Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Contemporary Progress in the Synthetic Strategies of Imidazole and its Biological Activities

Author(s): Jay Soni, Ayushi Sethiya, Nusrat Sahiba, Dinesh K. Agarwal and Shikha Agarwal*

Volume 16, Issue 8, 2019

Page: [1078 - 1104] Pages: 27

DOI: 10.2174/1570179416666191007092548

Price: $65

Abstract

Heterocyclic compounds are pervasive in many areas of life and one of the heterocycles, imidazole is a unique heterocyclic five-membered aromatic compound having two sp2 hybridized nitrogen atoms. Its integral name is 1, 3 diazole and previously, it was known as glyoxalin. This moiety has achieved a considerable place among scientists in recent years by reason of its divergent synthetic strategies and uncommon biological and pharmacological activities, for example, anti-convulsant, anti-microbial, anti-cancer, anti-inflammatory, anti-tumor, anti-viral, anti-ulcer, analgesic, etc. Due to distinct therapeutic actions, it is still an engrossed area of research. Researchers currently are inventing new greener methods to synthesize its derivatives and to improve its pharmacological activities. The purpose of this review is to study the literature that can help researchers to explore this area, its prevailing program for synthesis in environmentally friendly conditions and biological profile throughout past decades.

Keywords: Green chemistry, synthesis, biological activity, imidazole, anti-cancer, antibacterial.

Graphical Abstract
[1]
Del Vecchio, A.; Destro, G.; Taran, F.; Audisio, D. Recent developments in heterocycle labeling with carbon isotopes. J. Labelled Comp. Radiopharm., 2018, 61(13), 988-1007.
[http://dx.doi.org/10.1002/jlcr.3666] [PMID: 29926506]
[2]
Kalal, P.; Gandhi, D.; Prajapat, P.; Agarwal, S. Biological and synthetic studies of four, five and six membered heterocycles. Heterocycl. Lett., 2017, 7(2), 513-540.
[3]
Smitha, M.; Mary, Y.S.; Hossain, M.; Resmi, K.S.; Armaković, S.; Armaković, S.J.; Pavithran, R.; Nanda, A.K.; Alsenoy, C.V. Two novel imidazole derivatives – Combined experimental and computational study. J. Mol. Struct., 2018, 1173, 221-239.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.110]
[4]
Nowak, K.; Szpakiewicz, B. Synthesis of new imidazole derivatives. J. Heterocycl. Chem., 2008, 45(4), 1247-1250.
[http://dx.doi.org/10.1002/jhet.5570450453]
[5]
Skocibusic, M.; Odzak, R.; Ramic, A.; Smolic, T.; Hrenar, T.; Primozic, I. Novel imidazole aldoximes with broad spectrum antimicrobial potency against multidrug resistant gram-negative bacteria. Molecules, 2018, 23(5), 1212.
[http://dx.doi.org/10.3390/molecules23051212] [PMID: 29783685]
[6]
Desai, N.C.; Maheta, A.S.; Rajpara, K.M.; Joshi, V.V.; Vaghani, H.V.; Satodiya, H.M. Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity. J. Saudi Chem. Soc., 2011, 18(6), 936-971.
[7]
Miranda, P.O.; Gundersen, L.L. Synthesis of imidazole derivatives with antimycobacterial activity. Arch. Pharm. (Weinheim), 2010, 343(1), 40-47.
[PMID: 19957278]
[8]
Lakshmanan, B.; Mazumder, P.M.; Sasmal, D.; Gangul, S. Biologically active azoles: synthesis, characterization and antimicrobial activity of some 1-substituted imidazoles. Der Pharmacia Lettre, 2010, 2(4), 82-89.
[9]
Lavanya, P.; Suresh, M.; Kotaiah, Y.; Harikrishna, N.; Venkata, C. Synthesis, antibacterial, antifungal and antioxidant activity studies on 6-bromo-2-substituted phenyl-1h-imidazo [4, 5-b] pyridine research article. Asian J. Pharm. Clin. Res, 2011, 4(4), 69-73.
[10]
Harris, K.K.; Fay, A.; Yan, H.G.; Kunwar, P.; Socci, N.D.; Pottabathini, N.; Juventhala, R.R.; Djaballah, H.; Glickman, M.S. Novel imidazoline antimicrobial scaffold that inhibits DNA replication with activity against mycobacteria and drug resistant Gram-positive cocci. ACS Chem. Biol., 2014, 9(11), 2572-2583.
[http://dx.doi.org/10.1021/cb500573z] [PMID: 25222597]
[11]
Jawaharmal, H.S.; Narwal, S.; Singh, G.; Sainid, D.R.; Kaur, A.; Narwald, S. Synthesis of novel imidazole compounds and evaluation of their antimicrobial activity. Indo Glob. J. Pharm., 2012, 2(2), 147-156.
[12]
Simonetti, G.; Baffa, S.; Simonetti, N. Overcoming imidazole resistance in Escherichia coli. J. Chemother., 1996, 8(3), 200-206.
[http://dx.doi.org/10.1179/joc.1996.8.3.200] [PMID: 8808716]
[13]
Monim-ul-Mehboob, M.; Shaheen, M.A.; Sarwar, M.; Nawaz, S.; Ahmad, T.; Tahir, N.M.; Javaid, H.M.; Saleem, M.; Ahmad, S. Crystal structure and antimicrobial properties of tetrakis(imidazole)copper(II) triiodide. Inorg. Nano-Met Chem., 2017, 47(1), 37-40.
[14]
Kuwano, E.; Takeya, R.; Eto, M. Synthesis and antijuvenile hormone activity of 1-citronellyl-5-substituted Imidazoles. Agric. Biol. Chem., 1984, 48(12), 3115-3119.
[15]
Toja, E.; Selva, D.; Schiatti, P. 3-Alkyl-2-aryl-3H-naphth[1,2-d]imidazoles, a novel class of nonacidic antiinflammatory agents. J. Med. Chem., 1984, 27(5), 610-616.
[http://dx.doi.org/10.1021/jm00371a010] [PMID: 6609233]
[16]
Bender, P.E.; Hill, D.T.; Offen, P.H.; Razgaitis, K.; Lavanchy, P.; Stringer, O.D.; Sutton, B.M.; Griswold, D.E.; DiMartino, M.; Donald, T. Walz, Lantos, O.I.; Lad, C.B. 5,6-Diaryl-2,3-dihydroimidazo [2, l-b] thiazoles: A new class of immunoregulatory anti inflammatory agents. J. Med. Chem., 1985, 28(9), 1169-1177.
[http://dx.doi.org/10.1021/jm00147a008] [PMID: 4032421]
[17]
de Gaetano, M.; Butler, E.; Gahan, K.; Zanetti, A.; Marai, M.; Chen, J.; Cacace, A.; Hams, E.; Maingot, C.; McLoughlin, A.; Brennan, E.; Leroy, X.; Loscher, C.E.; Fallon, P.; Perretti, M.; Godson, C.; Guiry, P.J. Asymmetric synthesis and biological evaluation of imidazole- and oxazole-containing synthetic lipoxin A4 mimetics (sLXms). Eur. J. Med. Chem., 2019, 162, 80-108.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.049] [PMID: 30419493]
[18]
Jadhav, A.J.; Holkar, C.R.; Pinjari, D.V. Anticorrosive performance of super-hydrophobic imidazole encapsulated hollow zinc phosphate nanoparticles on mild steel. Prog. Org. Coat., 2018, 114, 33-39.
[http://dx.doi.org/10.1016/j.porgcoat.2017.09.017]
[19]
Alegaon, S.G.; Alagawadi, K.R.; Sonkusare, P.V.; Chaudhary, S.M.; Dadwe, D.H.; Shah, A.S. Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1917-1921.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.052] [PMID: 22325950]
[20]
Keppler, B.K.; Wehe, D.; Endres, E.; Rupp, W. Synthesis, antitumor activity, and x-ray structure of bis(imidazo1ium) (imidazole) pentachlororu-thenate(111), (ImH) (RuImCl5). Inorg. Chem., 1987, 26(6), 844-846.
[http://dx.doi.org/10.1021/ic00253a014]
[21]
Antonini, I.; Claudi, F.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, S. Heterocyclic quinones with potential antitumor activity. 2. Synthesis and antitumor activity of some benzimidazole-4,7-dione derivatives. J. Med. Chem., 1988, 31(1), 260-264.
[http://dx.doi.org/10.1021/jm00396a041] [PMID: 3336025]
[22]
Inoue, T.; Shimozato, O.; Matsuo, N.; Mori, Y.; Shinozaki, Y.; Lin, J.; Watanabe, T.; Takatori, A.; Koshikawa, N.; Ozaki, T.; Nagase, H. Hydrophobic structure of hairpin ten-ring pyrrole-imidazole polyamides enhances tumor tissue accumulation/retention in vivo. Bioorg. Med. Chem., 2018, 26(9), 2337-2344.
[http://dx.doi.org/10.1016/j.bmc.2018.03.029] [PMID: 29622411]
[23]
Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem., 2009, 44(6), 2347-2353.
[http://dx.doi.org/10.1016/j.ejmech.2008.08.010] [PMID: 18851889]
[24]
Golankiewicz, B.; Januszczyk, S.P.; Ikeda, S.; Balzarini, J.; Clerc, E.D. Synthesis and antiviral activity of benzyl-substituted imidazo[ 1,5]-1,3,5-triazine (5,8-diaza-7,9-dideazapurine) derivatives. J. Med. Chem., 1995, 38(18), 3558-3565.
[http://dx.doi.org/10.1021/jm00018a015] [PMID: 7658442]
[25]
Srivastava, P.C.; Streeter, D.G.; Matthews, T.R.; Allen, L.B.; Sidwell, R.W.; Robins, R.K. Synthesis and antiviral and antimicrobial activity of certain 1-beta-D-ribofuranosyl-4,5-disubstituted imidazoles. J. Med. Chem., 1976, 19(8), 1020-1026.
[http://dx.doi.org/10.1021/jm00230a009] [PMID: 184281]
[26]
Alonso, R.; Andrés, J.I.; García-López, M.T.; de las Heras, F.G.; Herranz, R.; Alarcón, B.; Carrasco, L. Synthesis and antiviral evaluation of nucleosides of 5-methylimidazole-4-carboxamide. J. Med. Chem., 1985, 28(6), 834-838.
[http://dx.doi.org/10.1021/jm00383a027] [PMID: 2989521]
[27]
Kaminski, J.J.; Perkins, D.G.; Frantz, J.D.; Solomon, D.M.; Elliott, A.J.; Chiu, P.J.S.; Long, J.F. Antiulcer agents. 3. Structure-activity-toxicity relationships of substituted imidazo[1,2-a]pyridines and a related imidazo[1,2-a]pyrazine. J. Med. Chem., 1987, 30(11), 2047-2051.
[http://dx.doi.org/10.1021/jm00394a019] [PMID: 3669012]
[28]
Rida, S.M.; El-Hawash, S.A.; Fahmy, H.T.; Hazzaa, A.A.; El-Meligy, M.M. Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities. Arch. Pharm. Res., 2006, 29(10), 826-833.
[http://dx.doi.org/10.1007/BF02973901] [PMID: 17121175]
[29]
Jeanmart, S.; Gagnepain, J.; Maity, P.; Lamberth, C.; Cederbaum, F.; Rajan, R.; Jacob, O.; Blum, M.; Bieri, S. Synthesis and fungicidal activity of novel imidazole-based ketene dithioacetals. Bioorg. Med. Chem., 2018, 26(8), 2009-2016.
[http://dx.doi.org/10.1016/j.bmc.2018.02.051] [PMID: 29530348]
[30]
Park, N.H.; Shin, K.H.; Kang, M.K. Antifungal and antiviral agents. Pharmacol. Ther. Dent., 2017, 2017, 488-503.
[http://dx.doi.org/10.1016/B978-0-323-39307-2.00034-5]
[31]
Bhatt, H.B.; Sharam, S. Sythesis, characterization and biological evalution of some tri-subsituted imidazole/thiazole derivatives. J. Heterocycl. Chem., 2014, 52(4), 1126-1131.
[http://dx.doi.org/10.1002/jhet.1992]
[32]
Silvestri, R.; Artico, M.; La Regina, G.; Di Pasquali, A.; De Martino, G.; D’Auria, F.D.; Nencioni, L.; Palamara, A.T. Imidazole analogues of fluoxetine, a novel class of anti-Candida agents. J. Med. Chem., 2004, 47(16), 3924-3926.
[http://dx.doi.org/10.1021/jm049856v] [PMID: 15267229]
[33]
Ross, T.M.; Jetter, M.C.; McDonnell, M.E.; Boyd, R.E.; Connelly, C.D.; Martinez, R.P.; Lewis, M.A.; Codd, E.E.; Raffa, R.B.; Reitz, A.B. Alpha(2) adrenoceptor agonists as potential analgesic agents. 2. Discovery of 4-(4-imidazo)-1,3-dimethyl-6,7-dihydro-thianaphthene as a high-affinity ligand for the alpha(2D) adrenergic receptor. J. Med. Chem., 2000, 43(7), 1423-1426.
[http://dx.doi.org/10.1021/jm000128r] [PMID: 10753480]
[34]
Boyd, R.E.; Press, J.B.; Rasmussen, C.R.; Raffa, R.B.; Codd, E.E.; Connelly, C.D.; Li, Q.S.; Martinez, R.P.; Lewis, M.A.; Almond, H.R.; Reitz, A.B. Alpha(2) adrenoceptor agonists as potential analgesic agents. 3. Imidazolylmethylthiophenes. J. Med. Chem., 2001, 44(6), 863-872.
[http://dx.doi.org/10.1021/jm0003891] [PMID: 11300868]
[35]
Ranganatha, S.R.; Kavitha, C.V.; Vinaya, K.; Prasanna, D.S.; Chandrappa, S.; Raghavan, S.C.; Rangappa, K.S. Synthesis and cytotoxic evaluation of novel 2-(4-(2,2,2-trifluoroethoxy)-3-methylpyridin-2-ylthio)-1H-benzo[d]i-midazole derivatives. Arch. Pharm. Res., 2009, 32(10), 1335-1343.
[http://dx.doi.org/10.1007/s12272-009-2000-9] [PMID: 19898794]
[36]
Hu, D.C.; Chen, L.W.; Yang, Y.X.; Liu, J.C. Syntheses, structures and antioxidant activities of two new Cu(II) complexes with a benzimidazole schiff base ligand, Inorg. Nano-Met. Chem, 2018.
[http://dx.doi.org/10.1080/15533174.2013.843562]
[37]
Koh, A.; Molinaro, A.; Ståhlman, M.; Khan, M.T.; Schmidt, C.; Mannerås-Holm, L.; Wu, H.; Carreras, A.; Jeong, H.; Olofsson, L.E.; Bergh, P.O.; Gerdes, V.; Hartstra, A.; de Brauw, M.; Perkins, R.; Nieuwdorp, M.; Bergström, G.; Bäckhed, F. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell, 2018, 175(4), 947-961.e17.
[http://dx.doi.org/10.1016/j.cell.2018.09.055] [PMID: 30401435]
[38]
Lu, B.; Lu, F.; Ran, L.; Yu, K.; Xiao, Y.; Li, Z.; Dai, F.; Wu, D.; Lan, G. Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria. Int. J. Biol. Macromol., 2018, 119, 505-516.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.167] [PMID: 30059736]
[39]
Moraski, G.C.; Thanassi, J.A.; Podos, S.D.; Pucci, M.J.; Miller, M.J. One-step syntheses of nitrofuranyl benzimidazoles that are active against multidrug-resistant bacteria. J. Antibiot. (Tokyo), 2011, 64(10), 667-671.
[http://dx.doi.org/10.1038/ja.2011.67] [PMID: 21811261]
[40]
Gong, Y.; Liang, H. Nickel ion detection by imidazole modified carbon dots. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 211, 342-347.
[http://dx.doi.org/10.1016/j.saa.2018.12.024] [PMID: 30583165]
[41]
Oresmaa, L.; Kotikoski, H.; Haukka, M.; Salminen, J.; Oksala, O.; Pohjala, E.; Moilanen, E.; Vapaatalo, H.; Vainiotalo, P.; Aulaskari, P. Synthesis and ocular effects of imidazole nitrolic acids. J. Med. Chem., 2005, 48(13), 4231-4236.
[http://dx.doi.org/10.1021/jm048949+] [PMID: 15974576]
[42]
Ouchia, H.; Asakawab, T.; Ikeuchic, K.; Inaia, M.; Choid, J.H.; Kawagishid, H.; Kana, H. Synthesis of double-13C-labeled imidazole derivatives. Tetrahedron Lett., 2018, 59(39), 3516-3518.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.048]
[43]
Gevaerd, A.; Blaskievicz, S.F.; Zarbin, A.J.G.; Orth, E.S.; Bergamini, M.F.; Marcolino-Junior, L.H. Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosens. Bioelectron., 2018, 112, 108-113.
[http://dx.doi.org/10.1016/j.bios.2018.04.044] [PMID: 29702381]
[44]
Zhang, L.; Liu, Q.; Chai, Y.; Ren, J.; Dai, W.L. Imidazole modified g-C3N4 photocatalyst: Structural characterization and versatile energy applications. Appl. Surf. Sci., 2018, 430, 316-324.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.309]
[45]
Petit, S.; Fruit, C.; Bischoff, L. New family of peptidomimetics based on the imidazole motif. Org. Lett., 2010, 12(21), 4928-4931.
[http://dx.doi.org/10.1021/ol102118u] [PMID: 20939523]
[46]
Lee, D.H.; Yang, M.; Kim, S.H.; Shin, M.J.; Shin, S.J. Microencapsulation of imidazole curing agents by spray-drying method. J. Appl. Polym. Sci., 2011, 122, 782-788.
[http://dx.doi.org/10.1002/app.34008]
[47]
Tseng, C.C.; Chen, K.L.; Lee, K.W.; Takayam, H.; Li, C.Y. Soluble PEG600-imidazole derivatives as the thermal latent catalysts for epoxy-phenolic resins. Prog. Org. Coat., 2019, 127, 385-393.
[http://dx.doi.org/10.1016/j.porgcoat.2018.12.003]
[48]
Yang, S.; Zhang, Q.; Hu, Y.; Ding, G.; Wang, J. Synthesis of maleimide modified imidazole derivatives and their application in one-component epoxy resin systems. Mater. Lett., 2019, 243, 379-383.
[http://dx.doi.org/10.1016/j.matlet.2018.09.147]
[49]
Wang, X.; Wang, D.; Guo, Y.; Yang, C.; Iqbal, A.; Liu, W.; Qin, W.; Yan, D.; Guo, H. Imidazole derivative-functionalized carbon dots: using as a fluorescent probe for detecting water and imaging of live cells. Dalton Trans., 2015, 44(12), 5547-5554.
[http://dx.doi.org/10.1039/C5DT00128E] [PMID: 25697218]
[50]
Evjen, S.; Fiksdahl, A.; Pinto, D.D.; Knuuti, H.K. New polyalkylated imidazoles tailored for carbon dioxide capture. Int. J. Greenh. Gas Control, 2018, 76, 167-174.
[http://dx.doi.org/10.1016/j.ijggc.2018.06.017]
[51]
Mardanya, S.; Karmakar, S.; Bar, M.; Baitalik, S. Pyrene-biimidazole based Ru(II) and Os(II) complexes as highly efficient probes for the visible and near-infrared detection of cyanide in aqueous media. Dalton Trans., 2015, 44(48), 21053-21072.
[http://dx.doi.org/10.1039/C5DT03766B] [PMID: 26592760]
[52]
Zhao, H.; Zang, L.; Liu, Q.; Ma, B.; Kou, M.; Lv, J.; Gua, C. Enhancement of the room temperature phosphorescence of metalloporphyrins using imidazole as a triplet state protector. J. Lumin., 2018, 194, 29-32.
[http://dx.doi.org/10.1016/j.jlumin.2017.10.008]
[53]
Asadi, N.; Naderi, R.; Mahdavia, M. Halloysite nano tubes loaded with imidazole dicarboxylic acid to enhance protection properties of a polymer coating. Prog. Org. Coat., 2019, 127, 375-384.
[http://dx.doi.org/10.1016/j.porgcoat.2018.11.035]
[54]
Zhang, X.T.; Chen, H.T.; Liu, G.Z.; Li, B.; Liu, X.Z. Assembly of one novel coordination polymer built from rigid tricarboxylate ligand and bis(imidazole) linker: Synthesis, structure, and fluorescence sensing property. Inorg. Chem. Commun., 2018, 96, 139-144.
[http://dx.doi.org/10.1016/j.inoche.2018.04.012]
[55]
Camacho-Espinoza, M.; Penieres-Carrillo, J.G.; Rios-Guerra, H.; Lagunas-Rivera, S.; Ortega-Jiménez, F. Imidazole-hydrazone efficient and simple ligand for palladium-catalyzed Suzuki-Miyaura cross-coupling reaction in water under IR-irradiation. J. Organomet. Chem., 2019, 880, 386-391.
[http://dx.doi.org/10.1016/j.jorganchem.2018.11.016]
[56]
Das, M.; Baro, S.; Kumar, S. Evaluation of imidazole and its derivative against Newcastle disease virus infection in chicken: A drug repurposing approach. Virus Res., 2019, 260, 114-122.
[http://dx.doi.org/10.1016/j.virusres.2018.11.013] [PMID: 30508602]
[57]
Kang, S.; Lee, H.; Jung, H.; Shin, D.; Park, M.; Kay, K.Y.; Park, J. Synthesis and property of diazocine derivatives substituted with imidazole in various position. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2018, 662(1), 96-101.
[http://dx.doi.org/10.1080/15421406.2018.1466520]
[58]
Kang, S.; Jung, H.; Lee, H.; Shin, D.; Park, M.; Kay, K.Y.; Park, J. Synthesis and property of diazocine derivatives substituted with imidazole including various chromophores. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2017, 659(1), 127-133.
[http://dx.doi.org/10.1080/15421406.2018.1450955]
[59]
Zhang, K.P.; Jin, T.Q.; Zhou, J.Q.; Ma, T.T.; Jin, C.M. Syntheses of symmetric and unsymmetric bis-imidazole derivatives using phase-transfer catalysis. J. Heterocycl. Chem., 2017, 54(6), 3065.
[http://dx.doi.org/10.1002/jhet.2917]
[60]
Valdés, H.; Canseco-González, D.; Germán-Acacio, J.M.; Morales-Morales, D. Xanthine based N-heterocyclic carbene (NHC) complexes. J. Organomet. Chem., 2018, 867, 51-54.
[http://dx.doi.org/10.1016/j.jorganchem.2018.01.008]
[61]
Rani, N. Sharma. A.; Singh, R. Trisubstituted imidazole synthesis: A review. Mini Rev. Org. Chem., 2015, 12(1), 34-65.
[http://dx.doi.org/10.2174/1570193X11666141028235010]
[62]
Kumar, M.; Kumar, D.; Raj, V. Studies on imidazole and its derivatives with particular emphasis on their chemical/biological applications as bioactive molecules/intermediated to bioactive molecule. Curr. Synthetic Sys. Biol., 2017, 5(1), 135-145.
[http://dx.doi.org/10.4172/2332-0737.1000135]
[63]
Gupta, P.; Gupta, J.K. Synthesis of bioactive imidazoles: A review. J. Chem. Sci., 2017, 6(91)
[64]
Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[65]
Sharma, J.; Soni, P.K.; Bansal, R.; Halve, A.K. Sythetic approaches towards benzimidazoles by the reaction of o-phenylenediamine with aldehydes using a varity of catalysts: A review. Curr. Org. Chem., 2018, 22, 2276-2295.
[http://dx.doi.org/10.2174/1385272822666181024120156]
[66]
Prajapat, P.; Kumawat, M.; Talesara, G.L.; Kalal, P.; Agarwal, S.; Kapoor, C.S. Benzimidazole scoffold as a versatile biophore in drug discovery: A review. Chem. Biol. interface, 2018, 8(1), 1-10.
[67]
Dhanunjayarao, K.; Mukundam, V.; Ranga Naidu Chinta, R.V.; Venkatasubbaiah, K. Synthesis of highly fluorescent imidazole based diboron complex. J. Organomet. Chem., 2018, 865, 234-238.
[http://dx.doi.org/10.1016/j.jorganchem.2018.04.026]
[68]
Kanaani, E.; Nasresfahani, M. Citrate trisulfonic acid: A heterogeneous organocatalyst for the synthesis of highly substituted imidazoles. J. Chin. Chem. Soc. (Taipei), 2019, 66(1), 119-125.
[http://dx.doi.org/10.1002/jccs.201800015]
[69]
Dhawale, K.D.; Thorat, N.M.; Patil, L.R. An efficient and green synthesis of imidazoles using natural organic acids as promoter under solvent-free condition. Asian J. Chem., 2017, 29(8), 1709-1712.
[http://dx.doi.org/10.14233/ajchem.2017.20553]
[70]
Zhang, F.; Gao, Q.; Chen, B.; Bai, Y.; Sun, W.L.D.; Ge, M.A. practical and green approach towards synthesis of multi-substituted imidazole using boric acid as efficient catalyst. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(5), 786-789.
[http://dx.doi.org/10.1080/10426507.2015.1100184]
[71]
Song, H.; Xing, C.; Li, B.; Shen, W. Spherical carbon with SO3H groups as an efficient solid acid catalyst for 2,4,5-triphenyl–imidazole synthesis. ChemistrySelect, 2016, 2, 301-308.
[http://dx.doi.org/10.1002/slct.201500013]
[72]
Chouha, N.; Boumoud, T.; Tebabel, I.; Boumoud, B.; Debache, A. An efficient one-pot synthesis of 2,4,5-trisubstituted imidazole catalyzed by citric acid. Pharma Chem., 2016, 8(4), 202-206.
[73]
Bhat, S.U.; Naikoo, R.A.; Mir, M.A.; Tomar, R. synthesis of tetra-substituted imidazole derivatives by condensation reaction using zeolite h-zsm 22 as a heterogeneous solid acid catalyst. Int. J. Curr. Pharm. Res., 2016, 8(1), 36-39.
[http://dx.doi.org/10.9734/IRJPAC/2016/21443]
[74]
Rassokhina, I.V.; Tikhonova, T.A.; Kobylskoy, S.G.; Babkin, I.Y.; Shirinian, V.Z.; Gevorgyan, V.; Zavarzin, I.V.; Volkova, Y.A. Synthesis of imidazo[2,1 b]thiazoles via copper-catalyzed a3 coupling in batch and continuous flow. J. Org. Chem., 2017, 82(18), 9682-9692.
[http://dx.doi.org/10.1021/acs.joc.7b01762] [PMID: 28799762]
[75]
Hu, Z.; Dong, J.; Xu, X. Silver-catalyzed [3+2] cycloaddition of azomethine ylides with isocyanides for imidazole synthesis. Adv. Synth. Catal., 2017, 359(20), 3585-3591.
[http://dx.doi.org/10.1002/adsc.201700447]
[76]
Patil, V.D.; Sutar, N.R.; Patil, K.P.; Giddh, P. Synthesis of 2,4,5-triaryl-1H-imidazoles using anhydrous Pb(OAc)2 as a catalyst in C2H5OH. Der Chemica Sinica, 2016, 7(2), 23-28.
[77]
Wang, J.; Zhang, F.G.; Tang, D.; Wu, P.; Zhang, X.G.; Chen, B.H. I2/TBPB mediated oxidative reaction of aryl acetaldehydes with amidines: Synthesis of 1,2,5-triaryl-1H-imidazoles. RSC Advances, 2017, 7(40), 24594-24597.
[http://dx.doi.org/10.1039/C7RA01966A]
[78]
Jiang, Z.; Lu, P.; Wang, Y. Three-component reaction of propargyl amines, sulfonyl azides, and alkynes: One-pot synthesis of tetrasubstituted imidazoles. Org. Lett., 2012, 14(24), 6266-6269.
[http://dx.doi.org/10.1021/ol303023y] [PMID: 23193963]
[79]
Bansal, R.; Soni, P.K.; Halve, A.K. Green synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imidazole derivatives involving one-pot multicomponent reaction. J. Heterocycl. Chem., 2018, 55(6), 1308-1312.
[http://dx.doi.org/10.1002/jhet.3160]
[80]
Naeimi, H.; Alishahi, N. Nanocrystalline magnesium oxide as solid base catalyst in the presence of iodine promoted one-pot synthesis of 2-substituted benzimidazole derivatives under mild conditions. J. Exp. Nanosci., 2015, 10(3), 222-234.
[http://dx.doi.org/10.1080/17458080.2013.822575]
[81]
Zahedi, N.; Javid, A.; Mohammadi, M.K.; Tavakkoli, H. Efficientone-pot synthesis of imidazoles catalyzed by silicasupported la0.5pb0.5mno3 nano particles as anovel and reusable perovskite oxide. Bull. Chem. Soc. Ethiop., 2018, 32(1), 157-166.
[http://dx.doi.org/10.4314/bcse.v32i1.15]
[82]
Alinezhad, H.; Alinezhad, V.; Tavakkoli, S.M. Simple, efficient, and convenient one-pot synthesis of imidazole derivatives in the presence of nanosilica-supported imidazolium ionic liquid as a catalyst. J. Chin. Chem. Soc. (Taipei), 2017, 64(4), 385-389.
[http://dx.doi.org/10.1002/jccs.201600764]
[83]
Ziarani, G.M.; Tavaf, E.; Vavsari, V.F.; Badiei, A. synthesis of 2,4,5-trisubstituted phenanthroimidazole derivatives using SBA-Pr-SO3H as a nanocatalyst. Acta Chim. Slov., 2017, 64(3), 701-706.
[http://dx.doi.org/10.17344/acsi.2016.3111] [PMID: 28862312]
[84]
Selima, Y.; Abd El-Azimb, M.H. Conventional and microwave-activated the synthesis of a novel series of imidazole. J. Heterocycl. Chem., 2018, 55(6), 1403-1409.
[http://dx.doi.org/10.1002/jhet.3176]
[85]
Chudawat, T.S.; Sharma, N.; Kumari, P.; Bhagat, S. Microwave -assisted nickel-catalyzed one-pot synthesis of 2,4,5-trisubstituted imidazole. Synlett, 2016, 27, 404-408.
[86]
Abdullayev, Y.; Abbasov, V.; Ducati, L.C.; Talybov, A.; Autschbach, J. Ionic liquid solvation versus catalysis: Computational insight from a multisubstituted imidazole synthesis in [Et2NH2] [HSO4]. ChemistryOpen, 2016, 5(5), 460-469.
[http://dx.doi.org/10.1002/open.201600066] [PMID: 27777839]
[87]
Shirole, G.D.; Shelke, S.N. Ionic liquid: An efficient and facile catalyst for the synthesis of trisubstituted imidazole derivatives via multi-component pathway using green techniques. Lett. Org. Chem., 2016, 13(9), 742-748.
[88]
Maleki, A. Alirezvani, Z. A highly efficient synthesis of substituted imidazoles via a one-pot multicomponent reaction by using urea/hydrogen peroxide (uhp). J. Chil. Chem. Soc., 2016, 61(3), 3116-3119.
[http://dx.doi.org/10.4067/S0717-97072016000300022]
[89]
Mekala, R.S.; Balam, S.K.; Harinath, J.P.S.; Gajjal, R.R.; Suresh Reddy Cirandur, S.R. Polyethylene glycol (PEG-400): An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles. Cogent Chem., 2015, 1(1) 1049932
[http://dx.doi.org/10.1080/23312009.2015.1049932]
[90]
Singh, G.; Girdhar, S.; Sharma, R.P.; Starynowicz, P.; Singh, B. Carbofunctional silatrane possessing imidazole moiety: Synthesis, characterization, and antibacterial studies. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189(11), 1732-1745.
[http://dx.doi.org/10.1080/10426507.2014.902822]
[91]
Ataya, K.; Merve Gokalpb, M.; Tuncerc, B.O.; Tilk, T. Antimicrobial activities and absorption properties of disazo dyes containing imidazole and pyrazole moieties. J. Macromol. Sci. A, 2017, 54(4), 236-242.
[http://dx.doi.org/10.1080/10601325.2017.1282695]
[92]
Zhao, H.Y.; Ma, J.J.; Yang, X.D.; Yang, M.L. Synthesis, crystal structure, and antibacterial activity of a new cobalt (II) complex containing imidazole as ligand. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46, 45-50.
[http://dx.doi.org/10.1080/15533174.2014.900633]
[93]
Moghadam, M.E.; Divsalar, A.; Zare, M.S.; Gholizadeh, R.; Mahalleh, D.; Saghatforosh, L.; Sanati, S. Anticancer, antibacterial and antifungal activity of new ni (II) and cu (II) complexes of imidazole-phenanthroline derivatives. Nucleosides Nucleotides Nucleic Acids, 2017, 36(11), 667-675.
[http://dx.doi.org/10.1080/15257770.2017.1388393] [PMID: 29185856]
[94]
Ranjan, P.; Kitawat, B.S.; Singh, M. 1-Butylimidazole derive ionic liquids: Synthesis, characterization and their evaluations of antibacterial, antifungal and anticancer activities. RSC Advances, 2014, 4(96), 53634-53644.
[http://dx.doi.org/10.1039/C4RA08370A]
[95]
Remaily, M.A.E.A.A.E.; Mohamed, S.K.; Soliman, A.M.M.; Ghanya, H.A.E. Synthesis of dihydroimidazole derivatives under solvent free condition and their antibacterial evaluation. Biochem. Physiol., 2014, 3(3), 1000139-1000149.
[96]
Bistrović, A.; Krstulović, L.; Harej, A.; Grbčić, P.; Sedić, M.; Koštrun, S.; Pavelić, S.K.; Bajić, M.; Raić-Malić, S. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem., 2018, 143, 1616-1634.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.061] [PMID: 29133046]
[97]
Mantu, D.; Antoci, V.; Moldoveanu, C.; Zbancioc, G.; Mangalagiu, I.I. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzyme Inhib. Med. Chem., 2016, 31(sup2), 96-103.
[http://dx.doi.org/10.1080/14756366.2016.1190711] [PMID: 27250919]
[98]
Hadian Rasanani, S.; Eslami Moghadam, M.; Soleimani, E.; Divsalar, A.; Ajloo, D.; Tarlani, A.; Amiri, M. Anticancer activity of new imidazole derivative of 1R,2R-diaminocyclohexane palladium and platinum complexes as DNA fluorescent probes. J. Biomol. Struct. Dyn., 2017, 36(12), 3058-3076.
[http://dx.doi.org/10.1080/07391102.2017.1385538] [PMID: 29027501]
[99]
Zhou, B.; Liu, Z.F.; Deng, G.G.; Chen, W.; Li, M.Y.; Yang, L.J.; Li, Y.; Yang, X.D.; Zhang, H.B. Synthesis and antitumor activity of novel N-substituted tetrahydro-β-carboline-imidazolium salt derivatives. Org. Biomol. Chem., 2016, 14(39), 9423-9430.
[http://dx.doi.org/10.1039/C6OB01495J] [PMID: 27714171]
[100]
Hou, X.; Li, X.; Hemit, H.; Aisa, H.A. Synthesis, characterization, and antitumor activities of new palladium (II) complexes with 1(alkyldithiocarbonyl)-imidazoles. J. Coord. Chem., 2014, 67(3), 461-469.
[http://dx.doi.org/10.1080/00958972.2014.890717]
[101]
Kondaparla, S.; Manhas, A.; Dola, V.R.; Srivastava, K.; Puri, S.K.; Katti, S.B. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorg. Chem., 2018, 80, 204-211.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.012] [PMID: 29940342]
[102]
Ode, K. Intravenous anaesthetic agents. Anaesth. Intensive Care Med., 2019, 20, 118-125.
[http://dx.doi.org/10.1016/j.mpaic.2018.12.008]
[103]
Adib, M.; Peytam, F.; Shourgeshty, R.; Mohammadi-Khanaposhtani, M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Moghadamnia, A.A.; Esfahani, E.N.; Bandarian, F.; Mahdavi, M. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg. Med. Chem. Lett., 2019, 29(5), 713-718.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.012] [PMID: 30661823]
[104]
Jourshari, M.S.; Mamaghani, M.; Shirini, F.; Tabatabaeian, K.; Rassa, M. An expedient one-pot synthesis of highly substituted imidazoles using supported ionic liquid-like phase (SILLP) as a green and efficient catalyst and evaluation of their anti-microbial activity. Chin. Chem. Lett., 2013, 24, 993-996.
[http://dx.doi.org/10.1016/j.cclet.2013.06.005]
[105]
Nagarajan, N.; Vanitha, G.; Ananth, D.A.; Rameshkumar, A.; Sivasudha, T.; Renganathan, R. Bioimaging, antibacterial and antifungal properties of imidazole-pyridine fluorophores: Synthesis, characterization and solvatochromism. J. Photochem. Photobiol. B, 2013, 127, 212-222.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.08.016] [PMID: 24061160]
[106]
Ranjith, P.K.; Pakkath, R.; Haridas, K.R.; Kumari, S.N. Synthesis and characterization of new N-(4-(4-chloro-1H-imidazol-1-yl)-3-methoxyphenyl)amide/sulfonamide derivatives as possible antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2014, 71, 354-365.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.002] [PMID: 24361479]
[107]
Abdel-Wahab, B.F.; Awad, G.E.A.; Badria, F.A. Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. Eur. J. Med. Chem., 2011, 46(5), 1505-1511.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.062] [PMID: 21353349]
[108]
Chen, J.; Li, C.M.; Wang, J.; Ahn, S.; Wang, Z.; Lu, Y.; Dalton, J.T.; Miller, D.D.; Li, W. Synthesis and antiproliferative activity of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization. Bioorg. Med. Chem., 2011, 19(16), 4782-4795.
[http://dx.doi.org/10.1016/j.bmc.2011.06.084] [PMID: 21775150]
[109]
Ramachandran, R.; Rani, M.; Senthan, S.; Jeong, Y.T.; Kabilan, S. Synthesis, spectral, crystal structure and in vitro antimicrobial evaluation of imidazole/benzotriazole substituted piperidin-4-one derivatives. Eur. J. Med. Chem., 2011, 46(5), 1926-1934.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.036] [PMID: 21397368]
[110]
Maheta, H.K.; Patel, A.S.; Naliapara, Y.T. Synthesis and microbial study of some novel cyanopyrans and cyanopyridines containing imidazole nucleus. Int. J.Chem.Sci., 2012, 10, 1815-1829.
[111]
Husain, A.; Drabu, S.; Kumar, N.; Alam, M.M.; Bawa, S. Synthesis and biological evaluation of di- and tri-substituted imidazoles as safer anti-inflammatory-antifungal agents. J. Pharm. Bioallied Sci., 2013, 5(2), 154-161.
[http://dx.doi.org/10.4103/0975-7406.111822] [PMID: 23833522]
[112]
Prabhu, M.; Radha, R. Synthesis, characterization and evaluation of antibacterial and antihelmintic activity of some novel aryl imidazole derivatives. Asian J. Pharm. Clin. Res., 2012, 5, 154-159.
[113]
Liu, T.; Sun, C.; Xing, X.; Jing, L.; Tan, R.; Luo, Y.; Huang, W.; Song, H.; Li, Z.; Zhao, Y. Synthesis and evaluation of 2-[2-(phenylthiomethyl)-1H-benzo[d] imidazol-1-yl)acetohydrazide derivatives as antitumor agents. Bioorg. Med. Chem. Lett., 2012, 22(9), 3122-3125.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.061] [PMID: 22483608]
[114]
Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G.X. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. Eur. J. Med. Chem., 2018, 143, 958-969.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.100] [PMID: 29232586]
[115]
Smitha, M.; Mary, S.Y.; Hossain, M.; Resmi, K.S.; Armakovi, S.; Armakovi, S.J.; Pavithran, R.; Nanda, A.K.; Alsenoy, C.V. Two novel imidazole derivatives combined experimental and computational study. J. Mol. Struct., 2018, 1173, 221-239.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.110]
[116]
Dos Santos Nascimento, M.V.P.; Mattar Munhoz, A.C.; De Campos Facchin, B.M.; Fratoni, E.; Rossa, T.A.; Mandolesi Sá, M.; Campa, C.C.; Ciraolo, E.; Hirsch, E.; Dalmarco, E.M. New pre-clinical evidence of anti-inflammatory effect and safety of a substituted fluorophenyl imidazole. Biomed. Pharmacother., 2019, 111, 1399-1407.
[http://dx.doi.org/10.1016/j.biopha.2019.01.052] [PMID: 30841455]
[117]
Wei, L.; Li, Q.; Chen, Y.; Zhang, J.; Mi, Y.; Dong, F.; Lei, C.; Guo, Z. Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts. Carbohydr. Polym., 2019, 206, 493-503.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.022] [PMID: 30553350]
[118]
Liu, C.; Chen, Q.; Schneller, S.W. 3-Bromo-3-deazaneplanocin and 3-bromo-3-deazaaristeromycin: synthesis and antiviral activity. Bioorg. Med. Chem. Lett., 2012, 22(16), 5182-5184.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.075] [PMID: 22795626]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy