Review Article

磁共振成像和生化生物标记物在多发性硬化症诊断中的联合应用

卷 27, 期 39, 2020

页: [6703 - 6726] 页: 24

弟呕挨: 10.2174/0929867326666191014162713

价格: $65

摘要

多发性硬化症(MS)是一种与脊髓和大脑有关的自身免疫性疾病,主要影响白质。关于该疾病的复杂性和异源病因,迄今为止,MS的治疗一直是具有挑战性的问题。研究人员正在努力开发新的治疗策略和药物,作为补充疗法。 MS诊断很大程度上取决于磁共振成像(MRI)检查的结果。在这种成像技术中,钆被用作造影剂以揭示打算破坏血脑屏障的活性斑块。它还可以检测与神经系统症状无关的斑块。已经尝试确定在人体解剖学的各种组织层次结构水平(即细胞,蛋白质,RNA和DNA)中与MS的不同维度有关的生物标记。这些生物标记物是用于MS诊断的合适诊断工具。在这篇综述中,我们总结了MRI和生化生物标记物在监测MS患者中的应用。此外,我们强调了MRI和生物标志物在MS受试者诊断中的联合应用。

关键词: 多发性硬化症,磁共振成像,生物标志物,自身免疫性疾病,RNA,DNA。

[1]
Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol., 2015, 28(3), 193-205.
[http://dx.doi.org/10.1097/WCO.0000000000000206] [PMID: 25887774]
[2]
Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain, 2017, 140(3), 527-546.
[PMID: 27794524]
[3]
Caprio, M.; Russo, C.; Giugliano, A.; Ragucci, M.; Mancini, M. Vascular disease in patients with multiple sclerosis: a review. J Vasc Med Surg, 2016, 4(2), 746-753.
[http://dx.doi.org/10.4172/2329-6925.1000259 ]
[4]
Moccia, M.; Ciccarelli, O. Molecular and metabolic imaging in multiple sclerosis. Neuroimaging Clin. N. Am., 2017, 27(2), 343-356.
[http://dx.doi.org/10.1016/j.nic.2016.12.005] [PMID: 28391791]
[5]
Hart, F.M.; Bainbridge, J. Current and emerging treatment of multiple sclerosis. Am. J. Manag. Care, 2016, 22(Suppl. 6), s159-s170.
[PMID: 27356025]
[6]
Fukai, R.; Takahashi, K.; Abe, H.; Higashiyama, Y.; Doi, H.; Takeuchi, H.; Tanaka, F. Non-traumatic acute epidural hematoma in multiple sclerosis treated with fingolimod. Front. Neurol., 2019, 10, 763.
[http://dx.doi.org/10.3389/fneur.2019.00763] [PMID: 31379717]
[7]
Fitzner, B.; Hecker, M.; Zett, U.K. Molecular biomarkers in cerebrospinal fluid of multiple sclerosis patients. Autoimmun. Rev., 2015, 14(10), 903-913.
[http://dx.doi.org/10.1016/j.autrev.2015.06.001] [PMID: 26071103]
[8]
Gasperoni, F.; Turini, P.; Agostinelli, E. A novel comprehensive paradigm for the etiopathogenesis of multiple sclerosis: therapeutic approaches and future perspectives on its treatment. Amino Acids, 2019, 51(5), 745-759.
[http://dx.doi.org/10.1007/s00726-019-02718-1] [PMID: 30887124]
[9]
Van Kaer, L.; Postoak, J.L.; Wang, C.; Yang, G.; Wu, L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell. Mol. Immunol., 2019, 16(6), 531-539.
[http://dx.doi.org/10.1038/s41423-019-0221-5] [PMID: 30874627]
[10]
Nejati, M.; Tameh, A.A.; Atlasi, M.A. Role of toll‐like receptors 2 and 4 in the neuroprotective effects of bone marrow-derived mesenchymal stem cells in an experimental model of ischemic stroke. J. Cell. Biochem., 2019, 120(5), 8053-8060.
[http://dx.doi.org/10.1002/jcb.28083]
[11]
Vasileiadis, G.K.; Dardiotis, E.; Mavropoulos, A.; Tsouris, Z.; Tsimourtou, V.; Bogdanos, D.P.; Sakkas, L.I.; Hadjigeorgiou, G.M. Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? Auto Immun. Highlights, 2018, 9(1), 9.
[http://dx.doi.org/10.1007/s13317-018-0109-x] [PMID: 30415321]
[12]
Constantinescu, C.S.; Gran, B. The essential role of T cells in multiple sclerosis: a reappraisal. Biomed. J., 2014, 37(2), 34-40.
[http://dx.doi.org/10.4103/2319-4170.128746] [PMID: 24732657]
[13]
López-Herrera, G.; Segura-Méndez, N.H.; O’Farril-Romanillos, P.; Nuñez-Nuñez, M.E.; Zarate-Hernández, M.C.; Mogica-Martínez, D.; Yamazaki-Nakashimada, M.A.; Staines-Boone, A.T.; Santos-Argumedo, L.; Berrón-Ruiz, L. Low percentages of regulatory T cells in common variable immunodeficiency (CVID) patients with autoimmune diseases and its association with increased numbers of CD4+CD45RO+ T and CD21low B cells. Allergol. Immunopathol. (Madr.), 2019, 47(5), 457-466.
[http://dx.doi.org/10.1016/j.aller.2019.01.003] [PMID: 31103252]
[14]
Ciccocioppo, F.; Lanuti, P.; Pierdomenico, L.; Simeone, P.; Bologna, G.; Ercolino, E.; Buttari, F.; Fantozzi, R.; Thomas, A.; Onofrj, M.; Centonze, D. Characterization of regulatory T-cell profiles in Alzheimer’s disease and multiple sclerosis. Sci. Rep., 2019, 9(1), 8788.
[http://dx.doi.org/10.1038/s41598-019-45433-3] [PMID: 31217537]
[15]
Seidkhani-Nahal, A.; Noori-Zadeh, A. Frequency of CD8(+) regulatory T cells in the multiple sclerosis patients: a systematic review and meta-analysis. Acta Neurol. Belg., 2019, 119(1), 61-68.
[http://dx.doi.org/10.1007/s13760-018-1028-3] [PMID: 30324330]
[16]
Thi Cuc, B.; Pohar, J.; Fillatreau, S. Understanding regulatory B cells in autoimmune diseases: the case of multiple sclerosis. Curr. Opin. Immunol., 2019, 61, 26-32.
[http://dx.doi.org/10.1016/j.coi.2019.07.007] [PMID: 31445312]
[17]
Milo, R. Therapies for multiple sclerosis targeting B cells. Croat. Med. J., 2019, 60(2), 87-98.
[http://dx.doi.org/10.3325/cmj.2019.60.87] [PMID: 31044580]
[18]
Gelfand, J.M.; Cree, B.A.C.; Hauser, S.L. Ocrelizumab and other CD20+ B-cell-depleting therapies in multiple sclerosis. Neurotherapeutics, 2017, 14(4), 835-841.
[http://dx.doi.org/10.1007/s13311-017-0557-4] [PMID: 28695471]
[19]
Baranzini, S.E.; Nickles, D. Genetics of multiple sclerosis: swimming in an ocean of data. Curr. Opin. Neurol., 2012, 25(3), 239-245.
[http://dx.doi.org/10.1097/WCO.0b013e3283533a93] [PMID: 22516854]
[20]
Khosravi, A.; Behjati, M.; Dianatkhah, M.; Noori, F.; Sarrafzadegan, N.; Nejati, M. The effect of parental medical history on the prevalence of cerebrovascular diseases in their children in an Iranian population. Basic Clin. Neurosci., 2018, 9(5), 367-372.
[http://dx.doi.org/10.32598/bcn.9.5.367] [PMID: 30719251]
[21]
Barcellos, L.F.; Oksenberg, J.R.; Begovich, A.B.; Martin, E.R.; Schmidt, S.; Vittinghoff, E.; Goodin, D.S.; Pelletier, D.; Lincoln, R.R.; Bucher, P.; Swerdlin, A.; Pericak-Vance, M.A.; Haines, J.L.; Hauser, S.L. Multiple sclerosis genetics group. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am. J. Hum. Genet., 2003, 72(3), 710-716.
[http://dx.doi.org/10.1086/367781] [PMID: 12557126]
[22]
Milo, R.; Kahana, E. Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun. Rev., 2010, 9(5), A387-A394.
[http://dx.doi.org/10.1016/j.autrev.2009.11.010] [PMID: 19932200]
[23]
Dobson, R.; Giovannoni, G. Multiple sclerosis - a review. Eur. J. Neurol., 2019, 26(1), 27-40.
[http://dx.doi.org/10.1111/ene.13819] [PMID: 30300457]
[24]
Tarantino, G.; Porcu, C.; Arciello, M.; Andreozzi, P.; Balsano, C. Prediction of carotid intima-media thickness in obese patients with low prevalence of comorbidities by serum copper bioavailability. J. Gastroenterol. Hepatol., 2018, 33(8), 1511-1517.
[http://dx.doi.org/10.1111/jgh.14104] [PMID: 29405466]
[25]
Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis., 2018, 9(3), 348.
[http://dx.doi.org/10.1038/s41419-018-0379-2] [PMID: 29497049]
[26]
Berghoff, S.A.; Gerndt, N.; Winchenbach, J.; Stumpf, S.K.; Hosang, L.; Odoardi, F.; Ruhwedel, T.; Bohler, C.; Barrette, B.; Stassart, R.; Liebetanz, D.; Dibaj, P.; Mobius, W.; Edgar, J.M. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat. Commun., 2017, 8, 14241.
[http://dx.doi.org/10.1038/ncomms14241]
[27]
McNicholas, N.; Hutchinson, M.; McGuigan, C.; Chataway, J. 2017 McDonald diagnostic criteria: a review of the evidence. Mult. Scler. Relat. Disord., 2018, 24, 48-54.
[http://dx.doi.org/10.1016/j.msard.2018.05.011] [PMID: 29936325]
[28]
Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.J. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol., 2011, 69(2), 292-302.
[http://dx.doi.org/10.1002/ana.22366] [PMID: 21387374]
[29]
Gamage, S.M.K.; Wijeweera, I.; Wijesinghe, P.; Adikari, S.B.; Fink, K.; Sominanda, H.M.A. Applicability of McDonald 2010 and magnetic resonance imaging in multiple sclerosis (MAGNIMS) 2016 magnetic resonance imaging criteria for the diagnosis of multiple sclerosis in Sri Lanka. J. Clin. Neurol., 2018, 14(3), 339-344.
[http://dx.doi.org/10.3988/jcn.2018.14.3.339] [PMID: 29856160]
[30]
Belova, A.; Shalenkov, I.; Shakurova, D.; Boyko, A.J.M.S.J. Revised McDonald criteria for multiple sclerosis diagnostics in central Russia: sensitivity and specificity. Mult. Scler., 2014, 20(14), 1896-1899.
[http://dx.doi.org/10.1177/1352458514539405] [PMID: 25145690]
[31]
Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.J.T.L.N. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines 2016, 15(3), 292-303.
[http://dx.doi.org/10.1016/S1474-4422(15)00393-2]
[32]
Yu, H.; Oliver, M.; Leszczynski, K.; Lee, Y.; Karam, I.; Sahgal, A. Tissue segmentation-based electron density mapping for MR-only radiotherapy treatment planning of brain using conventional T1-weighted MR images. J. Appl. Clin. Med. Phys., 2019, 20(8), 11-20.
[http://dx.doi.org/10.1002/acm2.12654] [PMID: 31257709]
[33]
Field, A.S.; Samsonov, A.; Alexander, A.L.; Mossahebi, P.; Duncan, I.D. Conventional and quantitative MRI in a novel feline model of demyelination and endogenous remyelination. J. Magn. Reson. Imaging, 2019, 49(5), 1304-1311.
[http://dx.doi.org/10.1002/jmri.26300] [PMID: 30302903]
[34]
Hu, X.Y.; Rajendran, L.; Lapointe, E.; Tam, R.; Li, D.; Traboulsee, A.; Rauscher, A. Three-dimensional MRI sequences in MS diagnosis and research. Mult. Scler., 2019, 25(13), 1700-1709.
[http://dx.doi.org/10.1177/1352458519848100] [PMID: 31116071]
[35]
Bisulca, J.; De Lury, A.; Coyle, P.K.; Syritsyna, O.; Peyster, R.; Bangiyev, L.; Duong, T.Q. MRI features associated with high likelihood of conversion of radiologically isolated syndrome to multiple sclerosis. Mult. Scler. Relat. Disord., 2019, •••36101381
[http://dx.doi.org/10.1016/j.msard.2019.101381] [PMID: 31518773]
[36]
Courtier, J.; Rao, A.G.; Anupindi, S.A. Advanced imaging techniques in pediatric body MRI. Pediatr. Radiol., 2017, 47(5), 522-533.
[http://dx.doi.org/10.1007/s00247-017-3778-0] [PMID: 28409251]
[37]
Absinta, M.; Sati, P.; Reich, D.S. Advanced MRI and staging of multiple sclerosis lesions. Nat. Rev. Neurol., 2016, 12(6), 358-368.
[http://dx.doi.org/10.1038/nrneurol.2016.59] [PMID: 27125632]
[38]
Giorgio, A.; De Stefano, N. Advanced structural and functional brain MRI in multiple sclerosis. Semin. Neurol., 2016, 36(2), 163-176.
[http://dx.doi.org/10.1055/s-0036-1579737] [PMID: 27116723]
[39]
Filippi, M.; Agosta, F.J.J. Magnetization transfer MRI in multiple sclerosis. J. Neuroimaging, 2007, •••, 22-26.
[http://dx.doi.org/10.1111/j.1552-6569.2007.00132.x] [PMID: 17425730]
[40]
Wolff, S.D.; Balaban, R.S. Magnetization transfer imaging: practical aspects and clinical applications. Radiology, 1994, 192(3), 593-599.
[http://dx.doi.org/10.1148/radiology.192.3.8058919] [PMID: 8058919]
[41]
Giacomini, P.S.; Levesque, I.R.; Ribeiro, L.; Narayanan, S.; Francis, S.J.; Pike, G.B.; Arnold, D.L. Measuring demyelination and remyelination in acute multiple sclerosis lesion voxels. Arch. Neurol., 2009, 66(3), 375-381.
[http://dx.doi.org/10.1001/archneurol.2008.578] [PMID: 19273757]
[42]
Kirov, I.I.; Tal, A.; Babb, J.S.; Herbert, J.; Gonen, O. Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS. Neurology, 2013, 80(1), 39-46.
[http://dx.doi.org/10.1212/WNL.0b013e31827b1a8c] [PMID: 23175732]
[43]
Chard, D.; Griffin, C.; McLean, M.; Kapeller, P.; Kapoor, R.; Thompson, A.; Miller, D.J. Brain metabolite changes in cortical grey and normal‐appearing white matter in clinically early relapsing-remitting multiple sclerosis. Brain, 2002, 125(10), 2342-2352.
[http://dx.doi.org/10.1093/brain/awf240 ]
[44]
Tiberio, M.; Chard, D.; Altmann, D.; Davies, G.; Griffin, C.; McLean, M.; Rashid, W.; Sastre-Garriga, J.; Thompson, A.J.; Miller, D.H. Metabolite changes in early relapsing-remitting multiple sclerosis. A two year follow-up study. J. Neurol., 2006, 253(2), 224-230.
[http://dx.doi.org/10.1007/s00415-005-0964-z] [PMID: 16307201]
[45]
Al-iedani, O.; Lechner-Scott, J.; Ribbons, K.; Ramadan, S. Fast magnetic resonance spectroscopic imaging techniques in human brain-applications in multiple sclerosis. J. Biomed. Sci., 2017, 24(1), 17.
[http://dx.doi.org/10.1186/s12929-017-0323-2] [PMID: 28245815]
[46]
Donadieu, M.; Le Fur, Y.; Lecocq, A.; Maudsley, A.A.; Gherib, S.; Soulier, E.; Confort‐Gouny, S.; Pariollaud, F.; Ranjeva, M.P.; Pelletier, J. Metabolic voxel‐based analysis of the complete human brain using fast 3D‐MRSI: proof of concept in multiple sclerosis. J. Magn. Reson. Imaging, 2016, 44(2), 411-419.
[http://dx.doi.org/10.1002/jmri.25139] [PMID: 26756662]
[47]
Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion tensor imaging of the brain. Neurotherapeutics, 2007, 4(3), 316-329.
[http://dx.doi.org/10.1016/j.nurt.2007.05.011] [PMID: 17599699]
[48]
Lummel, N.; Mehrkens, J.; Linn, J.; Buchholz, G.; Stahl, R.; Bochmann, K.; Brückmann, H.; Lutz, J. Diffusion tensor imaging of the trigeminal nerve in patients with trigeminal neuralgia due to multiple sclerosis. Neuroradiology, 2015, 57(3), 259-267.
[http://dx.doi.org/10.1007/s00234-014-1463-7] [PMID: 25404413]
[49]
Schmierer, K.; Wheeler-Kingshott, C.A.; Boulby, P.A.; Scaravilli, F.; Altmann, D.R.; Barker, G.J.; Tofts, P.S.; Miller, D.H. Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage, 2007, 35(2), 467-477.
[http://dx.doi.org/10.1016/j.neuroimage.2006.12.010] [PMID: 17258908]
[50]
Filippi, M.; Cercignani, M.; Inglese, M.; Horsfield, M.; Comi, G.J.N. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology, 2001, 56(3), 304-311.
[http://dx.doi.org/10.1212/WNL.56.3.304] [PMID: 11171893]
[51]
Andersen, O.; Hildeman, A.; Longfils, M.; Tedeholm, H.; Skoog, B.; Tian, W.; Zhong, J.; Ekholm, S.; Novakova, L.; Runmarker, B. Diffusion tensor imaging in multiple sclerosis at different final outcomes. Acta Neurol. Scand., 2018, 137(2), 165-173.
[http://dx.doi.org/10.1111/ane.12797] [PMID: 28741711]
[52]
Krämer, J.; Brück, W.; Zipp, F.; Cerina, M.; Groppa, S.; Meuth, S.G. Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog. Neurobiol., 2019, 182101663
[http://dx.doi.org/10.1016/j.pneurobio.2019.101663]]
[53]
Oh, J.; Ontaneda, D. Imaging outcome measures of neuroprotection and repair in MS: A consensus statement from NAIMS. Neurology, 2019, 92(11), 519-533.
[http://dx.doi.org/10.1212/WNL.0000000000007099]
[54]
de Kouchkovsky, I.; Fieremans, E.; Fleysher, L.; Herbert, J.; Grossman, R.I.; Inglese, M. Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study. J. Neurol., 2016, 263(6), 1146-1155.
[http://dx.doi.org/10.1007/s00415-016-8118-z] [PMID: 27094571]
[55]
Assaf, Y.; Freidlin, R.Z.; Rohde, G.K.; Basser, P.J. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med., 2004, 52(5), 5965-5978.
[http://dx.doi.org/10.1002/mrm.20274] [PMID: 15508168]
[56]
De Santis, S.; Granberg, T.; Ouellette, R.; Treaba, C.A.; Fan, Q.; Herranz, E.; Mainero, C.; Toschi, N. Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE. 2017, 3024-3027.
[57]
Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage, 2012, 61(4), 1000-1016.
[http://dx.doi.org/10.1016/j.neuroimage.2012.03.072] [PMID: 22484410]
[58]
Kipp, L.; Cawley, N.; Prados, F.; Schneider, T.; Ourselin, S.; Wheeler-Kingshott, C.; Miller, D.; Thompson, A.; Ciccarelli, O. In: Multiple sclerosis journal. Thompson, A.J. (Ed); Sage publications Ltd., , 2015; 21, pp. 9-9.
[59]
Enzinger, C.; Barkhof, F.; Ciccarelli, O.; Filippi, M.; Kappos, L.; Rocca, M.A.; Ropele, S.; Rovira, À.; Schneider, T.; De Stefano, N. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat. Rev. Neurol., 2015, 11(12), 676.
[http://dx.doi.org/10.1038/nrneurol.2015.194] [PMID: 26526531]
[60]
Rathi, Y.; Michailovich, O.; Setsompop, K.; Bouix, S.; Shenton, M.E.; Westin, C-F. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2011, pp. 58-65.
[61]
Lee, M.; Reddy, H.; Johansen‐Berg, H.; Pendlebury, S.; Jenkinson, M.; Smith, S.; Palace, J.; Matthews, P.J. The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann. Neurol., 2000, 47(5), 606-613.
[http://dx.doi.org/10.1002/1531-8249(200005)47:5<606:AID-ANA8>3.0.CO;2-L] [PMID: 10805331]
[62]
Buckle, G.J. Functional magnetic resonance imaging and multiple sclerosis: the evidence for neuronal plasticity. Neuroimaging, 2005, 15(Suppl. 4), 82-93.
[http://dx.doi.org/10.1177/1051228405284093] [PMID: 16385021]
[63]
Brownlee, W.J.; Swanton, J.K.; Miszkiel, K.A.; Miller, D.H.; Ciccarelli, O. Should the symptomatic region be included in dissemination in space in MRI criteria for MS? Neurology, 2016, 87(7), 680-683.
[http://dx.doi.org/10.1212/WNL.0000000000002975] [PMID: 27421541]
[64]
Fisniku, L.; Brex, P.; Altmann, D.; Miszkiel, K.; Benton, C.; Lanyon, R.; Thompson, A.; Miller, D. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain, 2008, 131(3), 808-817.
[http://dx.doi.org/10.1093/brain/awm329] [PMID: 18234696]
[65]
Gómez-Moreno, M.; Díaz-Sánchez, M.; Ramos-González, A. Application of the 2010 McDonald criteria for the diagnosis of multiple sclerosis in a Spanish cohort of patients with clinically isolated syndromes. Mult. Scler., 2012, 18(1), 39-44.
[http://dx.doi.org/10.1177/1352458511417828] [PMID: 21865413]
[66]
Tillema, J-M.; Weigand, S.; Dayan, M.; Shu, Y.; Kantarci, O.; Lucchinetti, C.; Port, J.D. Dark rims: novel sequence enhances diagnostic specificity in multiple sclerosis. AJNR Am. J. Neuroradiol., 2018, 39(6), 1052-1058.
[http://dx.doi.org/10.3174/ajnr.A5636] [PMID: 29700044]
[67]
Barkhof, F.; Filippi, M.; Miller, D.H.; Scheltens, P.; Campi, A.; Polman, C.H.; Comi, G.; Ader, H.J.; Losseff, N.; Valk, J.J.B.a.j.o.n. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain, 1997, 120(11), 2059-2069.
[http://dx.doi.org/10.1093/brain/120.11.2059] [PMID: 9397021]
[68]
Swanton, J.K.; Rovira, A.; Tintore, M.; Altmann, D.R.; Barkhof, F.; Filippi, M.; Huerga, E.; Miszkiel, K.A.; Plant, G.T.; Polman, C. MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol., 2007, 6(8), 677-686.
[http://dx.doi.org/10.1016/S1474-4422(07)70176-X] [PMID: 17616439]
[69]
Kupersmith, M.J.; Alban, T.; Zeiffer, B.; Lefton, D. Contrast‐enhanced MRI in acute optic neuritis: relationship to visual performance. Brain, 2002, 125(4), 812-822.
[http://dx.doi.org/10.1093/brain/awf087] [PMID: 11912114]
[70]
Uysal, E.; Erturk, S.M.; Yildirim, H.; Seleker, F.; Basak, M.J.A.J.R. Sensitivity of immediate and delayed gadolinium-enhanced MRI after injection of 0.5 M and 1.0 M gadolinium chelates for detecting multiple sclerosis lesions. AJR Am. J. Roentgenol., 2007, 188(3), 697-702.
[http://dx.doi.org/10.2214/AJR.05.2212] [PMID: 17312056]
[71]
Beck, E.; Sati, P.; Sethi, V.; Kober, T.; Dewey, B.; Bhargava, P.; Nair, G.; Cortese, I.; Reich, D.S. Improved visualization of cortical lesions in multiple sclerosis using 7T MP2RAGE. AJNR Am. J. Neuroradiol., 2018, 39(3), 459-466.
[http://dx.doi.org/10.3174/ajnr.A5534] [PMID: 29439120]
[72]
Absinta, M.; Sati, P.; Schindler, M.; Leibovitch, E.C.; Ohayon, J.; Wu, T.; Meani, A.; Filippi, M.; Jacobson, S.; Cortese, I.C.M. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J. Clin. Invest., 2016, 126(7), 2597-2609.
[http://dx.doi.org/10.1172/JCI86198] [PMID: 27270171]
[73]
Kilsdonk, I.D.; Wattjes, M.P.; Lopez-Soriano, A.; Kuijer, J.P.; de Jong, M.C.; de Graaf, W.L.; Conijn, M.M.; Polman, C.H.; Luijten, P.R.; Geurts, J.G. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla. Eur. Radiol., 2014, 24(4), 841-849.
[http://dx.doi.org/10.1007/s00330-013-3080-y] [PMID: 24317461]
[74]
Kau, T.; Taschwer, M.; Deutschmann, H.; Schönfelder, M.; Weber, J.R.; Hausegger, K.A. The “central vein sign”: Is there a place for susceptibility weighted imaging in possible multiple sclerosis? Eur. Radiol., 2013, 23(7), 1956-1962.
[http://dx.doi.org/10.1007/s00330-013-2791-4] [PMID: 23436147]
[75]
Fooladi, M.; Sharini, H.; Masjoodi, S.; Khodamoradi, E. A novel classification method using effective neural network and quantitative magnetization transfer imaging of brain white matter in relapsing remitting multiple sclerosis. J. Biomed. Phys. Eng., 2018, 8(4), 409-422.
[PMID: 30568931]
[76]
Bagnato, F.; Franco, G.; Thomas, N.; Smith, S.; Xu, J.; Dortch, R. Selective inversion recovery quantitative magnetization transfer imaging: Toward a 3 T clinical application in multiple sclerosis. Mult. Scler., 2020, 26(4), 457-467.
[http://dx.doi.org/10.1177/1352458519833018] [PMID: 30907234]
[77]
Zackowski, K.M.; Smith, S.A.; Reich, D.S.; Gordon-Lipkin, E.; Chodkowski, B.A.; Sambandan, D.R.; Shteyman, M.; Bastian, A.J.; van Zijl, P.C.; Calabresi, P.A. Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. Brain, 2009, 132(5), 1200-1209.
[http://dx.doi.org/10.1093/brain/awp032] [PMID: 19297508]
[78]
Ciccarelli, O.; Wheeler-Kingshott, C.; McLean, M.; Cercignani, M.; Wimpey, K.; Miller, D.; Thompson, A.J. Spinal cord spectroscopy and diffusion-based tractography to assess acute disability in multiple sclerosis. Brain, 2007, 130(8), 2220-2231.
[http://dx.doi.org/10.1093/brain/awm152] [PMID: 17664178]
[79]
Marliani, A.F.; Clementi, V.; Riccioli, L.A.; Agati, R.; Carpenzano, M.; Salvi, F.; Leonardi, M. Quantitative cervical spinal cord 3T proton MR spectroscopy in multiple sclerosis. Am. J. Neuroradiol., 2010, 31(1), 180-184.
[http://dx.doi.org/10.3174/ajnr.A1738] [PMID: 19729541]
[80]
Vargas, W.S.; Monohan, E.; Pandya, S.; Raj, A.; Vartanian, T.; Nguyen, T.D.; Rúa, S.M.H.; Gauthier, S.A. Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. Neuroimage Clin., 2015, 9, 369-375.
[http://dx.doi.org/10.1016/j.nicl.2015.09.003] [PMID: 26594620]
[81]
Lo, C-P.; Kao, H-W.; Chen, S-Y.; Chu, C-M.; Hsu, C-C.; Chen, Y-C.; Lin, W-C.; Liu, D-W.; Hsu, W-L.J.B.n. Comparison of diffusion-weighted imaging and contrast-enhanced T1-weighted imaging on a single baseline MRI for demonstrating dissemination in time in multiple sclerosis. BMC Neurol., 2014, 14(1), 100.
[http://dx.doi.org/10.1186/1471-2377-14-100] [PMID: 24885357]
[82]
Hesseltine, S.; Law, M.; Babb, J.; Rad, M.; Lopez, S.; Ge, Y.; Johnson, G.; Grossman, R. Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am. J. Neuroradiol., 2006, 27(6), 1189-1193.
[PMID: 16775261]
[83]
Ohgiya, Y.; Oka, M.; Hiwatashi, A.; Liu, X.; Kakimoto, N.; Westesson, P-L.A.; Ekholm, S.E. Diffusion tensor MR imaging of the cervical spinal cord in patients with multiple sclerosis. Neuro, 2007, 17(10), 2499-2504.
[http://dx.doi.org/10.1007/s00330-007-0672-4 ]
[84]
Gilli, F.; Chen, X.; Pachner, A.R.; Gimi, B. High-resolution diffusion tensor spinal cord MRI measures as biomarkers of disability progression in a rodent model of progressive multiple sclerosis. PLoS One, 2016, 11(7)0160071
[http://dx.doi.org/10.1371/journal.pone.0160071] [PMID: 27467829]
[85]
Tavakolizadeh, J.; Roshanaei, K.; Salmaninejad, A.; Yari, R.; Nahand, J.S.; Sarkarizi, H.K.; Mousavi, S.M.; Salarinia, R.; Rahmati, M.; Mousavi, S.F.; Mokhtari, R.; Mirzaei, H. MicroRNAs and exosomes in depression: potential diagnostic biomarkers. J. Cell. Biochem., 2018, 119(5), 3783-3797.
[http://dx.doi.org/10.1002/jcb.26599] [PMID: 29236313]
[86]
Qian, W.; Chan, K.H.; Hui, E.S.; Lee, C.Y.; Hu, Y.; Mak, H.K.F. Application of diffusional kurtosis imaging to detect occult brain damage in multiple sclerosis and neuromyelitis optica. NMR Biomed., 2016, 29(11), 1536-1545.
[http://dx.doi.org/10.1002/nbm.3607] [PMID: 27602543]
[87]
Spampinato, M.; Kocher, M.; Jensen, J.; Helpern, J.; Collins, H.; Hatch, N.U. Diffusional kurtosis imaging of the corticospinal tract in multiple sclerosis: association with neurologic disability. AJNR Am. J. Neuroradiol., 2017, 38(8), 1494-1500.
[http://dx.doi.org/10.3174/ajnr.A5225] [PMID: 28572153]
[88]
Brownlee, W.; Da Mota, P.A.; Prados, F.; Schneider, T.; Cardoso, M.G.; Altmann, D.; Ourselin, S.; Wheeler-Kingshott, C.G.; Ciccarelli, O.; Miller, D. Neurite orientation dispersion and density imaging (NODDI) is sensitive to microstructural damage related to disability in relapseonset MS. Amer. Acad. Neurol., 2016, 86(16 Suppl.)
[89]
Cawley, N.; Prados, F.; Ourselin, S.; Gomez, C.T.; Grussu, F.; Wheeler-Kingshott, C.G.; Miller, D.; Thompson, A.; Toosy, A.; Ciccarelli, O.J.N. Neurite orientation dispersion and density imaging (NODDI) at the onset of clinically isolated syndrome (CIS): new insights in the early microstructural brain tissue changes. Amer. Acad. Neurol., 2016, 86(16), 157.
[90]
By, S.; Xu, J.; Box, B.A.; Bagnato, F.R.; Smith, S.A. Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. Neuroimage Clin., 2017, 15, 333-343.
[http://dx.doi.org/10.1016/j.nicl.2017.05.010] [PMID: 28560158]
[91]
Granberg, T.; Fan, Q.; Treaba, C.A.; Ouellette, R.; Herranz, E.; Mangeat, G.; Louapre, C.; Cohen-Adad, J.; Klawiter, E.C.; Sloane, J. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain, 2017, 140(11), 2912-2926.
[http://dx.doi.org/10.1093/brain/awx247] [PMID: 29053798]
[92]
De Santis, S.; Bastiani, M.; Droby, A.; Kolber, P.; Zipp, F.; Pracht, E.; Stoecker, T.; Groppa, S.; Roebroeck, A.J.N. Characterizing microstructural tissue properties in multiple sclerosis with diffusion MRI at 7 T and 3 T: the impact of the experimental design. Neuroscience, 2019, 403, 17-26.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.048] [PMID: 29631021]
[93]
Rocca, M.; Absinta, M.; Valsasina, P.; Copetti, M.; Caputo, D.; Comi, G.; Filippi, M. Abnormal cervical cord function contributes to fatigue in multiple sclerosis. Mult. Scler., 2012, 18(11), 1552-1559.
[http://dx.doi.org/10.1177/1352458512440516] [PMID: 22389415]
[94]
Sbardella, E.; Petsas, N.; Tona, F.; Pantano, P. Resting-state fMRI in MS: general concepts and brief overview of its application. Biomed. Res., 2015, 2015212693
[http://dx.doi.org/10.1155/2015/212693]]
[95]
Basile, B.; Castelli, M.; Monteleone, F.; Nocentini, U.; Caltagirone, C.; Centonze, D.; Cercignani, M.; Bozzali, M. Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis. Mult. Scler., 2014, 20(8), 1050-1057.
[http://dx.doi.org/10.1177/1352458513515082] [PMID: 24326671]
[96]
Inojosa, H.; Proschmann, U.; Akgun, K.; Ziemssen, T. A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J. Neurol., 2019.
[http://dx.doi.org/10.1007/s00415-019-09489-5] [PMID: 31363847]
[97]
Comabella, M.; Sastre-Garriga, J.; Montalban, X. Precision medicine in multiple sclerosis: biomarkers for diagnosis, prognosis, and treatment response. Curr. Opin. Neurol., 2016, 29(3), 254-262.
[http://dx.doi.org/10.1097/WCO.0000000000000336] [PMID: 27075495]
[98]
Macaron, G.; Ontaneda, D. Diagnosis and management of progressive multiple sclerosis. Biomedicines, 2019, 7(3)E56
[http://dx.doi.org/10.3390/biomedicines7030056] [PMID: 31362384]
[99]
Mohajer, B.; Abbasi, N.; Pishgar, F.; Abdolalizadeh, A.; Ebrahimi, H.; Razaviyoun, T.; Mohebbi, F.; Eskandarieh, S.; Sahraian, M.A. HLA-DRB1 polymorphism and susceptibility to multiple sclerosis in the Middle East North Africa region: a systematic review and meta-analysis. J. Neuroimmunol., 2018, 321, 117-124.
[http://dx.doi.org/10.1016/j.jneuroim.2018.06.005] [PMID: 29957381]
[100]
Tatomir, A.; Talpos-Caia, A.; Anselmo, F.; Kruszewski, A.M.; Boodhoo, D.; Rus, V.; Rus, H. The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol. Res., 2017, 65(6), 1103-1109.
[http://dx.doi.org/10.1007/s12026-017-8961-8] [PMID: 29116612]
[101]
Comabella, M.; Racke, M.K. New technologies for biomarker discovery in multiple sclerosis. J. Neuroimmunol., 2012, 248(1-2), 1.
[http://dx.doi.org/10.1016/j.jneuroim.2012.05.018 ] [PMID: 22726889]
[102]
Villoslada, P.; Baranzini, S. Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis. J. Neuroimmunol., 2012, 248(1-2), 58-65.
[http://dx.doi.org/10.1016/j.jneuroim.2012.01.001] [PMID: 22281286]
[103]
Nahand, J.S.; Taghizadeh-Boroujeni, S.; Karimzadeh, M.; Borran, S.; Pourhanifeh, M.H.; Moghoofei, M.; Bokharaei-Salim, F.; Karampoor, S.; Jafari, A.; Asemi, Z.; Tbibzadeh, A.; Namdar, A.; Mirzaei, H. microRNAs: new prognostic, diagnostic and therapeutic biomarkers in cervical cancer. J. Cell. Physiol., 2019, 234(10), 17064-17099.
[http://dx.doi.org/10.1002/jcp.28457] [PMID: 30891784]
[104]
Aghdam, A.M.; Amiri, A.; Salarinia, R.; Masoudifar, A.; Ghasemi, F.; Mirzaei, H. MicroRNAs as diagnostic, prognostic, and therapeutic biomarkers in prostate cancer. Crit. Rev. Eukaryot. Gene Expr., 2019, 29(2), 127-139.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025273] [PMID: 31679268]
[105]
Shabaninejad, Z.; Yousefi, F.; Movahedpour, A.; Ghasemi, Y.; Dokanehiifard, S.; Rezaei, S.; Aryan, R.; Savardashtaki, A.; Mirzaei, H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal. Biochem., 2019, 581113349
[http://dx.doi.org/10.1016/j.ab.2019.113349 ] [PMID: 31254490]
[106]
Piket, E.; Zheleznyakova, G.Y.; Kular, L.; Jagodic, M. Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: a comprehensive overview. J. Autoimmun., 2019, 101, 17-25.
[http://dx.doi.org/10.1016/j.jaut.2019.04.002] [PMID: 31014917]
[107]
Heliopoulos, I.; Patousi, A. Therapeutic monoclonal antibodies and multiple sclerosis: the essentials. Med. Chem., 2018, 14(2), 144-154.
[http://dx.doi.org/10.2174/1573406413666170906121828] [PMID: 28875861]
[108]
Pryce, G.; Baker, D. Oligoclonal bands in multiple sclerosis; Functional significance and therapeutic implications. Does the specificity matter? Mult. Scler. Relat. Disord., 2018, 25, 131-137.
[http://dx.doi.org/10.1016/j.msard.2018.07.030] [PMID: 30071507]
[109]
Bielekova, B.; Martin, R. Development of biomarkers in multiple sclerosis. Brain, 2004, 127(Pt 7), 1463-1478.
[http://dx.doi.org/10.1093/brain/awh176] [PMID: 15180926]
[110]
Eikelenboom, M.; Uitdehaag, B.; Petzold, A. Blood and CSF biomarker dynamics in multiple sclerosis: implications for data interpretation. Mult. Scler. Int., 2011, 2011823176
[http://dx.doi.org/10.1155/2011/823176] [PMID: 22096644]
[111]
Gourraud, P.A.; Harbo, H.F.; Hauser, S.L.; Baranzini, S.E. The genetics of multiple sclerosis: an up-to-date review. Immunol. Rev., 2012, 248(1), 87-103.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01134.x] [PMID: 22725956]
[112]
Sawcer, S. The genetic aspects of multiple sclerosis. Ann. Indian Acad. Neurol., 2009, 12(4), 206-214.
[http://dx.doi.org/10.4103/0972-2327.58272] [PMID: 20182566]
[113]
Sawcer, S.; Ban, M.; Wason, J.; Dudbridge, F. What role for genetics in the prediction of multiple sclerosis? Ann. Neurol., 2010, 67(1), 3-10.
[http://dx.doi.org/10.1002/ana.21911] [PMID: 20186855]
[114]
Link, J.; Kockum, I.; Lorentzen, Å.R.; Lie, B.A.; Celius, E.G.; Westerlind, H.; Schaffer, M.; Alfredsson, L.; Olsson, T.; Brynedal, B.; Harbo, H.F.; Hillert, J. Importance of human leukocyte antigen (HLA) class I and II alleles on the risk of multiple sclerosis. PLoS One, 2012, 7(5)e36779
[http://dx.doi.org/10.1371/journal.pone.0036779] [PMID: 22586495]
[115]
Nischwitz, S.; Müller-Myhsok, B.; Weber, F. Risk conferring genes in multiple sclerosis. FEBS Lett., 2011, 585(23), 3789-3797.
[http://dx.doi.org/10.1016/j.febslet.2011.03.037] [PMID: 21439284]
[116]
Sadovnick, A.D. Genetic background of multiple sclerosis. Autoimmun. Rev., 2012, 11(3), 163-166.
[http://dx.doi.org/10.1016/j.autrev.2011.05.007] [PMID: 21619948]
[117]
Link, J.; Lorentzen, Å.R.; Kockum, I.; Duvefelt, K.; Lie, B.A.; Celius, E.G.; Harbo, H.F.; Hillert, J.; Brynedal, B. Two HLA class I genes independently associated with multiple sclerosis. J. Neuroimmunol., 2010, 226(1-2), 172-176.
[http://dx.doi.org/10.1016/j.jneuroim.2010.07.006] [PMID: 20678810]
[118]
Killestein, J.; Polman, C.H. Determinants of interferon β efficacy in patients with multiple sclerosis. Nat. Rev. Neurol., 2011, 7(4), 221-228.
[http://dx.doi.org/10.1038/nrneurol.2011.22] [PMID: 21364522]
[119]
Nejati, M.; Atlasi, M.A.; Karimian, M.; Nikzad, H.; Azami Tameh, A. Lipoprotein lipase gene polymorphisms as risk factors for stroke: a computational and meta-analysis. Iran. J. Basic Med. Sci., 2018, 21(7), 701-708.
[http://dx.doi.org/10.22038/IJBMS.2018.29009.7001 ] [PMID: 30140409]
[120]
Gresle, M.M.; Butzkueven, H.; Shaw, G. Neurofilament proteins as body fluid biomarkers of neurodegeneration in multiple sclerosis. Mult. Scler. Int., 2011, 2011315406
[http://dx.doi.org/10.1155/2011/315406] [PMID: 22096635]
[121]
Dujmovic, I. Cerebrospinal fluid and blood biomarkers of neuroaxonal damage in multiple sclerosis. Mult. Scler. Int., 2011, 2011767083
[http://dx.doi.org/10.1155/2011/767083] [PMID: 22096642]
[122]
Tumani, H.; Brettschneider, J. Biochemical markers of autoimmune diseases of the nervous system. Curr. Pharm. Des., 2012, 18(29), 4556-4563.
[http://dx.doi.org/10.2174/138161212802502143] [PMID: 22612740]
[123]
Tumani, H.; Hartung, H-P.; Hemmer, B.; Teunissen, C.; Deisenhammer, F.; Giovannoni, G.; Zettl, U.K.; Group, B.S.; Bio, M.S. BioMS study group. Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol. Dis., 2009, 35(2), 117-127.
[http://dx.doi.org/10.1016/j.nbd.2009.04.010] [PMID: 19426803]
[124]
Harris, V.K.; Sadiq, S.A. Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol. Diagn. Ther., 2009, 13(4), 225-244.
[http://dx.doi.org/10.1007/BF03256329] [PMID: 19712003]
[125]
Valis, M.; Talab, R.; Stourac, P.; Andrys, C.; Masopust, J. Tau protein, phosphorylated tau protein and beta-amyloid42 in the cerebrospinal fluid of multiple sclerosis patients. Neuroendocrinol. Lett., 2008, 29(6), 971-976.
[PMID: 19112391]
[126]
Shehab, A.A.; Solima, D.A.; Abdel-Hafeez, M.A.; Mohamed, S.M. Serum phosphorylated neurofilament heavy chain level in relapsing remitting multiple sclerosis in correlation to disease activity and disability. Egypt. J. Immunol., 2019, 26(1), 1-13.
[PMID: 31332992]
[127]
Alirezaei, Z.; Pourhanifeh, M.H.; Borran, S.; Nejati, M.; Mirzaei, H.; Hamblin, M.R. Neurofilament light chain as a biomarker, and correlation with magnetic resonance imaging in diagnosis of CNS-related disorders. Mol. Neurobiol., 2020, 57(1), 469-491.
[http://dx.doi.org/10.1007/s12035-019-01698-3] [PMID: 31385229]
[128]
Ferraro, D.; Guicciardi, C.; De Biasi, S.; Pinti, M.; Bedin, R.; Camera, V.; Vitetta, F.; Nasi, M.; Meletti, S.; Sola, P. Plasma neurofilaments correlate with disability in progressive multiple sclerosis patients. Acta Neurol. Scand., 2020, 141(1), 16-21.
[http://dx.doi.org/10.1111/ane.13152 ] [PMID: 31350854]
[129]
Link, H.; Huang, Y-M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J. Neuroimmunol., 2006, 180(1-2), 17-28.
[http://dx.doi.org/10.1016/j.jneuroim.2006.07.006] [PMID: 16945427]
[130]
Fortini, A.S.; Sanders, E.L.; Weinshenker, B.G.; Katzmann, J.A. Cerebrospinal fluid oligoclonal bands in the diagnosis of multiple sclerosis. Isoelectric focusing with IgG immunoblotting compared with high-resolution agarose gel electrophoresis and cerebrospinal fluid IgG index. Am. J. Clin. Pathol., 2003, 120(5), 672-675.
[http://dx.doi.org/10.1309/Y5VFF2UAW0RK5W63] [PMID: 14608891]
[131]
Franciotta, D.; Di Stefano, A.L.; Jarius, S.; Zardini, E.; Tavazzi, E.; Ballerini, C.; Marchioni, E.; Bergamaschi, R.; Ceroni, M. Cerebrospinal BAFF and Epstein-Barr virus-specific oligoclonal bands in multiple sclerosis and other inflammatory demyelinating neurological diseases. J. Neuroimmunol., 2011, 230(1-2), 160-163.
[http://dx.doi.org/10.1016/j.jneuroim.2010.10.027] [PMID: 21109310]
[132]
Gandhi, K.S.; McKay, F.C.; Schibeci, S.D.; Arthur, J.W.; Heard, R.N.; Stewart, G.J.; Booth, D.R. BAFF is a biological response marker to IFN-β treatment in multiple sclerosis. J. Interferon Cytokine Res., 2008, 28(9), 529-539.
[http://dx.doi.org/10.1089/jir.2008.0007] [PMID: 18715196]
[133]
Wang, H.; Wang, K.; Zhong, X.; Qiu, W.; Dai, Y.; Wu, A.; Hu, X. Cerebrospinal fluid BAFF and APRIL levels in neuromyelitis optica and multiple sclerosis patients during relapse. J. Clin. Immunol., 2012, 32(5), 1007-1011.
[http://dx.doi.org/10.1007/s10875-012-9709-9] [PMID: 22644841]
[134]
Dalakas, M.C. Invited article: inhibition of B cell functions: implications for neurology. Neurology, 2008, 70(23), 2252-2260.
[http://dx.doi.org/10.1212/01.wnl.0000313840.27060.bf] [PMID: 18519875]
[135]
Srivastava, R.; Aslam, M.; Kalluri, S.R.; Schirmer, L.; Buck, D.; Tackenberg, B.; Rothhammer, V.; Chan, A.; Gold, R.; Berthele, A.; Bennett, J.L.; Korn, T.; Hemmer, B. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med., 2012, 367(2), 115-123.
[http://dx.doi.org/10.1056/NEJMoa1110740] [PMID: 22784115]
[136]
Sueoka, E.; Yukitake, M.; Iwanaga, K.; Sueoka, N.; Aihara, T.; Kuroda, Y. Autoantibodies against heterogeneous nuclear ribonucleoprotein B1 in CSF of MS patients. Ann. Neurol., 2004, 56(6), 778-786.
[http://dx.doi.org/10.1002/ana.20276] [PMID: 15497154]
[137]
Libbey, J.E.; Peterson, L.K.; Tsunoda, I.; Fujinami, R.S. Monoclonal MOG-reactive autoantibody from progressive EAE has the characteristics of a natural antibody. J. Neuroimmunol., 2006, 173(1-2), 135-145.
[http://dx.doi.org/10.1016/j.jneuroim.2005.12.010] [PMID: 16469392]
[138]
Mayer, M.C.; Meinl, E. Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more. Ther. Adv. Neurol. Disorder., 2012, 5(3), 147-159.
[http://dx.doi.org/10.1177/1756285611433772] [PMID: 22590479]
[139]
Morimoto, A.M.; Flesher, D.T.; Yang, J.; Wolslegel, K.; Wang, X.; Brady, A.; Abbas, A.R.; Quarmby, V.; Wakshull, E.; Richardson, B.; Townsend, M.J.; Behrens, T.W. Association of endogenous anti-interferon-α autoantibodies with decreased interferon-pathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum., 2011, 63(8), 2407-2415.
[http://dx.doi.org/10.1002/art.30399] [PMID: 21506093]
[140]
Quintana, F.J.; Yeste, A.; Weiner, H.L.; Covacu, R. Lipids and lipid-reactive antibodies as biomarkers for multiple sclerosis. J. Neuroimmunol., 2012, 248(1-2), 53-57.
[http://dx.doi.org/10.1016/j.jneuroim.2012.01.002] [PMID: 22579051]
[141]
Diamond, B.; Huerta, P.T.; Mina-Osorio, P.; Kowal, C.; Volpe, B.T. Losing your nerves? Maybe it’s the antibodies. Nat. Rev. Immunol., 2009, 9(6), 449-456.
[http://dx.doi.org/10.1038/nri2529] [PMID: 19424277]
[142]
Paap, B.; Hecker, M.; Koczan, D.; Zettl, U. Molecular biomarkers in multiple sclerosis. J. Clin. Cell. Immunol. S, 2013, S10.
[http://dx.doi.org/10.4172/2155-9899.S10-009]
[143]
Sato, D.; Fujihara, K. Atypical presentations of neuromyelitis optica. Arq. Neuropsiquiatr., 2011, 69(5), 824-828.
[http://dx.doi.org/10.1590/S0004-282X2011000600019] [PMID: 22042189]
[144]
Rossi, A.; Ratelade, J.; Papadopoulos, M.C.; Bennett, J.L.; Verkman, A.S. Consequences of NMO-IgG binding to aquaporin-4 in neuromyelitis optica. Proc. Natl. Acad. Sci. USA, 2012, 109(24), E1511-E1511.
[http://dx.doi.org/10.1073/pnas.1203463109] [PMID: 22589299]
[145]
Yamasaki, M.; Matsumoto, K.; Takahashi, Y.; Nakanishi, H.; Kawai, Y.; Miyamura, M. Case of NMO (neuromyelitis optica) spectum disorder triggered by interferon alpha, which involved extensive pyramidal tract lesion of the brain. Rinsho Shinkeigaku, 2012, 52(1), 19-24.
[http://dx.doi.org/10.5692/clinicalneurol.52.19] [PMID: 22260974]
[146]
Tumani, H.; Deisenhammer, F.; Giovannoni, G.; Gold, R.; Hartung, H.P.; Hemmer, B.; Hohlfeld, R.; Otto, M.; Stangel, M.; Wildemann, B.; Zettl, U.K. Revised McDonald criteria: the persisting importance of cerebrospinal fluid analysis. Ann. Neurol., 2011, 70(3), 520-520.
[http://dx.doi.org/10.1002/ana.22508] [PMID: 21710627]
[147]
Angerstein, C.; Hecker, M.; Paap, B.K.; Koczan, D.; Thamilarasan, M.; Thiesen, H-J.; Zettl, U.K. Integration of MicroRNA databases to study MicroRNAs associated with multiple sclerosis. Mol. Neurobiol., 2012, 45(3), 520-535.
[http://dx.doi.org/10.1007/s12035-012-8270-0] [PMID: 22549745]
[148]
Keller, A.; Leidinger, P.; Lange, J.; Borries, A.; Schroers, H.; Scheffler, M.; Lenhof, H-P.; Ruprecht, K.; Meese, E. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One, 2009, 4(10)e7440
[http://dx.doi.org/10.1371/journal.pone.0007440] [PMID: 19823682]
[149]
Otaegui, D.; Baranzini, S.E.; Armañanzas, R.; Calvo, B.; Muñoz-Culla, M.; Khankhanian, P.; Inza, I.; Lozano, J.A.; Castillo-Triviño, T.; Asensio, A.; Olaskoaga, J.; López de Munain, A. Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One, 2009, 4(7)e6309
[http://dx.doi.org/10.1371/journal.pone.0006309] [PMID: 19617918]
[150]
Li, J-S.; Yao, Z-X. MicroRNA patents in demyelinating diseases: a new diagnostic and therapeutic perspective. Recent Pat. DNA Gene Seq., 2012, 6(1), 47-55.
[http://dx.doi.org/10.2174/187221512799303127] [PMID: 22239683]
[151]
Lange, J. microRNA profiling on automated biochip platform reveals biomarker signatures from blood samples. Nat. Methods, 2010, 7(2)
[http://dx.doi.org/10.1038/nmeth.f.281x]
[152]
Waschbisch, A.; Atiya, M.; Linker, R.A.; Potapov, S.; Schwab, S.; Derfuss, T. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One, 2011, 6(9)e24604
[http://dx.doi.org/10.1371/journal.pone.0024604] [PMID: 21949733]
[153]
Boz, C.; Oger, J.; Gibbs, E.; Grossberg, S.E. Neurologists of the UBC MS Clinic. Reduced effectiveness of long-term interferon-β treatment on relapses in neutralizing antibody-positive multiple sclerosis patients: a Canadian multiple sclerosis clinic-based study. Mult. Scler., 2007, 13(9), 1127-1137.
[http://dx.doi.org/10.1177/1352458507080468] [PMID: 17967840]
[154]
Vallittu, A-M.; Halminen, M.; Peltoniemi, J.; Ilonen, J.; Julkunen, I.; Salmi, A.; Erälinna, J-P. Finnish Beta-Interferon Study Group. Neutralizing antibodies reduce MxA protein induction in interferon-beta-1a-treated MS patients. Neurology, 2002, 58(12), 1786-1790.
[http://dx.doi.org/10.1212/WNL.58.12.1786] [PMID: 12084878]
[155]
Comabella, M.; Lünemann, J.D.; Río, J.; Sánchez, A.; López, C.; Julià, E.; Fernández, M.; Nonell, L.; Camiña-Tato, M.; Deisenhammer, F.; Caballero, E.; Tortola, M.T.; Prinz, M.; Montalban, X.; Martin, R. A type I interferon signature in monocytes is associated with poor response to interferon-β in multiple sclerosis. Brain, 2009, 132(Pt 12), 3353-3365.
[http://dx.doi.org/10.1093/brain/awp228] [PMID: 19741051]
[156]
Axtell, R.C.; Raman, C.; Steinman, L. Interferon-β exacerbates Th17-mediated inflammatory disease. Trends Immunol., 2011, 32(6), 272-277.
[http://dx.doi.org/10.1016/j.it.2011.03.008] [PMID: 21530402]
[157]
Bushnell, S.E.; Zhao, Z.; Stebbins, C.C.; Cadavid, D.; Buko, A.M.; Whalley, E.T.; Davis, J.A.; Versage, E.M.; Richert, J.R.; Axtell, R.C.; Steinman, L.; Medori, R. Serum IL-17F does not predict poor response to IM IFNβ-1a in relapsing-remitting MS. Neurology, 2012, 79(6), 531-537.
[http://dx.doi.org/10.1212/WNL.0b013e318259e123] [PMID: 22573631]
[158]
Axtell, R.C.; de Jong, B.A.; Boniface, K.; van der Voort, L.F.; Bhat, R.; De Sarno, P.; Naves, R.; Han, M.; Zhong, F.; Castellanos, J.G.; Mair, R.; Christakos, A.; Kolkowitz, I.; Katz, L.; Killestein, J.; Polman, C.H.; de Waal Malefyt, R.; Steinman, L.; Raman, C. T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med., 2010, 16(4), 406-412.
[http://dx.doi.org/10.1038/nm.2110] [PMID: 20348925]
[159]
Axtell, R.C.; Raman, C.; Steinman, L. Type I interferons: beneficial in Th1 and detrimental in Th17 autoimmunity. Clin. Rev. Allergy Immunol., 2013, 44(2), 114-120.
[http://dx.doi.org/10.1007/s12016-011-8296-5] [PMID: 22231516]
[160]
Axtell, R.C.; Raman, C. Janus-like effects of type I interferon in autoimmune diseases. Immunol. Rev., 2012, 248(1), 23-35.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01131.x] [PMID: 22725952]
[161]
Lee, L-F.; Axtell, R.; Tu, G.H.; Logronio, K.; Dilley, J.; Yu, J.; Rickert, M.; Han, B.; Evering, W.; Walker, M.G. IL-7 promotes TH1 development and serum IL-7 predicts clinical response to interferon-β in multiple sclerosis. Sci. Transl. Med., 2011, 3(93)93ra68
[http://dx.doi.org/10.1126/scitranslmed.3002400] [PMID: 21795588]
[162]
Bertolotto, A.; Granieri, L.; Marnetto, F.; Valentino, P.; Sala, A.; Capobianco, M.; Malucchi, S.; Di Sapio, A.; Malentacchi, M.; Matta, M.; Caldano, M. Biological monitoring of IFN-β therapy in multiple sclerosis. Cytokine Growth Factor Rev., 2015, 26(2), 241-248.
[http://dx.doi.org/10.1016/j.cytogfr.2014.12.002] [PMID: 25596967]
[163]
Hecker, M.; Paap, B.K.; Goertsches, R.H.; Kandulski, O.; Fatum, C.; Koczan, D.; Hartung, H-P.; Thiesen, H-J.; Zettl, U.K. Reassessment of blood gene expression markers for the prognosis of relapsing-remitting multiple sclerosis. PLoS One, 2011, 6(12)e29648
[http://dx.doi.org/10.1371/journal.pone.0029648] [PMID: 22216338]
[164]
Kemppinen, A.K.; Kaprio, J.; Palotie, A.; Saarela, J. Systematic review of genome-wide expression studies in multiple sclerosis. BMJ Open, 2011, 1(1)e000053
[http://dx.doi.org/10.1136/bmjopen-2011-000053] [PMID: 22021740]
[165]
Schönrock, L.M.; Gawlowski, G.; Brück, W. Interleukin-6 expression in human multiple sclerosis lesions. Neurosci. Lett., 2000, 294(1), 45-48.
[http://dx.doi.org/10.1016/S0304-3940(00)01543-3] [PMID: 11044583]
[166]
Hohnoki, K.; Inoue, A.; Koh, C-S. Elevated serum levels of IFN-γ, IL-4 and TNF-α/unelevated serum levels of IL-10 in patients with demyelinating diseases during the acute stage. J. Neuroimmunol., 1998, 87(1-2), 27-32.
[http://dx.doi.org/10.1016/S0165-5728(98)00053-8] [PMID: 9670842]
[167]
Nicoletti, F.; Patti, F.; Cocuzza, C.; Zaccone, P.; Nicoletti, A.; Di Marco, R.; Reggio, A. Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J. Neuroimmunol., 1996, 70(1), 87-90.
[http://dx.doi.org/10.1016/S0165-5728(96)00101-4] [PMID: 8862139]
[168]
Vaknin-Dembinsky, A.; Balashov, K.; Weiner, H.L. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J. Immunol., 2006, 176(12), 7768-7774.
[http://dx.doi.org/10.4049/jimmunol.176.12.7768] [PMID: 16751425]
[169]
Favorova, O.O.; Andreewski, T.V.; Boiko, A.N.; Sudomoina, M.A.; Alekseenkov, A.D.; Kulakova, O.G.; Slanova, A.V.; Gusev, E.I. The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians. Neurology, 2002, 59(10), 1652-1655.
[http://dx.doi.org/10.1212/01.WNL.0000035626.92372.0A] [PMID: 12451219]
[170]
Sørensen, T.L.; Trebst, C.; Kivisäkk, P.; Klaege, K.L.; Majmudar, A.; Ravid, R.; Lassmann, H.; Olsen, D.B.; Strieter, R.M.; Ransohoff, R.M.; Sellebjerg, F. Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J. Neuroimmunol., 2002, 127(1-2), 59-68.
[http://dx.doi.org/10.1016/S0165-5728(02)00097-8] [PMID: 12044976]
[171]
Belogurov, A.A., Jr; Kurkova, I.N.; Friboulet, A.; Thomas, D.; Misikov, V.K.; Zakharova, M.Y.; Suchkov, S.V.; Kotov, S.V.; Alehin, A.I.; Avalle, B.; Souslova, E.A.; Morse, H.C., III; Gabibov, A.G.; Ponomarenko, N.A. Recognition and degradation of myelin basic protein peptides by serum autoantibodies: novel biomarker for multiple sclerosis. J. Immunol., 2008, 180(2), 1258-1267.
[http://dx.doi.org/10.4049/jimmunol.180.2.1258] [PMID: 18178866]
[172]
Ketelslegers, I.A.; Van Pelt, D.E.; Bryde, S.; Neuteboom, R.F.; Catsman-Berrevoets, C.E.; Hamann, D.; Hintzen, R.Q. Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Mult. Scler., 2015, 21(12), 1513-1520.
[http://dx.doi.org/10.1177/1352458514566666] [PMID: 25662345]
[173]
Huang, W-X.; Huang, P.; Hillert, J. Systemic upregulation of CD40 and CD40 ligand mRNA expression in multiple sclerosis. Mult. Scler., 2000, 6(2), 61-65.
[http://dx.doi.org/10.1177/135245850000600201] [PMID: 10773848]
[174]
Lechner, P.; Buck, D.; Sick, L.; Hemmer, B.; Multhoff, G. Serum heat shock protein 70 levels as a biomarker for inflammatory processes in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin., 2018, 4(2)2055217318767192
[http://dx.doi.org/10.1177/2055217318767192] [PMID: 29780609]
[175]
Ciusani, E.; Frigerio, S.; Gelati, M.; Corsini, E.; Dufour, A.; Nespolo, A.; La Mantia, L.; Milanese, C.; Massa, G.; Salmaggi, A. Soluble Fas (Apo-1) levels in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol., 1998, 82(1), 5-12.
[http://dx.doi.org/10.1016/S0165-5728(97)00177-X] [PMID: 9526840]
[176]
Semra, Y.K.; Seidi, O.A.; Sharief, M.K. Overexpression of the apoptosis inhibitor FLIP in T cells correlates with disease activity in multiple sclerosis. J. Neuroimmunol., 2001, 113(2), 268-274.
[http://dx.doi.org/10.1016/S0165-5728(00)00443-4] [PMID: 11164911]
[177]
Salzer, J.; Svenningsson, A.; Sundström, P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult. Scler., 2010, 16(3), 287-292.
[http://dx.doi.org/10.1177/1352458509359725] [PMID: 20086018]
[178]
Cantó, E.; Reverter, F.; Morcillo-Suárez, C.; Matesanz, F.; Fernández, O.; Izquierdo, G.; Vandenbroeck, K.; Rodríguez-Antigüedad, A.; Urcelay, E.; Arroyo, R.; Otaegui, D.; Olascoaga, J.; Saiz, A.; Navarro, A.; Sanchez, A.; Domínguez, C.; Caminero, A.; Horga, A.; Tintoré, M.; Montalban, X.; Comabella, M. Chitinase 3-like 1 plasma levels are increased in patients with progressive forms of multiple sclerosis. Mult. Scler., 2012, 18(7), 983-990.
[http://dx.doi.org/10.1177/1352458511433063] [PMID: 22183936]
[179]
Møllgaard, M.; Degn, M.; Sellebjerg, F.; Frederiksen, J.L.; Modvig, S. Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis. Eur. J. Neurol., 2016, 23(5), 898-905.
[http://dx.doi.org/10.1111/ene.12960] [PMID: 26872061]
[180]
Hendrickx, D.A.E.; van Scheppingen, J.; van der Poel, M.; Bossers, K.; Schuurman, K.G.; van Eden, C.G.; Hol, E.M.; Hamann, J.; Huitinga, I. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front. Immunol., 2017, 8, 1810.
[http://dx.doi.org/10.3389/fimmu.2017.01810] [PMID: 29312322]
[181]
Lutterotti, A.; Kuenz, B.; Gredler, V.; Khalil, M.; Ehling, R.; Gneiss, C.; Egg, R.; Deisenhammer, F.; Berger, T.; Reindl, M. Increased serum levels of soluble CD14 indicate stable multiple sclerosis. J. Neuroimmunol., 2006, 181(1-2), 145-149.
[http://dx.doi.org/10.1016/j.jneuroim.2006.09.002] [PMID: 17046070]
[182]
Stilund, M.; Reuschlein, A-K.; Christensen, T.; Møller, H.J.; Rasmussen, P.V.; Petersen, T. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS One, 2014, 9(6)e98588
[http://dx.doi.org/10.1371/journal.pone.0098588] [PMID: 24886843]
[183]
Öhrfelt, A.; Axelsson, M.; Malmeström, C.; Novakova, L.; Heslegrave, A.; Blennow, K.; Lycke, J.; Zetterberg, H. Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone. Mult. Scler., 2016, 22(12), 1587-1595.
[http://dx.doi.org/10.1177/1352458515624558] [PMID: 26754805]
[184]
Villar, L.M.; Masjuan, J.; González-Porqué, P.; Plaza, J.; Sádaba, M.C.; Roldán, E.; Bootello, A.; Alvarez-Cermeño, J.C. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann. Neurol., 2003, 53(2), 222-226.
[http://dx.doi.org/10.1002/ana.10441] [PMID: 12557289]
[185]
Axelsson, M.; Malmeström, C.; Nilsson, S.; Haghighi, S.; Rosengren, L.; Lycke, J. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J. Neurol., 2011, 258(5), 882-888.
[http://dx.doi.org/10.1007/s00415-010-5863-2] [PMID: 21197541]
[186]
Ingram, G.; Hakobyan, S.; Hirst, C.L.; Harris, C.L.; Loveless, S.; Mitchell, J.P.; Pickersgill, T.P.; Robertson, N.P.; Morgan, B.P. Systemic complement profiling in multiple sclerosis as a biomarker of disease state. Mult. Scler., 2012, 18(10), 1401-1411.
[http://dx.doi.org/10.1177/1352458512438238] [PMID: 22354735]
[187]
Vistbakka, J.; Lehtimaki, T.; Elovaara, I.; Hagman, S. Evaluation of serum miR-191-5p, miR-24-3p, miR-128-3p, and miR-376c-3 in multiple sclerosis patients. Acta Neurol. Scand., 2018, 138(2), 130-136.
[http://dx.doi.org/10.1111/ane.12921] [PMID: 29527713]
[188]
Chen, J.; Zhu, J.; Wang, Z.; Yao, X.; Wu, X.; Liu, F.; Zheng, W.; Li, Z.; Lin, A. MicroRNAs correlate with multiple sclerosis and neuromyelitis optica spectrum disorder in a Chinese population. Med. Sci. Monit., 2017, 23, 2565-2583.
[http://dx.doi.org/10.12659/MSM.904642] [PMID: 28550707]
[189]
Wu, R.; He, Q.; Chen, H.; Xu, M.; Zhao, N.; Xiao, Y.; Tu, Q.Q.; Zhang, W.; Bi, X. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochem. Biophys. Res. Commun., 2017, 486(3), 759-766.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.115] [PMID: 28342869]
[190]
Liu, R.; Ma, X.; Chen, L.; Yang, Y.; Zeng, Y.; Gao, J.; Jiang, W.; Zhang, F.; Li, D.; Han, B.; Han, R.; Qiu, R.; Huang, W.; Wang, Y.; Hao, J. MicroRNA-15b suppresses Th17 differentiation and is associated with pathogenesis of multiple sclerosis by targeting O-GlcNAc transferase. J. Immunol., 2017, 198(7), 2626-2639.
[http://dx.doi.org/10.4049/jimmunol.1601727] [PMID: 28228555]
[191]
Fenoglio, C.; De Riz, M.; Pietroboni, A.M.; Calvi, A.; Serpente, M.; Cioffi, S.M.; Arcaro, M.; Oldoni, E.; Scarpini, E.; Galimberti, D. Effect of fingolimod treatment on circulating miR-15b, miR23a and miR-223 levels in patients with multiple sclerosis. J. Neuroimmunol., 2016, 299, 81-83.
[http://dx.doi.org/10.1016/j.jneuroim.2016.08.017] [PMID: 27725128]
[192]
Bergman, P.; Piket, E.; Khademi, M.; James, T.; Brundin, L.; Olsson, T.; Piehl, F.; Jagodic, M. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm., 2016, 3(3)e219
[http://dx.doi.org/10.1212/NXI.0000000000000219] [PMID: 27144214]
[193]
Honardoost, M.A.; Kiani-Esfahani, A.; Ghaedi, K.; Etemadifar, M.; Salehi, M. miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing-remitting multiple sclerosis. Gene, 2014, 544(2), 128-133.
[http://dx.doi.org/10.1016/j.gene.2014.04.069] [PMID: 24792898]
[194]
Lindberg, R.L.; Hoffmann, F.; Mehling, M.; Kuhle, J.; Kappos, L. Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur. J. Immunol., 2010, 40(3), 888-898.
[http://dx.doi.org/10.1002/eji.200940032] [PMID: 20148420]
[195]
Vistbakka, J.; Sumelahti, M.L. Evaluation of serum miR-191-5p, miR-24-3p, miR-128-3p, and miR-376c-3 in multiple sclerosis patients, 2018, 138(2), 130-136.
[http://dx.doi.org/10.1111/ane.12921]
[196]
Ahlbrecht, J.; Martino, F.; Pul, R.; Skripuletz, T.; Sühs, K.W.; Schauerte, C.; Yildiz, Ö.; Trebst, C.; Tasto, L.; Thum, S.; Pfanne, A.; Roesler, R.; Lauda, F.; Hecker, M.; Zettl, U.K.; Tumani, H.; Thum, T.; Stangel, M. Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing-remitting multiple sclerosis. Mult. Scler., 2016, 22(9), 1202-1214.
[http://dx.doi.org/10.1177/1352458515613641] [PMID: 26493127]
[197]
Naghavian, R.; Ghaedi, K.; Kiani-Esfahani, A.; Ganjalikhani-Hakemi, M.; Etemadifar, M.; Nasr-Esfahani, M.H. miR-141 and miR-200a, revelation of new possible players in modulation of Th17/Treg differentiation and pathogenesis of multiple sclerosis. PLoS One, 2015, 10(5)e0124555
[http://dx.doi.org/10.1371/journal.pone.0124555] [PMID: 25938517]
[198]
Lorenzi, J.C.; Brum, D.G.; Zanette, D.L.; de Paula Alves Souza, A.; Barbuzano, F.G.; Dos Santos, A.C.; Barreira, A.A.; da Silva, W.A. miR-15a and 16-1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients. Int. J. Neurosci., 2012, 122(8), 466-471.
[http://dx.doi.org/10.3109/00207454.2012.678444] [PMID: 22463747]
[199]
Cardamone, G.; Paraboschi, E.M.; Solda, G.; Cantoni, C.; Supino, D.; Piccio, L.; Duga, S.; Asselta, R. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum. Mol. Genet., 2019, 28(9), 1414-1428.
[http://dx.doi.org/10.1093/hmg/ddy438] [PMID: 30566690]
[200]
Liggett, T.; Melnikov, A.; Tilwalli, S.; Yi, Q.; Chen, H.; Replogle, C.; Feng, X.; Reder, A.; Stefoski, D.; Balabanov, R.; Levenson, V. Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis. J. Neurol. Sci., 2010, 290(1-2), 16-21.
[http://dx.doi.org/10.1016/j.jns.2009.12.018] [PMID: 20064646]
[201]
Chitnis, T.; Gonzalez, C.; Healy, B.C.; Saxena, S.; Rosso, M.; Barro, C.; Michalak, Z.; Paul, A.; Kivisakk, P.; Diaz-Cruz, C.; Sattarnezhad, N.; Pierre, I.V.; Glanz, B.I.; Tomic, D.; Kropshofer, H.; Haring, D.; Leppert, D.; Kappos, L.; Bakshi, R. Neurofilament light chain serum levels correlate with 10-year MRI outcomes in multiple sclerosis. Ann. Clin. Transl. Neurol., 2018, 5(12), 1478-1491.
[http://dx.doi.org/10.1002/acn3.638] [PMID: 30564615]
[202]
Regev, K.; Healy, B.C.; Khalid, F.; Paul, A.; Chu, R.; Tauhid, S.; Tummala, S.; Diaz-Cruz, C.; Raheja, R.; Mazzola, M.A.; von Glehn, F.; Kivisakk, P.; Dupuy, S.L.; Kim, G.; Chitnis, T.; Weiner, H.L.; Gandhi, R.; Bakshi, R. Association between serum micrornas and magnetic resonance imaging measures of multiple sclerosis severity. JAMA Neurol., 2017, 74(3), 275-285.
[http://dx.doi.org/10.1001/jamaneurol.2016.5197] [PMID: 28114622]
[203]
Holmøy, T.; Løken-Amsrud, K.I.; Bakke, S.J.; Beiske, A.G.; Bjerve, K.S.; Hovdal, H.; Lilleås, F.; Midgard, R.; Pedersen, T.; Saltytė Benth, J.; Torkildsen, O.; Wergeland, S.; Myhr, K.M.; Michelsen, A.E.; Aukrust, P.; Ueland, T. Inflammation markers in multiple sclerosis: CXCL16 reflects and may also predict disease activity. PLoS One, 2013, 8(9)e75021
[http://dx.doi.org/10.1371/journal.pone.0075021] [PMID: 24069377]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy