289-1294.
[http://dx.doi.org/10.1002/jcp.27160] [PMID: 30191988]
[15]
Marjaneh, R.M.; Khazaei, M.; Ferns, G.A.; Avan, A.; Aghaee-Bakhtiari, S.H. The role of microRNAs in 5-FU resistance of colorectal cancer: Possible mechanisms. J. Cell. Physiol., 2019, 234(3), 2306-2316.
[http://dx.doi.org/10.1002/jcp.27221] [PMID: 30191973]
[16]
Soleimani, A.; Khazaei, M.; Ferns, G.A.; Ryzhikov, M.; Avan, A.; Hassanian, S.M. Role of TGF-β signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J. Cell. Physiol., 2019, 0(0)
[http://dx.doi.org/10.1002/jcp.28169] [PMID: 30684274]
[17]
Faraoni, I.; Antonetti, F.R.; Cardone, J.; Bonmassar, E. miR-155 gene: A typical multifunctional microRNA. Biochimica et Biophysica Acta (BBA) -. Molecular Basis of Disease, 2009, 1792(6), 497-505.
[http://dx.doi.org/10.1016/j.bbadis.2009.02.013]
[18]
Chen, E.Y.Y.; Chen, J.S.; Ying, S-Y. The microRNA and the perspectives of miR-302. Heliyon, 2019, 5(1), e01167-e01167.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01167] [PMID: 30723835]
[19]
Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol., 2006, 13(12), 1097-1101.
[http://dx.doi.org/10.1038/nsmb1167] [PMID: 17099701]
[20]
Denli, A.M.; Tops, B.B.; Plasterk, R.H.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[21]
Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors science. 2004, 303(5654), 95-98.
[22]
Kok, K.H.; Ng, M-H.J.; Ching, Y-P.; Jin, D-Y. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J. Biol. Chem., 2007, 282(24), 17649-17657.
[http://dx.doi.org/10.1074/jbc.M611768200] [PMID: 17452327]
[23]
Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem., 2010, 79, 351-379.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[24]
Ahmadi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol., 2019.
[http://dx.doi.org/10.1111/fcp.12498] [PMID: 31283051]
[25]
Ahmadi, Z.; Roomiani, S.; Bemani, N.; Ashrafizadeh, M. The targeting of autophagy and endoplasmic reticulum stress mechanisms by honokiol therapy. Reviews in Clinical Medicine, 2019, 6(2), 66-73.
[26]
Ashrafizadeh, M.; Ahmadi, Z. Effects of statins on gut microbiota (microbiome). Reviews in Clinical Medicine, 2019, 6(2), 55-59.
[27]
Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Kaviyani, N.; Tavakol, S. Monoterpenes modulating autophagy: A review study. Basic & Clinical Pharmacology & Toxicology. ,
[http://dx.doi.org/10.1111/bcpt.13282]
[28]
Ashrafizadeh, M.; Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab. Syndr., 2019, 13(4), 2445-2449.
[http://dx.doi.org/10.1016/j.dsx.2019.06.028] [PMID: 31405658]
[29]
Zarif Najafi, P.; Ashrafizadeh, M.; Farkhondeh, T.; Peivasteh-Roudsari, L.; Samarghandian, S. The protective effect of Zataria Multiflora on the embryotoxicity induced by bisphenol A in the brain of chicken embryos. Biointerface research in applied chemistry, 2019, 9(5), 4239-4242.
[30]
Wafae, B.G.; da Silva, R.M.F.; Veloso, H.H. Propofol for sedation for direct current cardioversion. Ann. Card. Anaesth., 2019, 22(2), 113-121.
[http://dx.doi.org/10.4103/aca.ACA_72_18] [PMID: 30971591]
[31]
Haffar, S.; Kaur, R.J.; Garg, S.K.; Hyder, J.A.; Murad, M.H.; Abu Dayyeh, B.K.; Bazerbachi, F. Acute pancreatitis associated with intravenous administration of propofol: Evaluation of causality in a systematic review of the literature. Gastroenterol. Rep. (Oxf.), 2019, 7(1), 13-23.
[http://dx.doi.org/10.1093/gastro/goy038] [PMID: 30792862]
[32]
Nishizawa, T.; Suzuki, H. Propofol for gastrointestinal endoscopy. United European Gastroenterol. J., 2018, 6(6), 801-805.
[http://dx.doi.org/10.1177/2050640618767594] [PMID: 30023057]
[33]
Narula, N.; Masood, S.; Shojaee, S.; McGuinness, B.; Sabeti, S.; Buchan, A. Safety of propofol versus nonpropofol-based sedation in children undergoing gastrointestinal endoscopy: A systematic review and meta-analysis. Gastroenterol. Res. Pract., 2018, 2018, 6501215-6501215.
[http://dx.doi.org/10.1155/2018/6501215] [PMID: 30210535]
[34]
Greig, F.H.; Nixon, G.F. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states. Pharmacol. Ther., 2014, 143(3), 265-274.
[http://dx.doi.org/10.1016/j.pharmthera.2014.03.006] [PMID: 24657708]
[35]
Ahn, E.H.; Kim, D.W.; Shin, M.J.; Kim, H.R.; Kim, S.M.; Woo, S.J.; Eom, S.A.; Jo, H.S.; Kim, D-S.; Cho, S-W.; Park, J.; Eum, W.S.; Choi, S.Y. PEP-1-PEA-15 protects against toxin-induced neuronal damage in a mouse model of Parkinson’s disease. Biochim. Biophys. Acta, 2014, 1840(6), 1686-1700.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.004] [PMID: 24412329]
[36]
Xian, F.; Li, Q.; Chen, Z. Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons. Mol. Med. Rep., 2019, 20(2), 1583-1592.
[http://dx.doi.org/10.3892/mmr.2019.10412] [PMID: 31257496]
[37]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Crocin attenuate tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine, 2016, 88, 20-28.
[38]
Shafer, A.; Doze, V.A.; Shafer, S.L.; White, P.F. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology, 1988, 69(3), 348-356.
[http://dx.doi.org/10.1097/00000542-198809000-00011] [PMID: 3261954]
[39]
Zhang, X.; Li, F.; Zheng, Y.; Wang, X.; Wang, K.; Yu, Y.; Zhao, H. Propofol reduced mammosphere formation of breast cancer stem cells via PD-L1/nanog in vitro. Oxid. Med. Cell. Longev., 2019, 2019, 9078209-9078209.
[http://dx.doi.org/10.1155/2019/9078209] [PMID: 30906504]
[40]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response, 2017, 15(1)1559325817691158
[41]
Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Ahmadi, Z.; Roomiani, S.; Katebi, M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. J. Cell. Physiol., 2019, 234(11), 19471-19479.
[http://dx.doi.org/10.1002/jcp.28740] [PMID: 31032940]
[42]
Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J. Drug Deliv. Sci. Technol., 2019.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[43]
Ashrafizadeh, M.; Ahmadi, Z. The effects of astaxanthin treatment on the sperm quality of mice treated with nicotine. Reviews in Clinical Medicine, 2019, 6(1), 156-158.
[44]
Rafiei, H.; Ahmadi, Z.; Ashrafizadeh, M. Effects of orally administered lead acetate II on rat femur histology, mineralization properties and expression of osteocalcin gene. International Biological and Biomedical Journal, 2018, 4(3), 149-155.
[45]
Rafiei, H.; Ashrafizadeh, M. Expression of collagen type II and osteocalcin genes in mesenchymal stem cells from rats treated with lead acetate II. Iranian Journal of Toxicology, 2018, 12(5), 35-40.
[46]
Sobhani, B.; Roomiani, S.; Ahmadi, Z.; Ashrafizadeh, M. Histopathological analysis of testis: effects of astaxanthin treatment against nicotine toxicity. Iranian Journal of Toxicology, 2019, 13(1), 41-44.
[47]
Hajzadeh, M.A.R. Rajaei, Z., Shafiee, Sو Alavinejhad, A, Samarghandian, S, Ahmadi, M. Effect of barberry fruit (Berberis Vulgaris) on serum glucose and lipids in streptozotocin-diabetic rats. Pharmacologyonline, 2011, 1, 809-817.
[48]
Peres, J.; Kwesi-Maliepaard, E.M.; Rambow, F.; Larue, L.; Prince, S. The tumour suppressor, miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor. Cancer Lett., 2017, 405, 111-119.
[http://dx.doi.org/10.1016/j.canlet.2017.07.018] [PMID: 28757416]
[49]
Lv, N.; Hao, S.; Luo, C.; Abukiwan, A.; Hao, Y.; Gai, F.; Huang, W.; Huang, L.; Xiao, X.; Eichmüller, S.B.; He, D. miR-137 inhibits melanoma cell proliferation through downregulation of GLO1. Sci. China Life Sci., 2018, 61(5), 541-549.
[http://dx.doi.org/10.1007/s11427-017-9138-9] [PMID: 29307109]
[50]
Sun, H.; Wang, Y.; Zhang, W. Propofol inhibits proliferation and metastasis by up-regulation of miR-495 in JEG-3 choriocarcinoma cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1738-1745.
[http://dx.doi.org/10.1080/21691401.2019.1608216] [PMID: 31046467]
[51]
Huang, L.X.; Hu, C.Y.; Jing, L.; Wang, M.C.; Xu, M.; Wang, J.; Wang, Y.; Nan, K.J.; Wang, S.H. microRNA-219-5p inhibits epithelial-mesenchymal transition and metastasis of colorectal cancer by targeting lymphoid enhancer-binding factor 1. Cancer Sci., 2017, 108(10), 1985-1995.
[http://dx.doi.org/10.1111/cas.13338] [PMID: 28771881]
[52]
Huang, N.; Lin, J.; Ruan, J.; Su, N.; Qing, R.; Liu, F.; He, B.; Lv, C.; Zheng, D.; Luo, R. MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett., 2012, 586(6), 884-891.
