Review Article

抗阿尔茨海默氏症药物研究中的糖尿病理论-第1部分:抗糖尿病药的治疗潜力

卷 27, 期 39, 2020

页: [6658 - 6681] 页: 24

弟呕挨: 10.2174/0929867326666191011144818

价格: $65

摘要

阿尔茨海默氏病(AD)是一种慢性进行性神经退行性疾病,全世界有4600万人受到影响。它的特点是认知能力下降,包括记忆和思维能力。 AD患者还患有痴呆的行为和心理症状,其中抑郁症最普遍。目前可用的药物可提供适度的症状缓解,并且不能减轻病理特征(老年斑和神经原纤维缠结)和神经炎症,这两者都是AD的组成部分。研究表明,AD是一种表现在大脑中的糖尿病。尽管AD和糖尿病目前被分类为单独的疾病实体,但是它们具有共同的病理生理机制,其中之一是参与炎症以及调节代谢,再生和神经过程的细胞因子水平升高。这篇综述的目的是更新有关抗糖尿病药的发现和开发的最新报告,这些药物是用于对症和疾病缓解性治疗的有前途的药物。我们收集了体外和体内研究的结果,最近的临床试验报告表明抗糖尿病药在AD记忆增强疗法中的实用性。还介绍了它们对慢性神经发炎,病理学特征和认知缺陷共同引起的神经精神症状的有益作用。抗糖尿病药是指AD的糖尿病和炎症假设,并为寻找一种有效的药物来对该疾病进行综合治疗提供了希望。

关键词: 阿尔茨海默氏病,BPSD,认知障碍,神经退行性疾病,神经炎症,III型糖尿病,抗糖尿病药,抗炎活性。

[1]
Kelley, B.J.; Petersen, R.C. Alzheimer’s disease and mild cognitive impairment. Neurol. Clin. , 2007, 25(3), 577-609, v..
[http://dx.doi.org/10.1016/j.ncl.2007.03.008] [PMID: 17659182]
[2]
Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E.B. Behavioral and psychological symptoms of dementia. Front. Neurol., 2012, 3, 73.
[http://dx.doi.org/10.3389/fneur.2012.00073] [PMID: 22586419]
[3]
Mat Nuri, T.H.; Hong, Y.H.; Ming, L.C.; Mohd Joffry, S.; Othman, M.F.; Neoh, C.F. Knowledge on Alzheimer’s disease among public hospitals and health clinics pharmacists in the state of Selangor, Malaysia. Front. Pharmacol., 2017, 8, 739.
[http://dx.doi.org/10.3389/fphar.2017.00739] [PMID: 29123479]
[4]
Cimler, R.; Maresova, P.; Kuhnova, J.; Kuca, K. Predictions of Alzheimer’s disease treatment and care costs in European countries. PLoS One, 2019, 14(1)e0210958
[http://dx.doi.org/10.1371/journal.pone.0210958] [PMID: 30682120]
[5]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics. (review) Mol. Med. Rep., 2019, 20(2), 1479-1487.
[http://dx.doi.org/10.3892/mmr.2019.10374 ] [PMID: 31257471]
[6]
Kołaczkowski, M.; Mierzejewski, P.; Bienkowski, P.; Wesołowska, A.; Newman-Tancredi, A. Antipsychotic, antidepressant, and cognitive-impairment properties of antipsychotics: rat profile and implications for behavioral and psychological symptoms of dementia. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(6), 545-557.
[http://dx.doi.org/10.1007/s00210-014-0966-4] [PMID: 24599316]
[7]
Rodda, J.; Carter, J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ, 2012, 344, e2986-e2986.
[http://dx.doi.org/10.1136/bmj.e2986] [PMID: 22550350]
[8]
Yang, Z.; Zhou, X.; Zhang, Q. Effectiveness and safety of memantine treatment for Alzheimer’s disease. J. Alzheimers Dis., 2013, 36(3), 445-458.
[http://dx.doi.org/10.3233/JAD-130395] [PMID: 23635410]
[9]
Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: the link between comorbidities, genetics and Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 276.
[http://dx.doi.org/10.1186/s12974-018-1313-3] [PMID: 30249283]
[10]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[11]
Kroner, Z. The relationship between Alzheimer’s disease and diabetes: type 3 diabetes? Altern. Med. Rev., 2009, 14(4), 373-379.
[PMID: 20030463]
[12]
Leszek, J.; Trypka, E.; Tarasov, V.V.; Ashraf, G.M.; Aliev, G. Type 3 diabetes mellitus: a novel implication of Alzheimers disease. Curr. Top. Med. Chem., 2017, 17(12), 1331-1335.
[http://dx.doi.org/10.2174/1568026617666170103163403] [PMID: 28049395]
[13]
Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1078-1089.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[14]
Rivera, E.J.; Goldin, A.; Fulmer, N.; Tavares, R.; Wands, J.R.; de la Monte, S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J. Alzheimers Dis., 2005, 8(3), 247-268.
[http://dx.doi.org/10.3233/JAD-2005-8304] [PMID: 16340083]
[15]
Taylor, S.I.; Accili, D.; Haft, C.R.; Hone, J.; Imai, Y.; Levy-Toledano, R.; Quon, M.J.; Suzuki, Y.; Wertheimer, E. Mechanisms of hormone resistance: lessons from insulin-resistant patients. Acta Paediatr. Suppl., 1994, 399(s399), 95-104.
[http://dx.doi.org/10.1111/j.1651-2227.1994.tb13300.x] [PMID: 7949626]
[16]
Fiore, V.; De Rosa, A.; Falasca, P.; Marci, M.; Guastamacchia, E.; Licchelli, B.; Giagulli, V.A.; De Pergola, G.; Poggi, A.; Triggiani, V. Focus on the correlations between Alzheimer’s disease and type 2 diabetes. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 571-579.
[http://dx.doi.org/10.2174/1871530319666190311141855] [PMID: 30854980]
[17]
Hanyu, H. Diabetes-related dementia. Adv. Exp. Med. Biol., 2019, 1128, 147-160.
[http://dx.doi.org/10.1007/978-981-13-3540-2_8] [PMID: 31062329]
[18]
Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
[19]
Massaccesi, L.; Galliera, E.; Galimberti, D.; Fenoglio, C.; Arcaro, M.; Goi, G.; Barassi, A.; Corsi Romanelli, M.M. Lag-time in Alzheimer’s disease patients: a potential plasmatic oxidative stress marker associated with ApoE4 isoform. Immun. ageing I A, 2019, 16, 7.
[http://dx.doi.org/10.1186/s12979-019-0147-x] [PMID: 30984280]
[20]
Bigagli, E.; Lodovici, M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid. Med. Cell. Longev., 2019, 20195953685
[http://dx.doi.org/10.1155/2019/5953685] [PMID: 31214280]
[21]
Stefano, G.B.; Challenger, S.; Kream, R.M. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur. J. Nutr., 2016, 55(8), 2339-2345.
[http://dx.doi.org/10.1007/s00394-016-1212-2] [PMID: 27084094]
[22]
Pintana, H.; Apaijai, N.; Kerdphoo, S.; Pratchayasakul, W.; Sripetchwandee, J.; Suntornsaratoon, P.; Charoenphandhu, N.; Chattipakorn, N.; Chattipakorn, S.C. Hyperglycemia induced the Alzheimer’s proteins and promoted loss of synaptic proteins in advanced-age female Goto-Kakizaki (GK) rats. Neurosci. Lett., 2017, 655, 41-45.
[http://dx.doi.org/10.1016/j.neulet.2017.06.041] [PMID: 28652187]
[23]
Martinez-Valbuena, I.; Valenti-Azcarate, R.; Amat-Villegas, I.; Riverol, M.; Marcilla, I.; de Andrea, C.E.; Sánchez-Arias, J.A.; Del Mar Carmona-Abellan, M.; Marti, G.; Erro, M.E.; Martínez-Vila, E.; Tuñon, M-T.; Luquin, M-R. Amylin as a potential link between type 2 diabetes and alzheimer disease. Ann. Neurol., 2019, 86(4), 539-551.
[http://dx.doi.org/10.1002/ana.25570] [PMID: 31376172]
[24]
Zhang, Y-W.; Zhang, J-Q.; Liu, C.; Wei, P.; Zhang, X.; Yuan, Q-Y.; Yin, X-T.; Wei, L-Q.; Cui, J-G.; Wang, J. Memory dysfunction in type 2 diabetes mellitus correlates with reduced hippocampal CA1 and subiculum volumes. Chin. Med. J. (Engl.), 2015, 128(4), 465-471.
[http://dx.doi.org/10.4103/0366-6999.151082] [PMID: 25673447]
[25]
US National Library of Medicine. Available at: https://clinicaltrials.gov/
[26]
Yaffe, K.; Kanaya, A.; Lindquist, K.; Simonsick, E.M.; Harris, T.; Shorr, R.I.; Tylavsky, F.A.; Newman, A.B. The metabolic syndrome, inflammation and risk of cognitive decline. JAMA, 2004, 292(18), 2237-2242.
[http://dx.doi.org/10.1001/jama.292.18.2237] [PMID: 15536110]
[27]
Languren, G.; Montiel, T.; Julio-Amilpas, A.; Massieu, L. Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochem. Int., 2013, 63(4), 331-343.
[http://dx.doi.org/10.1016/j.neuint.2013.06.018] [PMID: 23876631]
[28]
Atkin, S.; Javed, Z.; Fulcher, G. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus. Ther. Adv. Chronic Dis., 2015, 6(6), 375-388.
[http://dx.doi.org/10.1177/2040622315608646] [PMID: 26568812]
[29]
Anderson, K.L.; Frazier, H.N.; Maimaiti, S.; Bakshi, V.V.; Majeed, Z.R.; Brewer, L.D.; Porter, N.M.; Lin, A-L.; Thibault, O. Impact of single or repeated dose intranasal zinc-free insulin in young and aged F344 rats on cognition, signaling and brain metabolism. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(2), 189-197.
[http://dx.doi.org/10.1093/gerona/glw065] [PMID: 27069097]
[30]
Adzovic, L.; Lynn, A.E.; D’Angelo, H.M.; Crockett, A.M.; Kaercher, R.M.; Royer, S.E.; Hopp, S.C.; Wenk, G.L. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J. Neuroinflammation, 2015, 12(1), 63.
[http://dx.doi.org/10.1186/s12974-015-0282-z] [PMID: 25889938]
[31]
Akanmu, M.A.; Nwabudike, N.L.; Ilesanmi, O.R. Analgesic, learning and memory and anxiolytic effects of insulin in mice. Behav. Brain Res., 2009, 196(2), 237-241.
[http://dx.doi.org/10.1016/j.bbr.2008.09.008] [PMID: 18840474]
[32]
Mueller, P.L.; Pritchett, C.E.; Wiechman, T.N.; Zharikov, A.; Hajnal, A. Antidepressant-like effects of insulin and IGF-1 are mediated by IGF-1 receptors in the brain. Brain Res. Bull., 2018, 143, 27-35.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.017] [PMID: 30278200]
[33]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multifunctional ligands targeting phosphodiesterase as the future strategy for the symptomatic and disease-modifying treatment of Alzheimer’s disease. Curr. Med. Chem., 2020, 27(32), 5351-5373.
[http://dx.doi.org/10.2174/0929867326666190620095623] [PMID: 31250747]
[34]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multi-target-directed ligands affecting serotonergic neurotransmission for Alzheimer’s disease therapy: advances in chemical and biological research. Curr. Med. Chem., 2018, 25(17), 2045-2067.
[http://dx.doi.org/10.2174/0929867324666170529122802] [PMID: 28554324]
[35]
Nampoothiri, M.; Reddy, N.D.; John, J.; Kumar, N.; Kutty Nampurath, G.; Rao Chamallamudi, M. Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells. Behav. Neurol., 2014, 2014674164
[http://dx.doi.org/10.1155/2014/674164] [PMID: 25018588]
[36]
Skeberdis, V.A.; Lan, J.; Zheng, X.; Zukin, R.S.; Bennett, M.V.L. Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3561-3566.
[http://dx.doi.org/10.1073/pnas.051634698] [PMID: 11248117]
[37]
Stouffer, M.A.; Woods, C.A.; Patel, J.C.; Lee, C.R.; Witkovsky, P.; Bao, L.; Machold, R.P.; Jones, K.T.; de Vaca, S.C.; Reith, M.E.A.; Carr, K.D.; Rice, M.E. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat. Commun., 2015, 6, 8543.
[http://dx.doi.org/10.1038/ncomms9543] [PMID: 26503322]
[38]
Yarube, I.; Ayo, J.; Magaji, R.; Umar, I. Insulin treatment increases brain nitric oxide and oxidative stress, but does not affect memory function in mice. Physiol. Behav., 2019, 211112640
[http://dx.doi.org/10.1016/j.physbeh.2019.112640] [PMID: 31377312]
[39]
Kim, B.; Elzinga, S.E.; Henn, R.E.; McGinley, L.M.; Feldman, E.L. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol. Dis., 2019, 132104541
[http://dx.doi.org/10.1016/j.nbd.2019.104541] [PMID: 31349033]
[40]
De Felice, F.G.; Lourenco, M.V.; Ferreira, S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement., 2014, 10(Suppl. 1), S26-S32.
[http://dx.doi.org/10.1016/j.jalz.2013.12.004] [PMID: 24529521]
[41]
Wang, Y-W.; He, S-J.; Feng, X.; Cheng, J.; Luo, Y-T.; Tian, L.; Huang, Q. Metformin: a review of its potential indications. Drug Des. Devel. Ther., 2017, 11, 2421-2429.
[http://dx.doi.org/10.2147/DDDT.S141675] [PMID: 28860713]
[42]
Saisho, Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(3), 196-205.
[http://dx.doi.org/10.2174/1871530315666150316124019] [PMID: 25772174]
[43]
Łabuzek, K.; Suchy, D.; Gabryel, B.; Bielecka, A.; Liber, S.; Okopień, B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol. Rep., 2010, 62(5), 956-965.
[http://dx.doi.org/10.1016/S1734-1140(10)70357-1] [PMID: 21098880]
[44]
Oliveira, W.H.; Nunes, A.K.; França, M.E.R.; Santos, L.A.; Lós, D.B.; Rocha, S.W.; Barbosa, K.P.; Rodrigues, G.B.; Peixoto, C.A. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res., 2016, 1644, 149-160.
[http://dx.doi.org/10.1016/j.brainres.2016.05.013] [PMID: 27174003]
[45]
Chen, J-L.; Luo, C.; Pu, D.; Zhang, G-Q.; Zhao, Y-X.; Sun, Y.; Zhao, K-X.; Liao, Z-Y.; Lv, A-K.; Zhu, S-Y.; Zhou, J.; Xiao, Q. Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp. Neurol., 2019, 311, 44-56.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.008] [PMID: 30219731]
[46]
Ou, Z.; Kong, X.; Sun, X.; He, X.; Zhang, L.; Gong, Z.; Huang, J.; Xu, B.; Long, D.; Li, J.; Li, Q.; Xu, L.; Xuan, A. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav. Immun., 2018, 69, 351-363.
[http://dx.doi.org/10.1016/j.bbi.2017.12.009] [PMID: 29253574]
[47]
Fatemi, I.; Khaluoi, A.; Kaeidi, A.; Shamsizadeh, A.; Heydari, S.; Allahtavakoli, M.A. Protective effect of metformin on D-galactose-induced aging model in mice. Iran. J. Basic Med. Sci., 2018, 21(1), 19-25.
[http://dx.doi.org/10.22038/IJBMS.2017.24331.6071 ] [PMID: 29372032]
[48]
Ashrostaghi, Z.; Ganji, F.; Sepehri, H. Effect of metformin on the spatial memory in aged rats. Natl. J. Physiol. Pharm. Pharmacol., 2015, 5(5), 416.
[http://dx.doi.org/10.5455/njppp.2015.5.1208201564]
[49]
Aksoz, E.; Gocmez, S.S.; Sahin, T.D.; Aksit, D.; Aksit, H.; Utkan, T. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacol. Rep., 2019, 71(5), 818-825.
[http://dx.doi.org/10.1016/j.pharep.2019.04.015] [PMID: 31382167]
[50]
Farr, S.A.; Roesler, E.; Niehoff, M.L.; Roby, D.A.; McKee, A.; Morley, J.E. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2019, 68(4), 1699-1710.
[http://dx.doi.org/10.3233/JAD-181240] [PMID: 30958364]
[51]
Zhang, J.; Lin, Y.; Dai, X.; Fang, W.; Wu, X.; Chen, X. Metformin treatment improves the spatial memory of aged mice in an APOE genotype-dependent manner. FASEB J., 2019, 33(6), 7748-7757.
[http://dx.doi.org/10.1096/fj.201802718R] [PMID: 30894020]
[52]
Fan, J.; Li, D.; Chen, H-S.; Huang, J-G.; Xu, J-F.; Zhu, W-W.; Chen, J-G.; Wang, F. Metformin produces anxiolytic-like effects in rats by facilitating GABAA receptor trafficking to membrane. Br. J. Pharmacol., 2019, 176(2), 297-316.
[http://dx.doi.org/10.1111/bph.14519] [PMID: 30318707]
[53]
Guo, M.; Mi, J.; Jiang, Q-M.; Xu, J-M.; Tang, Y-Y.; Tian, G.; Wang, B. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2014, 41(9), 650-656.
[http://dx.doi.org/10.1111/1440-1681.12265] [PMID: 24862430]
[54]
Khedr, S.A.; Elmelgy, A.A.; El-Kharashi, O.A.; Abd-Alkhalek, H.A.; Louka, M.L.; Sallam, H.A.; Aboul-Fotouh, S. Metformin potentiates cognitive and antidepressant effects of fluoxetine in rats exposed to chronic restraint stress and high fat diet: potential involvement of hippocampal c-Jun repression. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(4), 407-422.
[http://dx.doi.org/10.1007/s00210-018-1466-8] [PMID: 29379991]
[55]
Matte Bon, G.; Poggini, S.; Viglione, A.; Milior, G.; Golia, M.T.; Alboni, S.; Maggi, L.; Branchi, I. Combined treatment fluoxetine and metformin potentiates antidepressant efficacy: the differential involvement of the dorsal and ventral hippocampus. Eur. Neuropsychopharmacol., 2018, 28, S54-S55.
[http://dx.doi.org/10.1016/j.euroneuro.2017.12.082]
[56]
Wang, X.; Luo, C.; Mao, X-Y.; Li, X.; Yin, J-Y.; Zhang, W.; Zhou, H-H.; Liu, Z-Q. Metformin reverses the schizophrenia-like behaviors induced by MK-801 in rats. Brain Res., 2019, 1719, 30-39.
[http://dx.doi.org/10.1016/j.brainres.2019.05.023] [PMID: 31121159]
[57]
Chin-Hsiao, T. Metformin and the risk of dementia in type 2 diabetes patients. Aging Dis., 2019, 10(1), 37-48.
[http://dx.doi.org/10.14336/AD.2017.1202] [PMID: 30705766]
[58]
Lin, Y.; Wang, K.; Ma, C.; Wang, X.; Gong, Z.; Zhang, R.; Zang, D.; Cheng, Y. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front. Aging Neurosci., 2018, 10, 227.
[http://dx.doi.org/10.3389/fnagi.2018.00227] [PMID: 30100873]
[59]
Aman, M.G.; Hollway, J.A.; Veenstra-VanderWeele, J.; Handen, B.L.; Sanders, K.B.; Chan, J.; Macklin, E.; Arnold, L.E.; Wong, T.; Newsom, C.; Hastie Adams, R.; Marler, S.; Peleg, N.; Anagnostou, E.A. Effects of metformin on spatial and verbal memory in children with ASD and overweight associated with atypical antipsychotic use. J. Child Adolesc. Psychopharmacol., 2018, 28(4), 266-273.
[http://dx.doi.org/10.1089/cap.2017.0072] [PMID: 29620914]
[60]
Kuan, Y-C.; Huang, K-W.; Lin, C-L.; Hu, C-J.; Kao, C-H. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus Prog. Neuro-psychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 77-83.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.002]
[61]
Hong, F.; Pan, S.; Guo, Y.; Xu, P.; Zhai, Y. PPARs as nuclear receptors for nutrient and energy metabolism. Molecules, 2019, 24(14), 2545.
[http://dx.doi.org/10.3390/molecules24142545] [PMID: 31336903]
[62]
Ahsan, W. The journey of thiazolidinediones as modulators of PPARs for the management of diabetes: a current perspective. Curr. Pharm. Des., 2019, 25(23), 2540-2554.
[http://dx.doi.org/10.2174/1381612825666190716094852] [PMID: 31333088]
[63]
Khan, M.A.; Alam, Q.; Haque, A.; Ashafaq, M.; Khan, M.J.; Ashraf, G.M.; Ahmad, M. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of Alzheimer’s disease: an update. Curr. Neuropharmacol., 2019, 17(3), 232-246.
[http://dx.doi.org/10.2174/1570159X16666180828100002] [PMID: 30152284]
[64]
Escribano, L.; Simón, A-M.; Gimeno, E.; Cuadrado-Tejedor, M.; López de Maturana, R.; García-Osta, A.; Ricobaraza, A.; Pérez-Mediavilla, A.; Del Río, J.; Frechilla, D. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 2010, 35(7), 1593-1604.
[http://dx.doi.org/10.1038/npp.2010.32] [PMID: 20336061]
[65]
Yoon, S-Y.; Park, J-S.; Choi, J-E.; Choi, J-M.; Lee, W-J.; Kim, S-W.; Kim, D-H. Rosiglitazone reduces tau phosphorylation via JNK inhibition in the hippocampus of rats with type 2 diabetes and tau transfected SH-SY5Y cells. Neurobiol. Dis., 2010, 40(2), 449-455.
[http://dx.doi.org/10.1016/j.nbd.2010.07.005] [PMID: 20655383]
[66]
Xiang, G.Q.; Tang, S.S.; Jiang, L.Y.; Hong, H.; Li, Q.; Wang, C.; Wang, X.Y.; Zhang, T.T.; Yin, L. PPARγ agonist pioglitazone improves scopolamine-induced memory impairment in mice. J. Pharm. Pharmacol., 2012, 64(4), 589-596.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01432.x] [PMID: 22420664]
[67]
Kaur, B.; Singh, N.; Jaggi, A.S. Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam. Clin. Pharmacol., 2009, 23(5), 557-566.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00708.x] [PMID: 19656209]
[68]
Gao, F.; Zang, L.; Wu, D.Y.; Li, Y.J.; Zhang, Q.; Wang, H.B.; Tian, G.L.; Mu, Y.M. Pioglitazone improves the ability of learning and memory via activating ERK1/2 signaling pathway in the hippocampus of T2DM rats. Neurosci. Lett., 2017, 651, 165-170.
[http://dx.doi.org/10.1016/j.neulet.2017.04.052] [PMID: 28458023]
[69]
Xu, S.; Guan, Q.; Wang, C.; Wei, X.; Chen, X.; Zheng, B.; An, P.; Zhang, J.; Chang, L.; Zhou, W.; Mody, I.; Wang, Q. Rosiglitazone prevents the memory deficits induced by amyloid-beta oligomers via inhibition of inflammatory responses. Neurosci. Lett., 2014, 578, 7-11.
[http://dx.doi.org/10.1016/j.neulet.2014.06.010] [PMID: 24933538]
[70]
Li, J.; Shen, X. Effect of rosiglitazone on inflammatory cytokines and oxidative stress after intensive insulin therapy in patients with newly diagnosed type 2 diabetes. Diabetol. Metab. Syndr., 2019, 11, 35.
[http://dx.doi.org/10.1186/s13098-019-0432-z] [PMID: 31073335]
[71]
Xia, L.; Liu, J.; Sun, Y.; Shi, H.; Yang, G.; Feng, Y.; Yin, S. Rosiglitazone improves glucocorticoid resistance in a sudden sensorineural hearing loss by promoting MAP kinase phosphatase-1 Expression. Mediators Inflamm., 2019, 20197915730
[http://dx.doi.org/10.1155/2019/7915730] [PMID: 31217747]
[72]
Meng, Q-Q.; Feng, Z-C.; Zhang, X-L.; Hu, L-Q.; Wang, M.; Zhang, H-F.; Li, S-M. PPAR-γ activation exerts an anti-inflammatory effect by suppressing the NLRP3 inflammasome in spinal cord-derived neurons. Mediators Inflamm., 2019, 20196386729
[http://dx.doi.org/10.1155/2019/6386729] [PMID: 31015796]
[73]
Kadam, L.; Kilburn, B.; Baczyk, D.; Kohan-Ghadr, H.R.; Kingdom, J.; Drewlo, S. Rosiglitazone blocks first trimester in-vitro placental injury caused by NF-κB-mediated inflammation. Sci. Rep., 2019, 9(1), 2018.
[http://dx.doi.org/10.1038/s41598-018-38336-2] [PMID: 30765769]
[74]
Zhao, Y.; Wei, X.; Song, J.; Zhang, M.; Huang, T.; Qin, J. Peroxisome proliferator-activated receptor γ agonist rosiglitazone protects blood-brain barrier integrity following diffuse axonal injury by decreasing the levels of inflammatory mediators through a caveolin-1-dependent pathway. Inflammation, 2019, 42(3), 841-856.
[http://dx.doi.org/10.1007/s10753-018-0940-2] [PMID: 30488141]
[75]
Luo, Y.; Yin, W.; Signore, A.P.; Zhang, F.; Hong, Z.; Wang, S.; Graham, S.H.; Chen, J. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J. Neurochem., 2006, 97(2), 435-448.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03758.x] [PMID: 16539667]
[76]
Zhang, Q.; Hu, W.; Meng, B.; Tang, T. PPARγ agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats. Neurol. Res., 2010, 32(8), 852-859.
[http://dx.doi.org/10.1179/016164110X12556180206112] [PMID: 20350367]
[77]
Yao, J.; Zheng, K.; Zhang, X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol. Med. Rep., 2015, 12(5), 6591-6597.
[http://dx.doi.org/10.3892/mmr.2015.4292] [PMID: 26351751]
[78]
Liu, M.; Bachstetter, A.D.; Cass, W.A.; Lifshitz, J.; Bing, G. Pioglitazone attenuates neuroinflammation and promotes dopaminergic neuronal survival in the nigrostriatal system of rats after diffuse brain injury. J. Neurotrauma, 2017, 34(2), 414-422.
[http://dx.doi.org/10.1089/neu.2015.4361] [PMID: 27142118]
[79]
Almasi-Nasrabadi, M.; Javadi-Paydar, M.; Mahdavian, S.; Babaei, R.; Sharifian, M.; Norouzi, A.; Dehpour, A.R. Involvement of NMDA receptors in the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice. Behav. Brain Res., 2012, 231(1), 138-145.
[http://dx.doi.org/10.1016/j.bbr.2012.03.006] [PMID: 22440233]
[80]
Salehi-Sadaghiani, M.; Javadi-Paydar, M.; Gharedaghi, M.H.; Zandieh, A.; Heydarpour, P.; Yousefzadeh-Fard, Y.; Dehpour, A.R. NMDA receptor involvement in antidepressant-like effect of pioglitazone in the forced swimming test in mice. Psychopharmacology (Berl.), 2012, 223(3), 345-355.
[http://dx.doi.org/10.1007/s00213-012-2722-0] [PMID: 22547332]
[81]
Heneka, M.T.; Fink, A.; Doblhammer, G. Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol., 2015, 78(2), 284-294.
[http://dx.doi.org/10.1002/ana.24439] [PMID: 25974006]
[82]
Chou, P-S.; Ho, B-L.; Yang, Y-H. Effects of pioglitazone on the incidence of dementia in patients with diabetes. J. Diabetes Complications, 2017, 31(6), 1053-1057.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.01.006] [PMID: 28254448]
[83]
Lu, C-H.; Yang, C-Y.; Li, C-Y.; Hsieh, C-Y.; Ou, H-T. Lower risk of dementia with pioglitazone, compared with other second-line treatments, in metformin-based dual therapy: a population-based longitudinal study. Diabetologia, 2018, 61(3), 562-573.
[http://dx.doi.org/10.1007/s00125-017-4499-5] [PMID: 29138876]
[84]
Knodt, A.R.; Burke, J.R.; Welsh-Bohmer, K.A.; Plassman, B.L.; Burns, D.K.; Brannan, S.K.; Kukulka, M.; Wu, J.; Hariri, A.R. Effects of pioglitazone on mnemonic hippocampal function: A blood oxygen level-dependent functional magnetic resonance imaging study in elderly adults. Alzheimers Dement. (N. Y.), 2019, 5, 254-263.
[http://dx.doi.org/10.1016/j.trci.2019.05.004] [PMID: 31304231]
[85]
Geldmacher, D.S.; Fritsch, T.; McClendon, M.J.; Landreth, G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol., 2011, 68(1), 45-50.
[http://dx.doi.org/10.1001/archneurol.2010.229] [PMID: 20837824]
[86]
Gold, M.; Alderton, C.; Zvartau-Hind, M.; Egginton, S.; Saunders, A.M.; Irizarry, M.; Craft, S.; Landreth, G.; Linnamägi, U.; Sawchak, S. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement. Geriatr. Cogn. Disord., 2010, 30(2), 131-146.
[http://dx.doi.org/10.1159/000318845] [PMID: 20733306]
[87]
Hiatt, W.R.; Kaul, S.; Smith, R.J. The cardiovascular safety of diabetes drugs--insights from the rosiglitazone experience. N. Engl. J. Med., 2013, 369(14), 1285-1287.
[http://dx.doi.org/10.1056/NEJMp1309610] [PMID: 23992603]
[88]
Silva-Abreu, M.; Gonzalez-Pizarro, R.; Espinoza, L.C.; Rodríguez-Lagunas, M.J.; Espina, M.; García, M.L.; Calpena, A.C. Thiazolidinedione as an alternative to facilitate oral administration in geriatric patients with Alzheimer’s disease. Eur. J. Pharm. Sci., 2019, 129, 173-180.
[http://dx.doi.org/10.1016/j.ejps.2019.01.008] [PMID: 30639402]
[89]
Chappidi, S.R.; Bhargav, E.; Marikunte, V.; Chinthaginjala, H.; Vijaya Jyothi, M.; Pisay, M.; Jutur, M.; Shaik Mahammad, M.; Poura, M.; Yadav, S.; Syed, M. A cost effective (QbD) approach in the development and optimization of rosiglitazone maleate mucoadhesive extended release tablets -in vitro and ex vivo. Adv. Pharm. Bull., 2019, 9(2), 281-288.
[http://dx.doi.org/10.15171/apb.2019.032] [PMID: 31380254]
[90]
Erol, A. The functions of PPARs in aging and longevity. PPAR Res., 2007, 2007, 39654.
[http://dx.doi.org/10.1155/2007/39654] [PMID: 18317516]
[91]
Moreno, S.; Cerù, M.P. In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target? Neural Regen. Res., 2015, 10(9), 1409-1412.
[http://dx.doi.org/10.4103/1673-5374.165313] [PMID: 26604898]
[92]
Krishna; Vaseem, A.; Sah, R.K.; Ali, M. Saroglitazar: a novel dual acting peroxisome proliferator activated receptor (PPAR) in dyslipidemia associated with T2DM. EJPMR, 2017, 4(2), 680-684.
[93]
Rigano, D.; Sirignano, C.; Taglialatela-Scafati, O. The potential of natural products for targeting PPARα. Acta Pharm. Sin. B, 2017, 7(4), 427-438.
[http://dx.doi.org/10.1016/j.apsb.2017.05.005] [PMID: 28752027]
[94]
Ashcroft, F.M. Mechanisms of the glycaemic effects of sulfonylureas. Horm. Metab. Res., 1996, 28(9), 456-463.
[http://dx.doi.org/10.1055/s-2007-979837] [PMID: 8911983]
[95]
Lee, K.W.; Ku, Y.H.; Kim, M.; Ahn, B.Y.; Chung, S.S.; Park, K.S. Effects of sulfonylureas on peroxisome proliferator-activated receptor γ activity and on glucose uptake by thiazolidinediones. Diabetes Metab. J., 2011, 35(4), 340-347.
[http://dx.doi.org/10.4093/dmj.2011.35.4.340] [PMID: 21977453]
[96]
Baraka, A.; ElGhotny, S. Study of the effect of inhibiting galanin in Alzheimer’s disease induced in rats. Eur. J. Pharmacol., 2010, 641(2-3), 123-127.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.030] [PMID: 20639139]
[97]
Rizvi, S.M.D.; Shaikh, S.; Naaz, D.; Shakil, S.; Ahmad, A.; Haneef, M.; Abuzenadah, A.M. Kinetics and molecular docking study of an anti-diabetic drug glimepiride as acetylcholinesterase inhibitor: implication for Alzheimer’s disease-diabetes dual therapy. Neurochem. Res., 2016, 41(6), 1475-1482.
[http://dx.doi.org/10.1007/s11064-016-1859-3] [PMID: 26886763]
[98]
Liu, F.; Wang, Y.; Yan, M.; Zhang, L.; Pang, T.; Liao, H. Glimepiride attenuates Aβ production via suppressing BACE1 activity in cortical neurons Neurosci. Lett., 2013, 557(Pt B), 90-94.
[http://dx.doi.org/10.1016/j.neulet.2013.10.052]
[99]
Ling, M-Y.; Ma, Z-Y.; Wang, Y-Y.; Qi, J.; Liu, L.; Li, L.; Zhang, Y. Up-regulated ATP-sensitive potassium channels play a role in increased inflammation and plaque vulnerability in macrophages. Atherosclerosis, 2013, 226(2), 348-355.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.11.016] [PMID: 23218803]
[100]
Tamura, K.; Ishikawa, G.; Yoshie, M.; Ohneda, W.; Nakai, A.; Takeshita, T.; Tachikawa, E. Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1β secretion in human trophoblasts. J. Pharmacol. Sci., 2017, 135(2), 89-95.
[http://dx.doi.org/10.1016/j.jphs.2017.09.032] [PMID: 29056256]
[101]
Lin, Y-W.; Liu, P-S.; Pook, K.A.; Wei, L-N. Glyburide and retinoic acid synergize to promote wound healing by anti-inflammation and RIP140 degradation. Sci. Rep., 2018, 8(1), 834.
[http://dx.doi.org/10.1038/s41598-017-18785-x] [PMID: 29339732]
[102]
Kewcharoenwong, C.; Rinchai, D.; Utispan, K.; Suwannasaen, D.; Bancroft, G.J.; Ato, M.; Lertmemongkolchai, G. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection. Sci. Rep., 2013, 3(1), 3363.
[http://dx.doi.org/10.1038/srep03363] [PMID: 24285369]
[103]
Ishola, I.O.; Akataobi, O.E.; Alade, A.A.; Adeyemi, O.O. Glimepiride prevents paraquat-induced Parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Fundam. Clin. Pharmacol., 2019, 33(3), 277-285.
[http://dx.doi.org/10.1111/fcp.12434] [PMID: 30451327]
[104]
Esmaeili, M.H.; Bahari, B.; Salari, A-A. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer’s disease. Brain Res. Bull., 2018, 137, 265-276.
[http://dx.doi.org/10.1016/j.brainresbull.2018.01.001] [PMID: 29307659]
[105]
Hsu, C-C.; Wahlqvist, M.L.; Lee, M-S.; Tsai, H-N. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J. Alzheimers Dis., 2011, 24(3), 485-493.
[http://dx.doi.org/10.3233/JAD-2011-101524] [PMID: 21297276]
[106]
Ortega, F.J.; Jolkkonen, J.; Mahy, N.; Rodríguez, M.J. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2013, 33(3), 356-364.
[http://dx.doi.org/10.1038/jcbfm.2012.166] [PMID: 23149556]
[107]
Simard, J.M.; Yurovsky, V.; Tsymbalyuk, N.; Melnichenko, L.; Ivanova, S.; Gerzanich, V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke, 2009, 40(2), 604-609.
[http://dx.doi.org/10.1161/STROKEAHA.108.522409] [PMID: 19023097]
[108]
Zhou, F.; Liu, Y.; Yang, B.; Hu, Z. Neuroprotective potential of glibenclamide is mediated by antioxidant and anti-apoptotic pathways in intracerebral hemorrhage. Brain Res. Bull., 2018, 142, 18-24.
[http://dx.doi.org/10.1016/j.brainresbull.2018.06.006] [PMID: 29933037]
[109]
Bomba, M.; Granzotto, A.; Castelli, V.; Massetti, N.; Silvestri, E.; Canzoniero, L.M.T.; Cimini, A.; Sensi, S.L. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol. Aging, 2018, 64, 33-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.12.009] [PMID: 29331730]
[110]
Trujillo, J.M.; Nuffer, W.; Ellis, S.L. GLP-1 receptor agonists: a review of head-to-head clinical studies. Ther. Adv. Endocrinol. Metab., 2015, 6(1), 19-28.
[http://dx.doi.org/10.1177/2042018814559725] [PMID: 25678953]
[111]
Hunter, K.; Hölscher, C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci., 2012, 13, 33.
[http://dx.doi.org/10.1186/1471-2202-13-33] [PMID: 22443187]
[112]
Kastin, A.J.; Akerstrom, V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int. J. Obes. Relat. Metab. Disord., 2003, 27(3), 313-318.
[http://dx.doi.org/10.1038/sj.ijo.0802206] [PMID: 12629557]
[113]
Gumuslu, E.; Mutlu, O.; Celikyurt, I.K.; Ulak, G.; Akar, F.; Erden, F.; Ertan, M. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam. Clin. Pharmacol., 2016, 30(4), 376-384.
[http://dx.doi.org/10.1111/fcp.12192] [PMID: 26935863]
[114]
Komsuoglu Celikyurt, I.; Mutlu, O.; Ulak, G.; Uyar, E.; Bektaş, E.; Yildiz Akar, F.; Erden, F.; Tarkun, I. Exenatide treatment exerts anxiolytic- and antidepressant-like effects and reverses neuropathy in a mouse model of type-2 diabetes. Med. Sci. Monit. Basic Res., 2014, 20, 112-117.
[http://dx.doi.org/10.12659/MSMBR.891168] [PMID: 25076419]
[115]
Bułdak, Ł.; Machnik, G.; Skudrzyk, E.; Bołdys, A.; Okopień, B. The impact of exenatide (a GLP-1 agonist) on markers of inflammation and oxidative stress in normal human astrocytes subjected to various glycemic conditions. Exp. Ther. Med., 2019, 17(4), 2861-2869.
[PMID: 30906473]
[116]
Xian, Y.; Chen, Z.; Deng, H.; Cai, M.; Liang, H.; Xu, W.; Jianping, W.; Xu, F. Exenatide mitigates inflammation and hypoxia along with improved angiogenesis in obese fat tissue. J. Endocrinol., 2019, 242(2), 79-89.
[http://dx.doi.org/10.1530/JOE-18-0639] [PMID: 31137012]
[117]
Fang, J.; Tang, Y.; Cheng, X.; Wang, L.; Cai, C.; Zhang, X.; Liu, S.; Li, P. Exenatide alleviates adriamycin-induced heart dysfunction in mice: Modulation of oxidative stress, apoptosis and inflammation. Chem. Biol. Interact., 2019, 304, 186-193.
[http://dx.doi.org/10.1016/j.cbi.2019.03.012] [PMID: 30885636]
[118]
Lennox, R.; Flatt, P.R.; Gault, V.A. Lixisenatide improves recognition memory and exerts neuroprotective actions in high-fat fed mice. Peptides, 2014, 61, 38-47.
[http://dx.doi.org/10.1016/j.peptides.2014.08.014] [PMID: 25195184]
[119]
McClean, P.L.; Hölscher, C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology, 2014, 86, 241-258.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.015] [PMID: 25107586]
[120]
Zhao, Z.; Pu, Y. Lixisenatide enhances mitochondrial biogenesis and function through regulating the CREB/PGC-1α pathway. Biochem. Biophys. Res. Commun., 2019, 508(4), 1120-1125.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.135] [PMID: 30553453]
[121]
Cai, H-Y.; Yang, J-T.; Wang, Z-J.; Zhang, J.; Yang, W.; Wu, M-N.; Qi, J-S. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2018, 495(1), 1034-1040.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.114] [PMID: 29175324]
[122]
Du, X.; Zhang, H.; Zhang, W.; Wang, Q.; Wang, W.; Ge, G.; Bai, J.; Guo, X.; Zhang, Y.; Jiang, X.; Gu, J.; Xu, Y.; Geng, D. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int. Immunopharmacol., 2019, 75105732
[http://dx.doi.org/10.1016/j.intimp.2019.105732] [PMID: 31336333]
[123]
Zhao, Q.; Xu, H.; Zhang, L.; Liu, L.; Wang, L. GLP-1 receptor agonist lixisenatide protects against high free fatty acids-induced oxidative stress and inflammatory response. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2325-2332.
[http://dx.doi.org/10.1080/21691401.2019.1620248] [PMID: 31174433]
[124]
Kamble, M.; Gupta, R.; Rehan, H.S.; Gupta, L.K. Neurobehavioral effects of liraglutide and sitagliptin in experimental models. Eur. J. Pharmacol., 2016, 774, 64-70.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.003] [PMID: 26849938]
[125]
Hansen, H.H.; Fabricius, K.; Barkholt, P.; Kongsbak-Wismann, P.; Schlumberger, C.; Jelsing, J.; Terwel, D.; Termont, A.; Pyke, C.; Knudsen, L.B.; Vrang, N. Long-term treatment with liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has no effect on β-amyloid plaque load in two transgenic APP/PS1 mouse models of Alzheimer’s disease. PLoS One, 2016, 11(7)e0158205
[http://dx.doi.org/10.1371/journal.pone.0158205] [PMID: 27421117]
[126]
Perna, S.; Mainardi, M.; Astrone, P.; Gozzer, C.; Biava, A.; Bacchio, R.; Spadaccini, D.; Solerte, S.B.; Rondanelli, M. 12-month effects of incretins versus SGLT-2 inhibitors on cognitive performance and metabolic profile. A randomized clinical trial in the elderly with Type-2 diabetes mellitus. Clin. Pharmacol., 2018, 10, 141-151.
[http://dx.doi.org/10.2147/CPAA.S164785] [PMID: 30349407]
[127]
Prasad-Reddy, L.; Isaacs, D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context, 2015, 4212283
[http://dx.doi.org/10.7573/dic.212283] [PMID: 26213556]
[128]
Pathak, R.; Bridgeman, M.B. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T, 2010, 35(9), 509-513.
[PMID: 20975810]
[129]
Scheen, A.J. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes. Metab., 2010, 12(8), 648-658.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01212.x] [PMID: 20590741]
[130]
Chen, X-W.; He, Z-X.; Zhou, Z-W.; Yang, T.; Zhang, X.; Yang, Y-X.; Duan, W.; Zhou, S-F. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2015, 42(10), 999-1024.
[http://dx.doi.org/10.1111/1440-1681.12455] [PMID: 26173919]
[131]
Hamasaki, H.; Hamasaki, Y. Efficacy of anagliptin as compared to linagliptin on metabolic parameters over 2 years of drug consumption: A retrospective cohort study. World J. Diabetes, 2018, 9(10), 165-171.
[http://dx.doi.org/10.4239/wjd.v9.i10.165] [PMID: 30364744]
[132]
Sakr, H.F. Effect of sitagliptin on the working memory and reference memory in type 2 diabetic Sprague-Dawley rats: possible role of adiponectin receptors 1. J. Physiol. Pharmacol., 2013, 64(5), 613-623.
[PMID: 24304575]
[133]
Gault, V.A.; Lennox, R.; Flatt, P.R. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obes. Metab., 2015, 17(4), 403-413.
[http://dx.doi.org/10.1111/dom.12432] [PMID: 25580570]
[134]
Li, J.; Zhang, S.; Li, C.; Li, M.; Ma, L. Sitagliptin rescues memory deficits in Parkinsonian rats via upregulating BDNF to prevent neuron and dendritic spine loss. Neurol. Res., 2018, 40(9), 736-743.
[http://dx.doi.org/10.1080/01616412.2018.1474840] [PMID: 29781786]
[135]
Pintana, H.; Apaijai, N.; Chattipakorn, N.; Chattipakorn, S.C. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J. Endocrinol., 2013, 218(1), 1-11.
[http://dx.doi.org/10.1530/JOE-12-0521] [PMID: 23591914]
[136]
Li, Y.; Tian, Q.; Li, Z.; Dang, M.; Lin, Y.; Hou, X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. Drug Dev. Res., 2019, 80(6), 837-845.
[http://dx.doi.org/10.1002/ddr.21567] [PMID: 31301179]
[137]
Wiciński, M.; Wódkiewicz, E.; Słupski, M.; Walczak, M.; Socha, M.; Malinowski, B.; Pawlak-Osińska, K. Neuroprotective activity of sitagliptin via reduction of neuroinflammation beyond the incretin effect: focus on Alzheimer’s disease. BioMed Res. Int., 2018, 20186091014
[http://dx.doi.org/10.1155/2018/6091014] [PMID: 30186862]
[138]
Nader, M.A.; Ateyya, H.; El-Shafey, M.; El-Sherbeeny, N.A. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem. Int., 2018, 115, 11-23.
[http://dx.doi.org/10.1016/j.neuint.2017.10.006] [PMID: 29032011]
[139]
Jo, C.H.; Kim, S.; Park, J-S.; Kim, G-H. Anti-inflammatory action of sitagliptin and linagliptin in doxorubicin nephropathy. Kidney Blood Press. Res., 2018, 43(3), 987-999.
[http://dx.doi.org/10.1159/000490688] [PMID: 29913457]
[140]
Shaikh, S.; Rizvi, S.M.D.; Suhail, T.; Shakil, S.; Abuzenadah, A.M.; Anis, R.; Naaz, D.; Dallol, A.; Haneef, M.; Ahmad, A.; Choudhary, L. Prediction of anti-diabetic drugs as dual inhibitors against acetylcholinesterase and beta-secretase: a neuroinformatics study. CNS Neurol. Disord. Drug Targets, 2016, 15(10), 1216-1221.
[http://dx.doi.org/10.2174/1871527315666161003125752] [PMID: 27697060]
[141]
Anno, T.; Kaneto, H.; Kawasaki, F.; Shigemoto, R.; Aoyama, Y.; Kaku, K.; Okimoto, N. Drug fever and acute inflammation from hypercytokinemia triggered by dipeptidyl peptidase-4 inhibitor vildagliptin. J. Diabetes Investig., 2019, 10(1), 182-185.
[http://dx.doi.org/10.1111/jdi.12847] [PMID: 29607626]
[142]
Zhang, D-D.; Shi, N.; Fang, H.; Ma, L.; Wu, W-P.; Zhang, Y-Z.; Tian, J-L.; Tian, L-B.; Kang, K.; Chen, S. Vildagliptin, a DPP4 inhibitor, alleviates diabetes-associated cognitive deficits by decreasing the levels of apoptosis-related proteins in the rat hippocampus. Exp. Ther. Med., 2018, 15(6), 5100-5106.
[http://dx.doi.org/10.3892/etm.2018.6016] [PMID: 29805536]
[143]
Ma, Q-H.; Jiang, L-F.; Mao, J-L.; Xu, W-X.; Huang, M. Vildagliptin prevents cognitive deficits and neuronal apoptosis in a rat model of Alzheimer’s disease. Mol. Med. Rep., 2018, 17(3), 4113-4119.
[PMID: 29257340]
[144]
Sa-Nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Jaiwongkam, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. SGLT-2 inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol. Appl. Pharmacol., 2017, 333, 43-50.
[http://dx.doi.org/10.1016/j.taap.2017.08.005] [PMID: 28807765]
[145]
Sala, L.L.; Genovese, S.; Ceriello, A. Effect of vildagliptin, compared to sitagliptin, on the onset of hyperglycemia-induced metabolic memory in human umbilical vein endothelial cells. Cardiovasc. Pharm. Open Access, 2017, 6(1), 203.
[http://dx.doi.org/10.4172/2329-6607.1000203]
[146]
Tang, Y-Z.; Wang, G.; Jiang, Z-H.; Yan, T-T.; Chen, Y-J.; Yang, M.; Meng, L-L.; Zhu, Y-J.; Li, C-G.; Li, Z.; Yu, P.; Ni, C-L. Efficacy and safety of vildagliptin, sitagliptin, and linagliptin as add-on therapy in Chinese patients with T2DM inadequately controlled with dual combination of insulin and traditional oral hypoglycemic agent. Diabetol. Metab. Syndr., 2015, 7, 91.
[http://dx.doi.org/10.1186/s13098-015-0087-3] [PMID: 26500706]
[147]
Isik, A.T.; Soysal, P.; Yay, A.; Usarel, C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res. Clin. Pract., 2017, 123, 192-198.
[http://dx.doi.org/10.1016/j.diabres.2016.12.010] [PMID: 28056430]
[148]
Nair, S.; Wilding, J.P.H. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J. Clin. Endocrinol. Metab., 2010, 95(1), 34-42.
[http://dx.doi.org/10.1210/jc.2009-0473] [PMID: 19892839]
[149]
Johnston, R.; Uthman, O.; Cummins, E.; Clar, C.; Royle, P.; Colquitt, J.; Tan, B.K.; Clegg, A.; Shantikumar, S.; Court, R.; O’Hare, J.P.; McGrane, D.; Holt, T.; Waugh, N. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health Technol. Assess., 2017, 21(2), 1-218.
[http://dx.doi.org/10.3310/hta21020] [PMID: 28105986]
[150]
Markham, A. Ertugliflozin: first global approval. Drugs, 2018, 78(4), 513-519.
[http://dx.doi.org/10.1007/s40265-018-0878-6] [PMID: 29476348]
[151]
Rizvi, S.M.D.; Shakil, S.; Biswas, D.; Shakil, S.; Shaikh, S.; Bagga, P.; Kamal, M.A. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer’s disease- diabetes type 2 linkage via an enzoinformatics study. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 447-451.
[http://dx.doi.org/10.2174/18715273113126660160] [PMID: 24059302]
[152]
Shaikh, S.; Rizvi, S.M.D.; Shakil, S.; Riyaz, S.; Biswas, D.; Jahan, R. Forxiga (dapagliflozin): plausible role in the treatment of diabetes-associated neurological disorders. Biotechnol. Appl. Biochem., 2016, 63(1), 145-150.
[http://dx.doi.org/10.1002/bab.1319] [PMID: 25402624]
[153]
Arafa, N.M.S.; Ali, E.H.A.; Hassan, M.K. Canagliflozin prevents scopolamine-induced memory impairment in rats: Comparison with galantamine hydrobromide action. Chem. Biol. Interact., 2017, 277, 195-203.
[http://dx.doi.org/10.1016/j.cbi.2017.08.013] [PMID: 28837785]
[154]
Shibusawa, R.; Yamada, E.; Okada, S.; Nakajima, Y.; Bastie, C.C.; Maeshima, A.; Kaira, K.; Yamada, M. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep., 2019, 9(1), 9887.
[http://dx.doi.org/10.1038/s41598-019-46402-6] [PMID: 31285506]
[155]
Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol., 2014, 13, 148.
[http://dx.doi.org/10.1186/s12933-014-0148-1] [PMID: 25344694]
[156]
Naznin, F.; Sakoda, H.; Okada, T.; Tsubouchi, H.; Waise, T.M.Z.; Arakawa, K.; Nakazato, M. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur. J. Pharmacol., 2017, 794, 37-44.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.028] [PMID: 27876617]
[157]
Millar, P.; Pathak, N.; Parthsarathy, V.; Bjourson, A.J.; O’Kane, M.; Pathak, V.; Moffett, R.C.; Flatt, P.R.; Gault, V.A. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. J. Endocrinol., 2017, 234(3), 255-267.
[http://dx.doi.org/10.1530/JOE-17-0263] [PMID: 28611211]
[158]
Loutradis, C.; Papadopoulou, E.; Theodorakopoulou, M.; Karagiannis, A.; Sarafidis, P. The effect of SGLT-2 inhibitors on blood pressure: a pleiotropic action favoring cardio- and nephroprotection. Future Med. Chem., 2019, 11(11), 1285-1303.
[http://dx.doi.org/10.4155/fmc-2018-0514] [PMID: 31161798]
[159]
Swiss Institute of Bioinformatics. Available at: http://www.swissadme.ch/
[160]
Chemaxon. Software solutions and services for chemistry & biology. Available at: http://www.chemaxon.com2018.
[161]
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci., 2010, 1(6), 435-449.
[http://dx.doi.org/10.1021/cn100008c] [PMID: 22778837]
[162]
Mohey, V.; Singh, M.; Puri, N.; Kaur, T.; Pathak, D.; Singh, A.P. Sildenafil obviates ischemia-reperfusion injury-induced acute kidney injury through peroxisome proliferator-activated receptor γ agonism in rats. J. Surg. Res., 2016, 201(1), 69-75.
[http://dx.doi.org/10.1016/j.jss.2015.09.035] [PMID: 26850186]
[163]
Sanada, F.; Kanbara, Y.; Taniyama, Y.; Otsu, R.; Carracedo, M.; Ikeda-Iwabu, Y.; Muratsu, J.; Sugimoto, K.; Yamamoto, K.; Rakugi, H.; Morishita, R. Induction of angiogenesis by a type III phosphodiesterase inhibitor, cilostazol, through activation of peroxisome proliferator-activated receptor-γ and camp pathways in vascular cells. Arterioscler. Thromb. Vasc. Biol., 2016, 36(3), 545-552.
[http://dx.doi.org/10.1161/ATVBAHA.115.307011] [PMID: 26769045]
[164]
Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-selective and dual inhibitors: advances in chemical and biological research. Curr. Med. Chem., 2017, 24(7), 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
[165]
Jankowska, A.; Świerczek, A.; Wyska, E.; Gawalska, A.; Bucki, A.; Pawłowski, M.; Chłoń-Rzepa, G. Advances in discovery of PDE10A inhibitors for CNS-related disorders. Part 1: overview of the chemical and biological research. Curr. Drug Targets, 2019, 20(1), 122-143.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy