[3]
Samuelsson, G. Drugs of natural origin. A textbook of pharmacognosy, 4th ed; Swedish Pharmaceutical Press: Stockholm, 1999.
[4]
Sarker, M.M.R. Antihyperglycemic, insulin-sensitivity and anti-hyperlipidemic potential of Ganoderma lucidum, a dietary mushroom, on alloxan-and glucocorticoid-induced diabetic Long-Evans rats. Funct. Food Health Dis., 2015, 5(12), 450-466.
[14]
Ahmad, R.; Fatima, N.; Srivastava, A.N.; Khan, M.A. Anticancer potential of medicinal plants Withania somnifera, Tinospora cordifolia and Curcuma longa: A review. World Res. J. Med. Aromatic Plants, 2015, 3, 47-56.
[17]
Vázquez-Fresno, R.; Rosana, A.; Sajed, T.; Onookome-Okome, T.;
Wishart, N.; Wishart, D. Herbs and Spices- biomarkers of intake
based on human intervention studies – A systematic review. Genes Nutr., 2019, 14, 18.
[18]
Aggarwal, B.B.; Kumar, A.; Aggarwal, M.S.; Shishodia, S. Curcumin derived from turmeric (Curcuma longa): A spice for all seasons; Phyto. Pharma. Cancer Chemoprevent, 2005, pp. 350-387.
[63]
Mishra, S.; Verma, S.S.; Rai, V.; Awasthee, N.; Arya, J.S.; Maiti, K.K.; Gupta, S.C. Curcuma raktakanda induces apoptosis and suppresses
migration in cancer cells: Role of reactive oxygen species. Biomol, 2019, 9(4), Pii, E159.
[98]
Zhu, G.; Shen, Q.; Jiang, H.; Ji, O.; Zhu, L.; Zhang, L. Curcumin inhibited the growth and invasion of human monocytic leukaemia SHI-1 cells in vivo by altering MAPK and MMP signalling. Pharm. Biol., 2019, 58(1), 25-34.
[107]
He, H.; Qiao, K.; Wang, C.; Yang, W.; Xu, Z.; Zhang, Z.; Jia, Y.; Zhang, C.; Peng, L. Hydrazinocurcumin induces apoptosis of hepatocellular carcinoma cells through the p38 MAPK Pathway. Clin. Transl. Sci., 2020. Epub ahead of print
[145]
Bian, Y.; Guo, D. Targeted therapy for hepatocellular carcinoma: Co-Delivery of sorafenib and curcumin using lactosylated pH-responsive nanoparticles. Drug Des. Devel. Ther., 2020, 14, 647-659.
[146]
Prakash, E.; Saxena, A.K.; Gupta, D.K. In vitro study of Curcuma domestica ethanolic extract for anticancer properties. J. Environ. Sci. Comp. Sci. Eng. Technol., 2014, 3(3), 1183-1187.
[148]
Hashim, F.J.; Shawkat, M.S.; Aljewari, H. Anti-cancer effect of Curcuma longa on leukemic cell lines evaluated by apoptosis and comet assay. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 671-674.
[188]
Nigam, N.; Bhui, K.; Prasad, S.; George, J.; Shukla, Y. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chem. Biol. Interact., 2009, 181, 77-84.
[190]
Nedungadi, D.; Binoy, A.; Vinod, V.; Vanuopadath, M.; Nair, S.S.; Nair, B.G.; Mishra, N. Ginger extract activates caspase independent paraptosis in cancer cells via ER stress, mitochondrial dysfunction, AIF translocation and DNA damage. Nutr. Cancer, 2019, 1-13.
[202]
Fuzer, A.M.; Martin, A.C.B.M.; Becceneri, A.B.; da Silva, J.A.; Vieira, P.C.; Cominetti, M.R. 10]-Gingerol Affects multiple metastatic processes and induces apoptosis in MDA-MB-231 breast tumor cells. Anticancer. Agents Med. Chem., 2019, 19(5), 645-654.
[225]
Bronowicka-Adamska, P.; Bentke, A.; Lasota, M.; Wróbel, M. Effect of S-Allyl-L-Cysteine on MCF-7 cell line 3-mercaptopyruvate sulfurtransferase/sulfane sulfur system, viability and apoptosis. Int. J. Mol. Sci., 2020, 21(3), 1090.
[285]
Rad, J.G.; Hoskin, D.W. Delivery of apoptosis-inducing piperine to triple-negative breast cancer cells via co-polymeric nanoparticles. Anticancer Res., 2020, 40(2), 689-694.
[313]
AbouAitah, K.; Stefanek, A.; Higazy, I.M.; Janczewska, M.; Swiderska-Sroda, A.; Chodara, A.; Wojnarowicz, J.; Szałaj, U.; Shahein, S.A.; Aboul-Enein, A.M.; Abou-Elella, F.; Gierlotka, S.; Ciach, T.; Lojkowski, W. Effective targeting of colon cancer cells with piperine natural anticancer prodrug using functionalized clusters of hydroxyapatite nanoparticles. Pharmaceutics, 2020, 12(1) E70
[316]
Guha Majumdar, A.; Subramanian, M. Hydroxychavicol from Piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells. Biochem. Pharmacol., 2019, 166, 274-291.
[331]
Nair, S.C.; Varghese, C.D.; Panikkar, K.R.; Kurumboor, S.K.; Parathod, R.K. Effects of Saffron on the serum vitamin A levels in mice and its antitumor activity. Int. J. Pharmacol., 1994, 32, 105.
[394]
Vutakuri, N.; Somara, S. Natural and herbal medicine for breast cancer using Elettaria cardamomum (L.) Maton. Int. J. Herbal Med., 2018, 6(2), 91-96.
[410]
Shahwar, D.; Ullah, S.; Khan, M.A.; Ahmad, N.; Saeed, A.; Ullah, S. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak. J. Pharm. Sci., 2015, 28(3), 969-972.
[435]
Muthumani, P.; Venkatraman, S.; Ramseshu, V.K.; Meera, R.; Devi, P.; Kameswari, B.; Eswarapriya, B. Pharmacological studies of anticancer, anti inflammatory activities of Murraya koenigii (Linn) Spreng in experimental animals. J. Pharm. Sci. Res, 2009, 1(3), 137-141.
[492]
Abdel-Wahab, A.; Hashem Abdel-Razik, A.R.; Abdel Aziz, R.L. Rescue effects of aqueous seed extracts of Foeniculum vulgare and Carum carvi against cadmium-induced hepatic, renal and gonadal damage in female albino rats. Asian Pac. J. Trop. Med., 2017, 10(12), 1123-1133.
[496]
Baliga, M.; Jimmy, R.; Thilakchand, K.; Sunitha, V.; Bhat, N.; Saldanha, E.; Rao, S.; Rao, P.; Arora, R.; Palatty, P. Ocimum Sanctum
L (Holy Basil or Tulsi) and its phytochemicals in the prevention
and treatment of cancer. Nutr. Cancer, 2013, 65(sup1), 26-24.
[512]
Bhalke, R.D.; Anarthe, S.J.; Sasane, K.D.; Satpute, S.N.; Shinde, S.N.; Sangle, V.S. Antinociceptive activity of Trigonella foenum-graecum leaves and seeds (Fabaceae). Iran. J. Pharmacol. Therapeut., 2009, 8, 57-59.
[518]
Mahapatra, K.; Ghosh, A.K.; De, S.; Ghosh, N.; Sadhukhan, P.; Chatterjee, S.; Ghosh, R.; Sil, P.C.; Roy, S. Assessment of cytotoxic and genotoxic potentials of a mononuclear Fe(II) Schiff base complex with photocatalytic activity in Trigonella. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(3) 129503
[538]
Thenmozhi, T. Functionalization of iron oxide nanoparticles with
clove extract to induce apoptosis in MCF-7 breast cancer cells. 3
Biotech, 2020, 10(2), 82.
[561]
Dwivedi, V.; Shalini, T. Review study on potential activity of Piper betle. J. Pharmacognosy Phytochem., 2014, 3(4), 93-98.
[606]
Ramya, N.; Priyadharshini, P.R.; Dhivya, R. Anti cancer activity of Trachyspermum ammi against MCF-cell lines mediates by p53 and Bcl-2 mRNA levels. J. of Phytopharmacol., 2017, 6(2), 78-83.
[610]
Singh, A.; Uppal, G.K. A review on Carissa carandas- photochemistry, ethno-pharmacology, and micropropagation as conservation strategy. Asian J. Pharm. Clin. Res., 2015, 8(3), 26-30.
[611]
Kumar, S.; Gupta, P.; Gupta, K.L.V. A critical review on karamarda (Carissa carandas Linn.). Int. J. Pharm. Biol. Arch., 2013, 4, 637-642.
[612]
David, M.; Karekalammanavar, G. Spectrographic analysis and in vitro study of antibacterial, anticancer activity of aqueous ethanolic fruit extract of Carissa carandas L. J. Adv. Sci. Res., 2015, 6, 10-13.
[613]
Dua, D.; Srivastav, N.S. Anti-cancerous and antioxidant potential of aqueous extracts of Annona reticulata, Podophyllum peltatum, Psidium guajava, Ananas comosus, Carissa carandas on MCF-7 cancer cell line. Int. J. Integr. Sci. Innov. Technol. Sec., 2013, 2(4), 15-19.
[614]
Sadek, Y.B.; Choudhury, N.; Shahriar, M. Biological investigations of the leaf extracts of Carissa carandas. Int. J. Pharm. Res. Technol., 2013, 5(2), 97-105.
[617]
Singh, D.; Singh, M.; Yadav, E.; Falls, N.; Singh D, D.; Kumar, V.; Ramteke, P.W.; Verma, A. Attenuation of diethylnitrosamine (DEN) - Induced hepatic cancer in experimental model of Wistar rats by Carissa carandas embedded silver nanoparticles. Biomed. Pharmacother., 2018, 108(1), 757-765.
[618]
Fukuda, Y.; Osawa, T.; Namiki, M.; Saki, T. Studies on antioxidative substances in sesame. Agric. Biol. Chem., 1985, 49, 301-306.
[656]
Martinello, F.; Kannen, V.; Franco, J.J.; Gasparotto, B.; Sakita, J.Y.; Sugohara, A.; Garcia, S.B.; Uyemura, S.A. Chemopreventive
effects of a Tamarindus indica fruit extract against colon carcinogenesis
depend on the dietary cholesterol levels in hamsters. Food
Chem. Toxicol, 2017, 107(Pt A), 261-269.
[675]
Joseph, M.M.; Aravind, S.R.; George, S.K.; Varghese, S.; Sreelekha, T.T. A galactomannan polysaccharide from Punica granatum imparts in vitro and in vivo anticancer activity. Carbohydr. Polym., 2013, 98(2), 1466-1475.
[687]
Kaur, P.; Mehta, R.; Singh, B.; Arora, S. Development of aqueousbased
multi-herbal combination using principal component analysis
and its functional significance in HepG2 cells. BMC Compl Altern. Med., 2019, 19(1), 18.
[688]
Choprae, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian medicinal plants; New CSIR Publication: Delhi, 1996, Vol. 2, .
[690]
Fotso W, G.; Na-Iya, J.; Mbaveng T, A.; Ango Yves, P.; Demirtas, I.; Kuete, V.; Samuel, Y.; Ngameni, B.; Efferth, T.; Ngadjui T, B. Polyacanthoside A, a new oleanane-type triterpenoid saponin with cytotoxic effects from the leaves of Acacia polyacantha (Fabaceae). Nat. Prod. Res., 2019, 33(24), 3521-3526.
[694]
Morton, J.F. Lemon. Fruits of warm climates; Florida Flair Books: Miami, FL, 1987, pp. 160-168.
[699]
Hafidh, R.R.; Hussein, S.Z. MalAllah, M.Q.; Abdulamir, A.S.;
Abu, B.F. A high-throughput quantitative expression analysis of
cancer-related genes in human HepG2 cells in response to limonene,
a potential anticancer agent. Curr. Cancer Drug Targets, 2018, 18(8), 807-815.
[724]
Singhal, S.S.; Horne, D.; Singhal, J.; Vonderfecht, S.; Salgia, R.; Awasthi, S. Synergistic efficacy of RLIP inhibition and 2′-hydroxyflavanone against DMBA-induced mammary carcinogenesis in SENCAR mice. Mol. Carcinog., 2019, 58(8), 1438-1449.
[725]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mangifera indica (Mango). Evid. Based Complement. Alternat. Med., 2017, 2017 6949835
[727]
Khurana, R.K.; Kaur, R.; Kaur, M.; Kaur, R.; Kaur, J.; Kaur, H.; Singh, B. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software. Future Sci. OA, 2017, 3(1) FSO167
[737]
Peng, Z.G.; Luo, J.; Xia, L.H.; Chen, Y.; Song, S.J. [CML cell line K562 cell apoptosis induced by mangiferin]. J. Exp. Hematol, 2004, (12), 590-594.
[741]
Komal, K.; Singh, M.; Sharma, A.; Deshwal, V. Molecular mechanism of mangiferin-induced cytotoxicity in cervical carcinoma cells. Mol. Cancer Ther., 2009, 325(1-2), 107-119.
[756]
Liu, H.; Lee, P.; Bamodu, O.; Su, Y.; Fong, I.; Yeh, C.; Chien,
M.H.; Kan, I.H.; Lin, C.M. Enhanced Hsa-miR-181d/p-STAT3 and
Hsa-miR-181d/p-STAT5A ratios mediate the anticancer effect of
garcinol in STAT3/5A-addicted glioblastoma. Cancers, 2019, 11(12), 1888.
[776]
Chudiwal, A.K.; Jain, D.P.; Somani, R.S. Alpinia galanga Willd-An overview on phyto-pharmacological properties. Indian J. Nat. Prod. Resour., 2010, 1, 143-149.
[793]
Zou, W.; Xu, S Galangin inhibits the cell progression and induces cell apoptosis through activating PTEN and Caspase-3 pathways in retinoblastoma. Biomed. Pharmacother., 2018, 97, 851-863.
[824]
Puatanachokchai, R.; Kishida, H.; Denda, A.; Murata, N.; Konishi, Y.; Vinitketkumnuen, U.; Nakae, D. Inhibitory effects of lemon grass (Cymbopogon citratus, Stapf) extract on the early phase of hepatocarcinogenesis after initiation with diethylnitrosamine in male Fischer 344 rats. Cancer Lett., 2002, 183(1), 9-15.
[827]
Mediesse, F.; Boudjeko, T.; Hasitha, A.; Gangadhar, M.; Mbacham, W.; Yogeeswari, P. Inhibition of lipopolysaccharide (LPS)-induced neuroinflammatory response by polysaccharide fractions of Khaya grandifoliola (C.D.C.) stem bark, Cryptolepis sanguinolenta (Lindl.) Schltr and Cymbopogon citratus Stapf leaves in raw 264.7 macrophages and U87 glioblastoma cells. BMC Complement. Altern. Med., 2018, 18(1), 86.
[833]
Popović, M.; Maravić, A.; Čikeš Čulić, V.; Đulović, A.; Burčul, F.; Blažević, I. Biological effects of glucosinolate degradation products from Horseradish: A Horse that Wins the Race. Biomolecules, 2020, 10(2) E343
[840]
Zhang, G.; Fu, J.; Su, Y.; Zhang, X. Opposite effects of garcinol on tumor energy metabolism in oral qquamous cell carcinoma cells. Nutr. Cancer, 2019, 71(8), 1403-1411.
[841]
Dong, H.T.; Cao, J.; Han, C.M.; Su, Y.; Zhang, X.Y.; Chen, X. Role of 8-allyl garcinol in the chemoprevention of oral squamous cell carcinoma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2019, 41(1), 1-10.
[843]
Zhao, J.; Yang, T.; Ji, J.; Li, C.; Li, Z.; Li, L. Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin. Biomed. Pharmacother., 2018, 107, 957-966.
[847]
Schobert, R.; Biersack, B. Chemical and biological aspects of garcinol and isogarcinol: Recent developments. Chem. Biodivers., 2019, 16(9) e1900366
[850]
Nile, S.H.; Nile, A.S.; Keum, Y.S. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech, 2017, 7(1), 76.
[870]
Yaman, T.; Uyar, A.; Kömüroğlu, A.U.; Keleş, Ö.F.; Yener, Z. Chemopreventive efficacy of juniper berry oil (Juniperus communis L.) on azoxymethane-induced colon carcinogenesis in rat. Nutr. Cancer, 2019, 16, 1-14.
[889]
Offord, E.A.; Macé, K.; Ruffieux, C.; Malnoë, A.; Pfeifer, A.M. Rosemary components inhibit benzo[a]pyrene-induced genotoxicity in human bronchial cells. Carcinogenesis, 1995, 16(9), 2057-2062.
[910]
Hong, L.; Ying, S.H. Ethanol extract and isolated constituents from artemisia dracunculus inhibit esophageal squamous cell carcinoma and induce apoptotic cell death. Drug Res. (Stuttg.), 2015, 62(2), 101-106.
[929]
Erdoğan, A. Evaluation of cytotoxic, membrane, and DNA damaging effects of Thymus revolutus Célak essential oil on different cancer cells. Turk. J. Med. Sci., 2017, 47, 702-714.
[932]
Heidari, Z.; Salehzadeh, A.; Sadat Shandiz, S.; Tajdoost, S. Pharmacological
properties of Salvia officinalis and its components J. Tradit. Complement. Med., 2018, 7(4), 433-440.
[952]
Paul, S. Pharmacological actions and potential uses of Grewia asiatica: A review. Int. J. of App. Res., 2015, 1(9), 222-228.
[953]
Patil, P.; Patel, M.M.; Bhavsar, C.J. Preliminary phytochemical and hypoglycemic activity of leaves of Grewia Asiatica L. Res. J. Pharm. Biol. Chem. Sci., 2011, 2(1), 516-520.
[955]
Marya, B.; Dattani, K.H.; Patel, D.D.; Patel, P.D.; Patel, D.; Suthar, M.P.; Patel, V.P.; Bothra, S.B. In vitro cytotoxicity evaluatin of aqueous fruit and leaf extracts of Grewia asiatica using MTT Assay. Pharma Chem., 2011, 3(3), 282-287.
[956]
Dattani, K.H.; Patel, D.D.; Marya, B.; Patel, P.D.; Patel, D.; Suthar, M.P.; Patel, V.P.; Bothra, S.B. In vitro cytotoxicity evaluation of methanolic fruit extract of Grewia asiatica using MTT Assay; Inventi; Impact-Ethnopharmacology, 2011.
[957]
Kakoti, B.B.; Selvan, V.T.; Manikandan, L.; Gupta, M.; Mazumder, U.K.; Das, B. Antitumor and in vitro activity of Grewia asiatica Linn. against Ehlrich’s ascites carcinoma cell lines. Pharmacologyonline, 2011, 3, 956-960.
[958]
Lou, Z.Q.; Qin, B. Species systematization and quality evaluation of commonly used chinese traditional drugs; Beijing University Medical Press: Beijing, China, 1995, Vol. 1, .
[964]
Avila-Carrasco, L.; Majano, P.; Sánchez-Toméro, J.A.; Selgas, R.; López-Cabrera, M.; Aguilera, A.; González Mateo, G. Natural plant compounds as modulators of epithelial-to-mesenchymal transition. Front. Pharmacol., 2019, 10, 715.
[972]
Patra, K.; Jana, S.; Sarkar, A.; Mandal, D.P.; Bhattacharjee, S. The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway. Biofactors, 2019, 45(3), 401-415.
[1006]
Jaafaru, M.S.; Abd-Karim, NA.; Mohamed-Eliaser, E.; Maitalata, W.; Ahmed, H.; Mustapha-Barau, M.; Kong, L.; Abdull-Razis, A.F. Nontoxic Glucomoringin-Isothiocyanate (GMG-ITC) rich
soluble extract induces apoptosis and inhibits proliferation of human
prostate adenocarcinoma cells (PC-3). Nutrients, 2018. 10pii,
E1174
[1008]
Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical
or pharmacological potential of Moringa oleifera Lam. Nutrients, 2018, 10, pii, E343.
[1009]
Hasan, A.K.M.; Chakrabortty, A.; Zaman, S.; Islam, S.S.; Ahmed,
F.R.S.; Kabir, K.M.A.; Nurujjaman, M.; Uddin, M.B.; Alam, M.T.;
Shaha, R.K.; Kabir, S.R. Moringa oleifera seed lectin inhibits Ehrlich
ascites carcinoma cell growth by inducing apoptosis through
the regulation of Bak and NF-κB gene expression. Int. J. Biol.
Macromol, 2018, 107, 1936-1944.
[1018]
Jafarain, A.; Asghari, G.; Ghassami, E. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells. Adv. Biomed. Res., 2014, 23(3), 194.
[1025]
Wang, C.; Wu, R.; Sargsyan, D.; Zheng, M.; Li, S.; Yin, R.; Su, S.; Raskin, I.; Kong, A.N. CpG methyl-seq and RNA-seq epigenomic and transcriptomic studies on the preventive effects of Moringa isothiocyanate in mouse epidermal JB6 cells induced by the tumor promoter TPA. J. Nutr. Biochem., 2019, 68, 69-78.
[1026]
Vasanth, K.; Ilango, K.; MohanKumar, R.; Agrawal, A.; Dubey, G.P. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B Biointerfaces, 2014, 117, 354-359.
[1036]
Moghe, A.; Fernandes, E.; Pulwale, A.; Patil, G. Probing regenerative potential of Moringa oleifera aqueous extracts using in vitro cellular assays. Pharmacognosy Res., 2016, 8(4), 231.