[http://dx.doi.org/10.1016/j.febslet.2012.02.017] [PMID: 22449976]
[53]
Gong, T.; Ning, X.; Deng, Z.; Liu, M.; Zhou, B.; Chen, X.; Huang, S.; Xu, Y.; Chen, Z.; Luo, R. Propofol-induced miR-219-5p inhibits growth and invasion of hepatocellular carcinoma through suppression of GPC3-mediated Wnt/β-catenin signalling activation. J. Cell. Biochem., 2019, 120(10), 16934-16945.
[http://dx.doi.org/10.1002/jcb.28952] [PMID: 31104336]
[54]
Samarghandian, S.; Farkhondeh, T.; Azimi-Nezhad, M. Protective effects of chrysin against drugs and toxic agents. Dose Response, 2017, 15(2)1559325817711782
[55]
Fako, V.; Yu, Z.; Henrich, C.J.; Ransom, T.; Budhu, A.S.; Wang, X.W. Inhibition of wnt/β-catenin signaling in hepatocellular carcinoma by an antipsychotic drug pimozide. Int. J. Biol. Sci., 2016, 12(7), 768-775.
[http://dx.doi.org/10.7150/ijbs.14718] [PMID: 27313491]
[56]
Hutchins, E.J.; Bronner, M.E. Draxin acts as a molecular rheostat of canonical WNT signaling to control cranial neural crest EMT. J. Cell Biol., 2018, 217(10), 3683-3697.
[http://dx.doi.org/10.1083/jcb.201709149] [PMID: 30026247]
[57]
Zhang, C.; Su, L.; Huang, L.; Song, Z-Y. GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways. Int. J. Ophthalmol., 2018, 11(7), 1120-1128.
[PMID: 30046527]
[58]
Hwang-Verslues, W.W.; Chang, P.H.; Wei, P.C.; Yang, C.Y.; Huang, C.K.; Kuo, W.H.; Shew, J.Y.; Chang, K.J.; Lee, E.Y.P.; Lee, W.H. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene, 2011, 30(21), 2463-2474.
[http://dx.doi.org/10.1038/onc.2010.618] [PMID: 21258409]
[59]
Mao, Y.; Li, L.; Liu, J.; Wang, L.; Zhou, Y. MiR-495 inhibits esophageal squamous cell carcinoma progression by targeting Akt1. Oncotarget, 2016, 7(32), 51223-51236.
[http://dx.doi.org/10.18632/oncotarget.9981] [PMID: 27323412]
[60]
Li, Z.; Cao, Y.; Jie, Z.; Liu, Y.; Li, Y.; Li, J.; Zhu, G.; Liu, Z.; Tu, Y.; Peng, G.; Lee, D.W.; Park, S.S. miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett., 2012, 323(1), 41-47.
[http://dx.doi.org/10.1016/j.canlet.2012.03.029] [PMID: 22469786]
[61]
Casas, E.; Kim, J.; Bendesky, A.; Ohno-Machado, L.; Wolfe, C.J.; Yang, J. Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res., 2011, 71(1), 245-254.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2330] [PMID: 21199805]
[62]
Pfeffer, S.R.; Yang, C.H.; Pfeffer, L.M. The role of miR‐21 in cancer. Drug Dev. Res., 2015, 76(6), 270-277.
[http://dx.doi.org/10.1002/ddr.21257] [PMID: 26082192]
[63]
Liu, X.; Abraham, J.M.; Cheng, Y.; Wang, Z.; Wang, Z.; Zhang, G.; Ashktorab, H.; Smoot, D.T.; Cole, R.N.; Boronina, T.N.; DeVine, L.R.; Talbot, C.C., Jr; Liu, Z.; Meltzer, S.J. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol. Ther. Nucleic Acids, 2018, 13, 312-321.
[http://dx.doi.org/10.1016/j.omtn.2018.09.010] [PMID: 30326427]
[64]
Liu, G.; Wang, B.; Zhang, J.; Jiang, H.; Liu, F. Total panax notoginsenosides prevent atherosclerosis in apolipoprotein E-knockout mice: Role of downregulation of CD40 and MMP-9 expression. J. Ethnopharmacol., 2009, 126(2), 350-354.
[http://dx.doi.org/10.1016/j.jep.2009.08.014] [PMID: 19703533]
[65]
Johnson, M.L.; Rajamannan, N. Diseases of WNT signaling. Rev. Endocr. Metab. Disord., 2006, 7(1-2), 41-49.
[http://dx.doi.org/10.1007/s11154-006-9003-3] [PMID: 16944325]
[66]
Polakis, P. ASTE and NEPCON present scholarships.(News Briefs).(American Society of Test Engineers)(Brief Article). Cold Spring Harb. Perspect. Biol., 2012, 4, 1-10.
[67]
Du, Q.; Zhang, X.; Zhang, X.; Wei, M.; Xu, H.; Wang, S. Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1265-1271.
[http://dx.doi.org/10.1080/21691401.2019.1594000] [PMID: 30942630]
[68]
Cates, J.M.M.; Byrd, R.H.; Fohn, L.E.; Tatsas, A.D.; Washington, M.K.; Black, C.C. Epithelial-mesenchymal transition markers in pancreatic ductal adenocarcinoma. Pancreas, 2009, 38(1), e1-e6.
[http://dx.doi.org/10.1097/MPA.0b013e3181878b7f] [PMID: 18766116]
[69]
Wu, W.S.; Heinrichs, S.; Xu, D.; Garrison, S.P.; Zambetti, G.P.; Adams, J.M.; Look, A.T. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell, 2005, 123(4), 641-653.
[http://dx.doi.org/10.1016/j.cell.2005.09.029] [PMID: 16286009]
[70]
Liu, Z.; Zhang, J.; Hong, G.; Quan, J.; Zhang, L.; Yu, M. Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. Am. J. Transl. Res., 2016, 8(10), 4120-4133.
[PMID: 27829997]
[71]
Abd El-Rehim, D.M.; Osman, N.A. Expression of a disintegrin and metalloprotease 8 and endostatin in human osteosarcoma: Implication in tumor progression and prognosis. J. Egypt. Natl. Canc. Inst., 2015, 27(1), 1-9.
[http://dx.doi.org/10.1016/j.jnci.2014.11.001] [PMID: 25481287]
[72]
Puolakkainen, P.; Koski, A.; Vainionpää, S.; Shen, Z.; Repo, H.; Kemppainen, E.; Mustonen, H.; Seppänen, H. Anti-inflammatory macrophages activate invasion in pancreatic adenocarcinoma by increasing the MMP9 and ADAM8 expression. Med. Oncol., 2014, 31(3), 884.
[http://dx.doi.org/10.1007/s12032-014-0884-9] [PMID: 24526468]
[73]
Yu, X.; Gao, Y.; Zhang, F. Propofol inhibits pancreatic cancer proliferation and metastasis by up-regulating miR-328 and down-regulating ADAM8. Basic Clin. Pharmacol. Toxicol., 2019, 125(3), 271-278.
[http://dx.doi.org/10.1111/bcpt.13224] [PMID: 30861616]
[74]
Gu, H.; Guo, X.; Zou, L.; Zhu, H.; Zhang, J. Upregulation of microRNA-372 associates with tumor progression and prognosis in hepatocellular carcinoma. Mol. Cell. Biochem., 2013, 375(1-2), 23-30.
[http://dx.doi.org/10.1007/s11010-012-1521-6] [PMID: 23291979]
[75]
Wang, Q.; Liu, S.; Zhao, X.; Wang, Y.; Tian, D.; Jiang, W. MiR-372-3p promotes cell growth and metastasis by targeting FGF9 in lung squamous cell carcinoma. Cancer Med., 2017, 6(6), 1323-1330.
[http://dx.doi.org/10.1002/cam4.1026] [PMID: 28440022]
[76]
Shen, Y.H.; Xie, Z.B.; Yue, A.M.; Wei, Q.D.; Zhao, H.F.; Yin, H.D.; Mai, W.; Zhong, X.G.; Huang, S.R. Expression level of microRNA-195 in the serum of patients with gastric cancer and its relationship with the clinicopathological staging of the cancer. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(7), 1283-1287.
[PMID: 27097947]
[77]
Sun, H.; Gao, D. Propofol suppresses growth, migration and invasion of A549 cells by down-regulation of miR-372. BMC Cancer, 2018, 18(1), 1252.
[http://dx.doi.org/10.1186/s12885-018-5175-y] [PMID: 30547768]
[78]
Fumarola, C.; Bonelli, M.A.; Petronini, P.G.; Alfieri, R.R. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem. Pharmacol., 2014, 90(3), 197-207.
[http://dx.doi.org/10.1016/j.bcp.2014.05.011] [PMID: 24863259]
[79]
Chen, G.M.; Zheng, A.J.; Cai, J.; Han, P.; Ji, H.B.; Wang, L.L. microRNA-145-3p inhibits non-small cell lung cancer cell migration and invasion by targeting PDK1 via the mTOR signaling pathway. J. Cell. Biochem., 2018, 119(1), 885-895.
[http://dx.doi.org/10.1002/jcb.26252] [PMID: 28661070]
[80]
Hou, T.; Li, Z.; Zhao, Y.; Zhu, W.G. Mechanisms controlling the anti-neoplastic functions of FoxO proteins. Semin. Cancer Biol., 2018, 50, 101-114.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.007] [PMID: 29155239]
[81]
Li, W.; Meng, Z.; Zou, T.; Wang, G.; Su, Y.; Yao, S.; Sun, X. MiR-374a activates WNT/beta-catenin signaling to promote osteosarcoma cell migration by targeting WIF-1 Pathology oncology research : POR, 2018.
[82]
Ni, W.; Luo, L.; Zuo, P.; Li, R.; Xu, X.; Wen, F.; Hu, D. miR-374a Inhibitor enhances etoposide-induced cytotoxicity against glioma cells through upregulation of FOXO1. Oncol. Res., 2019, 27(6), 703-712.
[http://dx.doi.org/10.3727/096504018X15426775024905] [PMID: 30841958]
[83]
Chen, Y.; Huang, L.; Wang, S.; Li, J.L.; Li, M.; Wu, Y.; Liu, T. WFDC2 contributes to epithelial-mesenchymal transition (EMT) by activating AKT signaling pathway and regulating MMP-2 expression. Cancer Manag. Res., 2019, 11, 2415-2424.
[http://dx.doi.org/10.2147/CMAR.S192950] [PMID: 31118763]
[84]
Yang, H.L.; Thiyagarajan, V.; Shen, P.C.; Mathew, D.C.; Lin, K.Y.; Liao, J.W.; Hseu, Y.C. Anti-EMT properties of CoQ0 attributed to PI3K/AKT/NFKB/MMP-9 signaling pathway through ROS-mediated apoptosis. J. Exp. Clin. Cancer Res., 2019, 38(1), 186.
[http://dx.doi.org/10.1186/s13046-019-1196-x] [PMID: 31068208]
[85]
Liu, S-Q.; Zhang, J-L.; Li, Z-W.; Hu, Z-H.; Liu, Z.; Li, Y. Propofol inhibits proliferation, migration, invasion and promotes apoptosis through down-regulating miR-374a in hepatocarcinoma cell lines. Cell. Physiol. Biochem., 2018, 49(6), 2099-2110.
[http://dx.doi.org/10.1159/000493814] [PMID: 30257238]
[86]
Pimentel-Nunes, P.; Libânio, D.; Dinis-Ribeiro, M. Evaluation and management of gastric superficial neoplastic lesions. GE Port. J. Gastroenterol., 2017, 24(1), 8-21.
[http://dx.doi.org/10.1159/000450870] [PMID: 28848776]
[87]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[88]
Deng, H.; Guo, Y.; Song, H.; Xiao, B.; Sun, W.; Liu, Z.; Yu, X.; Xia, T.; Cui, L.; Guo, J. MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene, 2013, 518(2), 351-359.
[http://dx.doi.org/10.1016/j.gene.2012.12.103] [PMID: 23333942]
[89]
Zhang, W.; Wang, Y.; Zhu, Z.; Zheng, Y.; Song, B. Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int. J. Biol. Macromol. , 2018, 120(Pt A), 975-984.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.173] [PMID: 30171944]
[90]
Pencik, J.; Pham, H.T.; Schmoellerl, J.; Javaheri, T.; Schlederer, M.; Culig, Z.; Merkel, O.; Moriggl, R.; Grebien, F.; Kenner, L. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine, 2016, 87, 26-36.
[http://dx.doi.org/10.1016/j.cyto.2016.06.017] [PMID: 27349799]
[91]
Morotti, A.; Crivellaro, S.; Panuzzo, C.; Carrà, G.; Guerrasio, A.; Saglio, G. IκB-α: At the crossroad between oncogenic and tumor-suppressive signals. Oncol. Lett., 2017, 13(2), 531-534.
[http://dx.doi.org/10.3892/ol.2016.5465] [PMID: 28356925]
[92]
Xia, H.; Yan, Y.; Hu, M.; Wang, Y.; Wang, Y.; Dai, Y.; Chen, J.; Di, G.; Chen, X.; Jiang, X. MiR-218 sensitizes glioma cells to apoptosis and inhibits tumorigenicity by regulating ECOP-mediated suppression of NF-κB activity. Neuro-oncol., 2013, 15(4), 413-422.
[http://dx.doi.org/10.1093/neuonc/nos296] [PMID: 23243056]
[93]
Khanna, P.; Chua, P.J.; Wong, B.S.E.; Yin, C.; Thike, A.A.; Wan, W.K.; Tan, P.H.; Baeg, G.H. GRAM domain-containing protein 1B (GRAMD1B), a novel component of the JAK/STAT signaling pathway, functions in gastric carcinogenesis. Oncotarget, 2017, 8(70), 115370-115383.
[http://dx.doi.org/10.18632/oncotarget.23265] [PMID: 29383166]
[94]
Su, M.; Qin, B.; Liu, F.; Chen, Y.; Zhang, R. miR-885-5p upregulation promotes colorectal cancer cell proliferation and migration by targeting suppressor of cytokine signaling. Oncol. Lett., 2018, 16(1), 65-72.
[http://dx.doi.org/10.3892/ol.2018.8645] [PMID: 29928388]
[95]
Hallett, M.A.; Venmar, K.T.; Fingleton, B. Cytokine stimulation of epithelial cancer cells: The similar and divergent functions of IL-4 and IL-13. Cancer Res., 2012, 72(24), 6338-6343.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3544] [PMID: 23222300]
[96]
Siddiqui, R.A.; Zerouga, M.; Wu, M.; Castillo, A.; Harvey, K.; Zaloga, G.P.; Stillwell, W. Anticancer properties of propofol-docosahexaenoate and propofol-eicosapentaenoate on breast cancer cells. Breast Cancer Res., 2005, 7(5), R645-R655.
[http://dx.doi.org/10.1186/bcr1036]
[97]
Kirkpatrick, J.; Wang, Z.; Sampson, J.; McSherry, F.; Herndon, J.; Allen, K.; Duffy, E.; Chang, Z.; Hoang, J.; Kelsey, C.; Yoo, D.; Cabrera, A.; Yin, F.-F. BM-17final results of a randomized trial to identify the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases. Neuro-Oncology, 16 (suppl_5), v35-v35. 2014
[98]
Ren, X.F.; Li, W.Z.; Meng, F.Y.; Lin, C.F. Differential effects of propofol and isoflurane on the activation of T‐helper cells in lung cancer patients. Anaesthesia, 2010, 65(5), 478-482.
[http://dx.doi.org/10.1111/j.1365-2044.2010.06304.x]
[99]
Wang, Y.; Wen, L.; Zhao, S.H.; Ai, Z.H.; Guo, J.Z.; Liu, W.C. FoxM1 expression is significantly associated with cisplatin-based chemotherapy resistance and poor prognosis in advanced non-small cell lung cancer patients. Lung Cancer, 2013, 79(2), 173-179.
[http://dx.doi.org/10.1016/j.lungcan.2012.10.019] [PMID: 23177020]
[100]
Brunner, S.; Herndler-Brandstetter, D.; Arnold, C.R.; Wiegers, G.J.; Villunger, A.; Hackl, M.; Grillari, J.; Moreno-Villanueva, M.; Bürkle, A.; Grubeck-Loebenstein, B. Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell, 2012, 11(4), 579-587.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00819.x] [PMID: 22435726]
[101]
Chen, L.; Zhang, A.; Li, Y.; Zhang, K.; Han, L.; Du, W.; Yan, W.; Li, R.; Wang, Y.; Wang, K.; Pu, P.; Jiang, T.; Jiang, C.; Kang, C. MiR-24 regulates the proliferation and invasion of glioma by ST7L via β-catenin/Tcf-4 signaling. Cancer Lett., 2013, 329(2), 174-180.
[http://dx.doi.org/10.1016/j.canlet.2012.10.025] [PMID: 23142218]
[102]
Qin, W.; Shi, Y.; Zhao, B.; Yao, C.; Jin, L.; Ma, J.; Jin, Y. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One, 2010, 5(2)e9429
[http://dx.doi.org/10.1371/journal.pone.0009429] [PMID: 20195546]
[103]
Yu, B.; Gao, W.; Zhou, H.; Miao, X.; Chang, Y.; Wang, L.; Xu, M.; Ni, G. Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomark., 2018, 21(3), 513-519.
[http://dx.doi.org/10.3233/CBM-170234] [PMID: 29103019]
[104]
Wang, J.; Tian, X.; Han, R.; Zhang, X.; Wang, X.; Shen, H.; Xue, L.; Liu, Y.; Yan, X.; Shen, J.; Mannoor, K.; Deepak, J.; Donahue, J.M.; Stass, S.A.; Xing, L.; Jiang, F. Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene, 2014, 33(9), 1181-1189.
[http://dx.doi.org/10.1038/onc.2013.42] [PMID: 23474761]
[105]
Peng, Y.; Dai, Y.; Hitchcock, C.; Yang, X.; Kassis, E.S.; Liu, L.; Luo, Z.; Sun, H.L.; Cui, R.; Wei, H.; Kim, T.; Lee, T.J.; Jeon, Y.J.; Nuovo, G.J.; Volinia, S.; He, Q.; Yu, J.; Nana-Sinkam, P.; Croce, C.M. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(37), 15043-15048.
[http://dx.doi.org/10.1073/pnas.1307107110] [PMID: 23980150]
[106]
Liu, Z.; Rudd, M.D.; Hernandez-Gonzalez, I.; Gonzalez-Robayna, I.; Fan, H.Y.; Zeleznik, A.J.; Richards, J.S. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol. Endocrinol., 2009, 23(5), 649-661.
[http://dx.doi.org/10.1210/me.2008-0412] [PMID: 19196834]
[107]
Gilley, J.; Coffer, P.J.; Ham, J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell Biol., 2003, 162(4), 613-622.
[http://dx.doi.org/10.1083/jcb.200303026] [PMID: 12913110]
[108]
Brunet, A.; Bonni, A.; Zigmond, M.J.; Lin, M.Z.; Juo, P.; Hu, L.S.; Anderson, M.J.; Arden, K.C.; Blenis, J.; Greenberg, M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999, 96(6), 857-868.
[http://dx.doi.org/10.1016/S0092-8674(00)80595-4] [PMID: 10102273]
[109]
Yang, N.; Liang, Y.; Yang, P.; Yang, T.; Jiang, L. Propofol inhibits lung cancer cell viability and induces cell apoptosis by upregulating microRNA-486 expression. Braz. J. Med. Biol. Res., 2017, 50(1), e5794-e5794.
[http://dx.doi.org/10.1590/1414-431x20165794] [PMID: 28076456]
[110]
Huang, X.; Teng, Y.; Yang, H.; Ma, J. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-κB signal. Braz. J. Med. Biol. Res., 2016, 49(12)e5717
[http://dx.doi.org/10.1590/1414-431x20165717] [PMID: 27982283]
[111]
Kovalchuk, O.; Filkowski, J.; Meservy, J.; Ilnytskyy, Y.; Tryndyak, V.P.; Chekhun, V.F.; Pogribny, I.P. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther., 2008, 7(7), 2152-2159.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0021] [PMID: 18645025]
[112]
Bandres, E.; Bitarte, N.; Arias, F.; Agorreta, J.; Fortes, P.; Agirre, X.; Zarate, R.; Diaz-Gonzalez, J.A.; Ramirez, N.; Sola, J.J.; Jimenez, P.; Rodriguez, J.; Garcia-Foncillas, J. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 2009, 15(7), 2281-2290.
[113]
Peng, Z.; Zhang, Y. Propofol inhibits proliferation and accelerates apoptosis of human gastric cancer cells by regulation of microRNA- 451 and MMP-2 expression Genetics and molecular research : GMR. 15(2)2016,
[114]
Guo, X.; Cui, Z. Current diagnosis and treatment of pancreatic cancer in China. Pancreas, 2005, 31(1), 13-22.
[http://dx.doi.org/10.1097/01.mpa.0000168220.97967.d1] [PMID: 15968242]
[115]
Nohata, N.; Hanazawa, T.; Enokida, H.; Seki, N. microRNA-1/133a and microRNA-206/133b clusters: Dysregulation and functional roles in human cancers. Oncotarget, 2012, 3(1), 9-21.
[http://dx.doi.org/10.18632/oncotarget.424] [PMID: 22308266]
[116]
Qin, Y.; Dang, X.; Li, W.; Ma, Q. miR-133a functions as a tumor suppressor and directly targets FSCN1 in pancreatic cancer. Oncol. Res., 2013, 21(6), 353-363.
[http://dx.doi.org/10.3727/096504014X14024160459122] [PMID: 25198665]
[117]
Liu, Z.; Zhang, J.; Hong, G.; Quan, J.; Zhang, L.; Yu, M. Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. Am. J. Transl. Res., 2016, 8(10), 4120.
[http://dx.doi.org/10.1080/21691401.2019.1594000]
[118]
Zhang, C.; Ge, S.; Hu, C.; Yang, N.; Zhang, J. MiRNA-218, a new regulator of HMGB1, suppresses cell migration and invasion in non-small cell lung cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(12), 1055-1061.
[http://dx.doi.org/10.1093/abbs/gmt109] [PMID: 24247270]
[119]
Jin, J.; Cai, L.; Liu, Z.M.; Zhou, X.S. miRNA-218 inhibits osteosarcoma cell migration and invasion by down-regulating of TIAM1, MMP2 and MMP9. Asian Pac. J. Cancer Prev., 2013, 14(6), 3681-3684.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3681] [PMID: 23886165]
[120]
Prudnikova, T.Y.; Mostovich, L.A.; Kashuba, V.I.; Ernberg, I.; Zabarovsky, E.R.; Grigorieva, E.V. miRNA-218 contributes to the regulation of D-glucuronyl C5-epimerase expression in normal and tumor breast tissues. Epigenetics, 2012, 7(10), 1109-1114.
[http://dx.doi.org/10.4161/epi.22103] [PMID: 22968430]
[121]
Zhang, J.M.; Sun, C.Y.; Yu, S.Z.; Wang, Q.; An, T.L.; Li, Y.Y.; Kong, Y.L.; Wen, Y.J. Relationship between miR-218 and CDK6 expression and their biological impact on glioma cell proliferation and apoptosis. Zhonghua bing li xue za zhi = Chinese journal of pathology, 40(7), 454-459.2011,
[122]
Xu, J.; Xu, W.; Zhu, J. Propofol suppresses proliferation and invasion of glioma cells by upregulating microRNA-218 expression. Mol. Med. Rep., 2015, 12(4), 4815-4820.
[http://dx.doi.org/10.3892/mmr.2015.4014] [PMID: 26133092]
[123]
Wu, L.; Cai, C.; Wang, X.; Liu, M.; Li, X.; Tang, H. MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett., 2011, 585(9), 1322-1330.
[http://dx.doi.org/10.1016/j.febslet.2011.03.067] [PMID: 21482222]
[124]
Sonda, N.; Simonato, F.; Peranzoni, E.; Calì, B.; Bortoluzzi, S.; Bisognin, A.; Wang, E.; Marincola, F.M.; Naldini, L.; Gentner, B.; Trautwein, C.; Sackett, S.D.; Zanovello, P.; Molon, B.; Bronte, V. miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis. Immunity, 2013, 38(6), 1236-1249.
[http://dx.doi.org/10.1016/j.immuni.2013.06.004] [PMID: 23809164]
[125]
Zhang, J.; Shan, W.F.; Jin, T.T.; Wu, G.Q.; Xiong, X-X.; Jin, H.Y.; Zhu, S.M. Propofol exerts anti-hepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from macrophage to cancer cells. J. Transl. Med., 2014, 12, 279-279.
[http://dx.doi.org/10.1186/s12967-014-0279-x] [PMID: 25292173]
[126]
Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and End Results Program. Cancer, 2009, 115(7), 1531-1543.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[127]
Osaki, M.; Takeshita, F.; Sugimoto, Y.; Kosaka, N.; Yamamoto, Y.; Yoshioka, Y.; Kobayashi, E.; Yamada, T.; Kawai, A.; Inoue, T.; Ito, H.; Oshimura, M.; Ochiya, T. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease- 13 expression. Molecular therapy: The journal of the American Society of Gene Therapy, 2011, 19(6), 1123-1130.
[http://dx.doi.org/10.1038/mt.2011.53]
[128]
Mammoto, T.; Mukai, M.; Mammoto, A.; Yamanaka, Y.; Hayashi, Y.; Mashimo, T.; Kishi, Y.; Nakamura, H. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett., 2002, 184(2), 165-170.
[http://dx.doi.org/10.1016/S0304-3835(02)00210-0]
[129]
Budhu, A.; Jia, H.L.; Forgues, M.; Liu, C.G.; Goldstein, D.; Lam, A.; Zanetti, K.A.; Ye, Q.H.; Qin, L.X.; Croce, C.M.; Tang, Z.Y.; Wang, X.W. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology, 2008, 47(3), 897-907.
[http://dx.doi.org/10.1002/hep.22160] [PMID: 18176954]
[130]
Shen, Q.; Cicinnati, V.R.; Zhang, X.; Iacob, S.; Weber, F.; Sotiropoulos, G.C.; Radtke, A.; Lu, M.; Paul, A.; Gerken, G.; Beckebaum, S. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol. Cancer, 2010, 9, 227.
[http://dx.doi.org/10.1186/1476-4598-9-227] [PMID: 20799954]
[131]
Zhang, J.; Shan, W.F.; Wu, G.Q.; Xiong, X.X.; Jin, H.Y.; Zhu, S.M. Propofol exerts anti-hepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from macrophage to cancer cells. J. Transl. Med., 2014, 12(1), 279.
[http://dx.doi.org/10.1186/s12967-014-0279-x]
[132]
Zhang, J.; Wu, G.Q.; Zhang, Y.; Feng, Z.Y.; Zhu, S.M. Propofol induces apoptosis of hepatocellular carcinoma cells by upregulation of microRNA-199a expression. Cell Biol. Int., 2013, 37(3), 227-232.
[http://dx.doi.org/10.1002/cbin.10034] [PMID: 23319430]
[133]
Zhang, W.; Wang, Y.; Zhu, Z.; Zheng, Y.; Song, B. Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195., International journal of biological macromolecules., 2018, 120(Pt A), 975-984.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.173]
[134]
Xu, K.; Tao, W.; Su, Z. Propofol prevents IL-13-induced epithelial-mesenchymal transition in human colorectal cancer cells. Cell Biol. Int., 2018, 42(8), 985-993.
[http://dx.doi.org/10.1002/cbin.10964] [PMID: 29569786]
[135]
Liu, W-Z.; Liu, N. Propofol inhibits lung cancer A549 cell growth and epithelial-mesenchymal transition process by upregulation of microRNA-1284. Oncol. Res., 2018, 27(1), 1-8.
[http://dx.doi.org/10.3727/096504018X15172738893959] [PMID: 29402342]
[136]
Yu, B.; Gao, W.; Zhou, H.; Miao, X.; Chang, Y.; Wang, L.; Xu, M.; Ni, G. Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomarkers, (Preprint), 1-7.2017, Preprint .
[137]
Wang, Z.T.; Gong, H.Y.; Zheng, F.; Liu, D.J.; Dong, T.L. Propofol suppresses proliferation and invasion of pancreatic cancer cells by upregulating microRNA-133a expression. Genet. Mol. Res., 2015, 14(3), 7529-7537.
[http://dx.doi.org/10.4238/2015.July.3.28] [PMID: 26214431]
[138]
Su, Z.; Hou, X.K.; Wen, Q.P. Propofol induces apoptosis of epithelial ovarian cancer cells by upregulation of microRNA let-7i expression. Eur. J. Gynaecol. Oncol., 2014, 35(6), 688-691.
[PMID: 25556276]
[139]
Ghaderi, A.; Vahdati-Mashhadian, N.; Oghabian, Z.; Moradi, V.; Afshari, R.; Mehrpour, O. Thallium exists in opioid poisoned patients. Daru, 2015, 23, 39.
[http://dx.doi.org/10.1186/s40199-015-0121-x]
[140]
Ye, Z.; Jingzhong, L.; Yangbo, L.; Lei, C.; Jiandong, Y. Propofol inhibits proliferation and invasion of osteosarcoma cells by regulation of microRNA-143 expression. Oncol. Res., 2013, 21(4), 201-207.
[http://dx.doi.org/10.3727/096504014X13890370410203] [PMID: 24762226]
[141]
Zhang, J.; Zhang, D.; Wu, G-Q.; Feng, Z-Y.; Zhu, S-M. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. HBPD INT, 2013, 12(3), 305-309.
[http://dx.doi.org/10.1016/S1499-3872(13)60048-X] [PMID: 23742776]
[142]
Yu, H.; Ma, M.; Wang, X.; Zhou, Z.; Li, R.; Guo, Q. Propofol suppresses proliferation, invasion, and migration of human melanoma cells via regulating microRNA-137 and fibroblast growth factor 9. J. Cell. Physiol., 2019, 234(12), 23279-23288.
[http://dx.doi.org/10.1002/jcp.28896] [PMID: 31134615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy