Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

玫瑰树碱及其衍生物:借助药物输送系统对临床适用性进行重新评估

卷 20, 期 1, 2020

页: [33 - 46] 页: 14

弟呕挨: 10.2174/1568009619666190927150131

价格: $65

摘要

有针对性的药物输送系统为安全,有效地使用治疗药物提供了新的尺寸,从而有助于规避毒性和意外药物积聚的问题。 递药系统的这些不断发展反过来又可以带回遭受各种局限性的药物,其中玫瑰树碱(EPT)是候选药物。 EPT衍生物已进入临床环境,但由于各种毒性副作用而未能在临床中幸存。 大量的临床前数据探讨了药物输送系统在提高EPT /衍生物效率同时降低其毒副作用方面的潜力。 药物输送系统的最新进展为探索EPT及其衍生物作为治疗肿瘤的良好临床候选药物提供了平台。 本文综述了EPT / EPT衍生物作为抗肿瘤药物的体内和体外传递机制,并评估了EPT载体在临床中的适用性。

关键词: 玫瑰树碱,衍生物,来源,抗癌活性,纳米载体,药物传递。

图形摘要
[1]
Goodwin, S.; Smith, A.F.; Horning, E.C. Alkaloids of Ochrosia elliptica Labill. J. Am. Chem. Soc., 1959, 81, 1903-1908.
[http://dx.doi.org/10.1021/ja01517a031]
[2]
Woodward, R.B.; Lacobucci, G.A.; Hochstein, I.A. The synthesis of ellipticine. J. Am. Chem. Soc., 1959, 81, 4434-4435.
[http://dx.doi.org/10.1021/ja01525a085]
[3]
Potier, P.; Janot, M.M. Methoxy 9 ellipticine alcaloide du bois jaune de la Reunion (Ochrosia borbonica Gmel.). Ann. Pharm. Fr., 1973, 25, 523-524.
[4]
Morafaux, A.M.; Mulamba, T.; Richard, B.; Delaude, C.; Massiot, G.; Le Men Oliver, L. Alkaloids of Pterotaberna inconspicua. Phytochemistry, 1982, 2, 1767-1769.
[http://dx.doi.org/10.1016/S0031-9422(82)85057-7]
[5]
Miller, C.M.; McCarthy, F.O. Isolation, biological activity and synthesis of the natural product ellipticine and related pyridocarbazoles. RSC Advances, 2012, 2, 8883-8918.
[http://dx.doi.org/10.1039/c2ra20584j]
[6]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7, 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[7]
Michel, S.; Tillequin, F.; Koch, M. 17-Oxo ellipticine a new alkaloid of Strychnos dinklagei. Tetrahedron Lett., 1980, 21, 4027-4030.
[http://dx.doi.org/10.1016/S0040-4039(00)92862-4]
[8]
Gribble, G.W. Synthesis and antitumour activity of ellipticine alkaloids and related compounds. The Alkaloids. Chemistry and Pharmacology, 1990, 39, 239-352.
[9]
Kouadio, K.; Rideau, M.; Ganser, C.; Chénieux, J.C.; Viel, C. Biotransformation of ellipticine into 5-formyl ellipticine by Choisya ternata strains. Plant Cell Rep., 1984, 3(5), 203-205. a
[http://dx.doi.org/10.1007/BF00270201] [PMID: 24253517]
[10]
Kouadio, K.; Chenieux, J.C.; Rideau, M.; Viel, C.; Viel, C. Antitumor alkaloids in callus cultures of Ochrosia elliptica. J. Nat. Prod., 1984, 47(5), 872-874. b
[http://dx.doi.org/10.1021/np50035a022] [PMID: 6512537]
[11]
Dalton, L.K.; Demerac, S.; Elmes, B.L.; Loder, J.W.; Swan, J.M.; Teitei, T. Synthesis of the tumor-inhibitory alkaloids, ellipticine, 9-methoxyellipticine, and related pyrido[4,3-b]carbazoles. Aust. J. Chem., 1967, 20, 2715-2727.
[http://dx.doi.org/10.1071/CH9672715]
[12]
Larue, L.; Rivalle, C.; Muzard, G.; Paoletti, C.; Bisagni, E.; Paoletti, J. A new series of ellipticine derivatives (1-(alkylamino)-9-methoxyellipticine). Synthesis, DNA binding, and biological properties. J. Med. Chem., 1988, 31(10), 1951-1956.
[http://dx.doi.org/10.1021/jm00118a014] [PMID: 3172128]
[13]
Liu, C.Y.; Knochel, P. Preparation of polyfunctional aryl azides from aryl triazenes. A new synthesis of ellipticine, 9-methoxyellipticine, isoellipticine, and 7-carbethoxyisoellipticine. J. Org. Chem., 2007, 72(19), 7106-7115.
[http://dx.doi.org/10.1021/jo070774z] [PMID: 17705535]
[14]
Ibrahim-Ouali, M.; Dummer, F. Recent syntheses of ellipticine and its derivatives. ARKIVOC, 2018, i, 216-243.
[http://dx.doi.org/10.24820/ark.5550190.p010.445]
[15]
Hahn, F.E., Ed.; Ellipticine, In: Antibiotics: Mechanism of Action of Antieukaryotic and Antiviral Compounds , 1979; 5:2, pp. 195-213.
[16]
Dantas, S.O.; Galvao, D.S. An investigation of the electronic structure of the antitumour drug ellipticine and its derivatives. Part II. Spectroscopic INDO/CI study. J. Mol. Struct. THEOCHEM, 1992, 257, 437-449.
[http://dx.doi.org/10.1016/0166-1280(92)85054-O]
[17]
Froelich-Ammon, S.J.; Patchan, M.W.; Osheroff, N.; Thompson, R.B. Topoisomerase II binds to ellipticine in the absence or presence of DNA. Characterization of enzyme-drug interactions by fluorescence spectroscopy. J. Biol. Chem., 1995, 270(25), 14998-15004.
[http://dx.doi.org/10.1074/jbc.270.25.14998] [PMID: 7797481]
[18]
Hamilton, P.L.; Arya, D.P. Natural product DNA major groove binders. Nat. Prod. Rep., 2012, 29(2), 134-143.
[http://dx.doi.org/10.1039/C1NP00054C] [PMID: 22183179]
[19]
Garbett, N.C.; Graves, D.E. Extending nature’s leads: the anticancer agent ellipticine. Curr. Med. Chem. Anticancer Agents, 2004, 4(2), 149-172.
[http://dx.doi.org/10.2174/1568011043482070] [PMID: 15032720]
[20]
Stiborova, M.; Rupertova, M.; Schmeiser, H.H.; Frei, E. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2006, 150(1), 13-23.
[http://dx.doi.org/10.5507/bp.2006.002] [PMID: 16936898]
[21]
Stiborová, M.; Rupertová, M.; Frei, E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim. Biophys. Acta, 2011, 1814(1), 175-185.
[http://dx.doi.org/10.1016/j.bbapap.2010.05.016] [PMID: 20576524]
[22]
Stiborová, M.; Poljaková, J.; Martínková, E.; Bořek-Dohalská, L.; Eckschlager, T.; Kizek, R.; Frei, E. Ellipticine cytotoxicity to cancer cell lines - a comparative study. Interdiscip. Toxicol., 2011, 4(2), 98-105. b
[http://dx.doi.org/10.2478/v10102-011-0017-7] [PMID: 21753906]
[23]
Stiborová, M.; Poljaková, J.; Martínková, E.; Ulrichová, J.; Simánek, V.; Dvořák, Z.; Frei, E. Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5. Toxicology, 2012, 302(2-3), 233-241.
[http://dx.doi.org/10.1016/j.tox.2012.08.004] [PMID: 22917556]
[24]
Andrews, W.J.; Panova, T.; Normand, C.; Gadal, O.; Tikhonova, I.G.; Panov, K.I. Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J. Biol. Chem., 2013, 288(7), 4567-4582.
[http://dx.doi.org/10.1074/jbc.M112.411611] [PMID: 23293027]
[25]
Stiborová, M.; Černá, V.; Moserová, M.; Mrízová, I.; Arlt, V.M.; Frei, E. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes. Int. J. Mol. Sci., 2014, 16(1), 284-306.
[http://dx.doi.org/10.3390/ijms16010284] [PMID: 25547492]
[26]
Le Pecq, J.B. Nguyen-Dat-Xuong; Gosse, C.; Paoletti, C. A new antitumoral agent: 9-hydroxyellipticine. Possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs. Proc. Natl. Acad. Sci. USA, 1974, 71(12), 5078-5082.
[http://dx.doi.org/10.1073/pnas.71.12.5078] [PMID: 4531039]
[27]
Schwaller, M.A.; Aubard, J.; Dodin, G. Kinetic and thermodynamic studies on drug-DNA interactions in the ellipticine series. Anticancer Drug Des., 1990, 5(1), 77-87.
[PMID: 2317261]
[28]
Stiborová, M.; Bieler, C.A.; Wiessler, M.; Frei, E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem. Pharmacol., 2001, 62(12), 1675-1684.
[PMID: 11755121]
[29]
Fung, S.Y.; Duhamel, J.; Chen, P. Solvent effect on the photophysical properties of the anticancer agent ellipticine. J. Phys. Chem. A, 2006, 110(40), 11446-11454.
[http://dx.doi.org/10.1021/jp062778y] [PMID: 17020255]
[30]
Auclair, C. Multimodal action of antitumor agents on DNA: the ellipticine series. Arch. Biochem. Biophys., 1987, 259(1), 1-14.
[http://dx.doi.org/10.1016/0003-9861(87)90463-2] [PMID: 3318697]
[31]
Paoletti, C.; Le Pecq, J.B.; Dat-Xuong, N.; Juret, P.; Garnier, H.; Amiel, J.L.; Rouesse, J. Antitumor activity, pharmacology, and toxicity of ellipticines, ellipticinium, and 9-hydroxy derivatives: preliminary clinical trials of 2-methyl-9-hydroxy ellipticinium (NSC 264-137). Recent Results Cancer Res., 1980, 74, 107-123.
[http://dx.doi.org/10.1007/978-3-642-81488-4_15] [PMID: 7003658]
[32]
Sureau, F.; Moreau, F.; Millot, J.M.; Manfait, M.; Allard, B.; Aubard, J.; Schwaller, M.A. Microspectrofluorometry of the protonation state of ellipticine, an antitumor alkaloid, in single cells. Biophys. J., 1993, 65(5), 1767-1774.
[http://dx.doi.org/10.1016/S0006-3495(93)81273-6] [PMID: 8298010]
[33]
Fung, S.Y.; Yang, H.; Bhola, P.T.; Sadatmousavi, P.; Muzar, E.; Liu, M.; Chen, P. Self-assembling peptide as a potential carrier for hydrophobic anticancer drug ellipticine: Complexation, release and in vitro delivery. Adv. Funct. Mater., 2009, 19, 74-83.
[http://dx.doi.org/10.1002/adfm.200800860]
[34]
Liu, J.; Xiao, Y.; Allen, C. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci., 2004, 93(1), 132-143.
[http://dx.doi.org/10.1002/jps.10533] [PMID: 14648643]
[35]
Searle, F.; Gac-Breton, S.; Keane, R.; Dimitrijevic, S.; Brocchini, S.; Sausville, E.A.; Duncan, R.N. -(2-hydroxypropyl) methacrylamide copolymer-6-(3-aminopropyl)-ellipticine conjugates. Synthesis, in vitro, and preliminary in vivo evaluation. Bioconjug. Chem., 2001, 12(5), 711-718.
[http://dx.doi.org/10.1021/bc0001544] [PMID: 11562189]
[36]
Nishiyama, N.; Kataoka, K. Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodia-mmineplatinum(II) in the core. J. Control. Release, 2001, 74(1-3), 83-94.
[http://dx.doi.org/10.1016/S0168-3659(01)00314-5] [PMID: 11489486]
[37]
Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev., 2002, 54(5), 759-779.
[http://dx.doi.org/10.1016/S0169-409X(02)00047-9] [PMID: 12204601]
[38]
Allen, C.; Maysinger, D.; Eisenberg, A. Nanoengineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces, 1999, 16, 3-27.
[http://dx.doi.org/10.1016/S0927-7765(99)00058-2]
[39]
Benahmed, A.; Ranger, M.; Leroux, J.C. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm. Res., 2001, 18(3), 323-328.
[http://dx.doi.org/10.1023/A:1011054930439] [PMID: 11442272]
[40]
Sedlacek, O.; Monnery, B.D.; Filippov, S.K.; Hoogenboom, R.; Hruby, M. Poly(2-oxazoline)s--are they more advantageous for biomedical applications than other polymers? Macromol. Rapid Commun., 2012, 33(19), 1648-1662.
[http://dx.doi.org/10.1002/marc.201200453] [PMID: 23034926]
[41]
Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem., 2010, 21(5), 797-802.
[http://dx.doi.org/10.1021/bc100070g] [PMID: 20397686]
[42]
Studenovský, M.; Sedláček, O.; Hrubý, M.; Pánek, J.; Ulbrich, K. Multi-responsive polymer micelles as ellipticine delivery carriers for cancer therapy. Anticancer Res., 2015, 35(2), 753-757.
[PMID: 25667454]
[43]
Wang, H.; Yang, L.; Rempel, G.L. Preparation of pH-responsive polymer core-shell nanospheres for delivery of hydrophobic antineoplastic drug ellipticine. Macromol. Biosci., 2014, 14(2), 166-172.
[http://dx.doi.org/10.1002/mabi.201300333] [PMID: 24106137]
[44]
Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109), 903-910.
[http://dx.doi.org/10.1126/science.1226338] [PMID: 23161990]
[45]
Stiborova, M.; Manhartova, Z.; Hodek, P.; Adam, V.; Kizek, R.; Frei, E. Formation of DNA adducts by ellipticine and its micellar form in rats - a comparative study. Sensors (Basel), 2014, 14(12), 22982-22997.
[http://dx.doi.org/10.3390/s141222982] [PMID: 25479328]
[46]
Thakur, R.; Das, A.; Chakraborty, A. Photophysical and photodynamical study of ellipticine: an anticancer drug molecule in bile salt modulated in vitro created liposome. Phys. Chem. Chem. Phys., 2012, 14(44), 15369-15378.
[http://dx.doi.org/10.1039/c2cp41708a] [PMID: 23059904]
[47]
Fung, S.Y.; Yang, H.; Chen, P. Sequence effect of self-assembling peptides on the complexation and in vitro delivery of the hydrophobic anticancer drug ellipticine. PLoS One, 2008, 3(4)e1956
[http://dx.doi.org/10.1371/journal.pone.0001956] [PMID: 18398476]
[48]
Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA, 1993, 90(8), 3334-3338.
[http://dx.doi.org/10.1073/pnas.90.8.3334] [PMID: 7682699]
[49]
Fung, S.Y.; Keyes, C.; Duhamel, J.; Chen, P. Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys. J., 2003, 85(1), 537-548.
[http://dx.doi.org/10.1016/S0006-3495(03)74498-1] [PMID: 12829508]
[50]
Fung, S.Y.; Yang, H.; Chen, P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf. B Biointerfaces, 2007, 55(2), 200-211.
[http://dx.doi.org/10.1016/j.colsurfb.2006.12.002] [PMID: 17234393]
[51]
Keyes-Baig, C.; Duhamel, J.; Fung, S.Y.; Bezaire, J.; Chen, P. Self-assembling peptide as a potential carrier of hydrophobic compounds. J. Am. Chem. Soc., 2004, 126(24), 7522-7532.
[http://dx.doi.org/10.1021/ja0381297] [PMID: 15198599]
[52]
Zhang, S.; Lockshin, C.; Cook, R.; Rich, A. Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers, 1994, 34(5), 663-672.
[http://dx.doi.org/10.1002/bip.360340508] [PMID: 8003624]
[53]
Wu, Y.; Sadatmousavi, P.; Wang, R.; Lu, S.; Yuan, Y.F.; Chen, P. Self-assembling peptide-based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo. Int. J. Nanomedicine, 2012, 7, 3221-3233.
[PMID: 22802684]
[54]
Ma, W.; Lu, S.; Pan, P.; Sadatmousavi, P.; Yuan, Y.; Chen, P. Pharmacokinetics of peptide mediated delivery of anticancer drug ellipticine. PLoS One, 2012, 7(8)e43684
[http://dx.doi.org/10.1371/journal.pone.0043684] [PMID: 22952737]
[55]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[56]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[57]
Lu, S.; Ding, Y.; Wu, Y.; Wang, R.; Pan, R.; Wan, Z.; Xu, W.; Zhang, L.; Yuan, Y-f.; Chen, P. An amphipathic lytic peptide for enhanced and selective delivery of ellipticine. J. Mater. Chem. B Mater. Biol. Med., 2016, 4, 4348-4355.
[http://dx.doi.org/10.1039/C6TB00529B]
[58]
Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B, 2018, 8(2), 165-177.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
[59]
Baeza, A.; Manzano, M.; Colilla, M.; Vallet-Regí, M. Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomater. Sci., 2016, 4(5), 803-813.
[http://dx.doi.org/10.1039/C6BM00039H] [PMID: 26902682]
[60]
ALOthman. Z. A review: Fundamental aspects of silicate mesoporous materials. Materials (Basel), 2012, 5, 2874-2902.
[http://dx.doi.org/10.3390/ma5122874]
[61]
Koninti, R.K.; Palvai, S.; Satpathi, S.; Basu, S.; Hazra, P. Loading of an anti-cancer drug into mesoporous silica nano-channels and its subsequent release to DNA. Nanoscale, 2016, 8(43), 18436-18445.
[http://dx.doi.org/10.1039/C6NR06285G] [PMID: 27775145]
[62]
Slowing, I.I.; Trewyn, B.G.; Giri, S.; Lin, V.S-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater., 2007, 17, 1225-1236.
[http://dx.doi.org/10.1002/adfm.200601191]
[63]
Vivero-Escoto, J.L.; Slowing, I.I.; Trewyn, B.G.; Lin, V.S. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18), 1952-1967.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
[64]
Gavvala, K.; Satpathi, S.; Hazra, P. pH responsive translocation of an anticancer drug between cyclodextrin and DNA. RSC Advances, 2015, 5, 98080-98086.
[http://dx.doi.org/10.1039/C5RA19839A]
[65]
Sengupta, A.; Koninti, R.K.; Gavvala, K.; Ballav, N.; Hazra, P. An anticancer drug to probe non-specific protein-DNA interactions. Phys. Chem. Chem. Phys., 2014, 16(9), 3914-3917.
[http://dx.doi.org/10.1039/c3cp54422b] [PMID: 24448495]
[66]
Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc., 2011, 133(23), 8778-8781.
[http://dx.doi.org/10.1021/ja200328s] [PMID: 21574653]
[67]
Lai, C.Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 2003, 125(15), 4451-4459.
[http://dx.doi.org/10.1021/ja028650l] [PMID: 12683815]
[68]
Wilson, K.P.; Malcolm, B.A.; Matthews, B.W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J. Biol. Chem., 1992, 267(15), 10842-10849.
[PMID: 1587860]
[69]
Deere, J.; Magner, E.; Wall, J.G.; Hodnett, B.K. Mechanistic and structural features of protein adsorption onto mesoporous silicate. J. Phys. Chem. B, 2002, 106, 7340-7347.
[http://dx.doi.org/10.1021/jp0139484]
[70]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[71]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[http://dx.doi.org/10.1016/j.coph.2006.04.006] [PMID: 16890021]
[72]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond.), 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[73]
Dalton, L.K.; Demerac, S.; Elmes, B.C.; Loder, J.W.; Swan, J.M.; Teitei, T. Synthesis of the tumour-inhibitory alkaloids, ellipticine, 9-methoxyellipticine, and related pyrido[4,3-b]carbazoles. Aust. J. Chem., 1967, 20, 2715-2727.
[http://dx.doi.org/10.1071/CH9672715]
[74]
Mathé, G.; Hayat, M.; De Vassal, F.; Schwarzenberg, L.; Schneider, M.; Schlumberger, J.R.; Jasmin, C.; Rosenfeld, C. Methoxy-9-ellipticine lactate. 3. Clinical screening: its action in acute myeloblastic leukaemia. Rev. Eur. Etud. Clin. Biol., 1970, 15(5), 541-545.
[PMID: 5270253]
[75]
Ansari, B.M.; Thompson, E.N. Methoxy-9-ellipticine lactate in refractory acute myeloid leukaemia. Postgrad. Med. J., 1975, 51(592), 103-105.
[http://dx.doi.org/10.1136/pgmj.51.592.103] [PMID: 1054156]
[76]
Avendaño, C.; Menendez, J.C. Other anticancer drugs targeting DNA and DNA-associated enzymes. Med. Chem. Anti-cancer Drugs, 2nd ed; Elsevier, 2015, pp. 273-323.
[http://dx.doi.org/10.1016/B978-0-444-62649-3.00007-7]
[77]
Juret, P.; Tanguy, A.; Girard, A.; Le Talaer, J.Y.; Abbatucci, J.S. Dat-Yuong, Le Pecq, J.B.; Paoletti, C. Hydroxy 9-methyl 2-ellipticinium acetate (NSC 264-137). Toxicologic study and therapeutic effect in 100 cancers (author’s transl). Nouv. Presse Med., 1979, 8, 1495-1498.
[PMID: 471724]
[78]
Juret, P.; Heron, J.F.; Couette, J.E.; Delozier, T.; Le Talaer, J.Y. Hydroxy-9-methyl-2-ellipticinium for osseous metastases from breast cancer: a 5-year experience. Cancer Treat. Rep., 1982, 66(11), 1909-1916.
[PMID: 7139636]
[79]
Rouësse, J.G.; Le Chevalier, T.; Caille, P.; Mondesir, J.M.; Sancho-Garnier, H.; May-Levin, F.; Spielmann, M.; De Jager, R.; Amiel, J.L. Phase II study of elliptinium in advanced breast cancer. Cancer Treat. Rep., 1985, 69(6), 707-708.
[PMID: 4016774]
[80]
Treat, J.; Greenspan, A.; Rahman, A.; McCabe, M.S.; Byrne, P.J. Elliptinium: phase II study in advanced measurable breast cancer. Invest. New Drugs, 1989, 7(2-3), 231-234.
[http://dx.doi.org/10.1007/BF00170864] [PMID: 2793378]
[81]
Mondesir, J.M.; Bidart, J.M.; Goodman, A.; Alberici, G.F.; Caille, P.; Troalen, F.; Rouesse, J.; Bohuon, C.; Gralla, R.J.; Einzig, A.I. Drug-induced antibodies during 2-N-methyl-9-hydroxyellipticinium acetate (NSC-264137) treatment: schedule dependency and relationship to hemolysis. J. Clin. Oncol., 1985, 3(5), 735-740.
[http://dx.doi.org/10.1200/JCO.1985.3.5.735] [PMID: 3998787]
[82]
Buzdar, A.U.; Hortobagyi, G.N.; Esparza, L.T.; Holmes, F.A.; Ro, J.S.; Fraschini, G.; Lichtiger, B. Elliptinium acetate in metastatic breast cancer--a phase II study. Oncology, 1990, 47(2), 101-104.
[http://dx.doi.org/10.1159/000226797] [PMID: 2314820]
[83]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44-53.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[84]
Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol., 2018, 19(8), 1027-1039.
[http://dx.doi.org/10.1016/S1470-2045(18)30332-2] [PMID: 30001990]
[85]
Lyon, P.C.; Griffiths, L.F.; Lee, J.; Chung, D.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Clinical trial protocol for TARDOX: a phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J. Ther. Ultrasound, 2017, 5, 28-32.
[http://dx.doi.org/10.1186/s40349-017-0104-0] [PMID: 29118984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy