Review Article

外泌体在光动力抗癌治疗中的作用

卷 27, 期 40, 2020

页: [6815 - 6824] 页: 10

弟呕挨: 10.2174/0929867326666190918122221

价格: $65

摘要

基于光敏剂(PS)在光照射下诱导的光化学反应,光动力疗法(PDT)是一种有希望的恶性肿瘤替代疗法。 最近的研究表明,PDT导致外泌体从肿瘤组织中大量释放。 众所周知,作为载体的外泌体通过转运多种生物活性分子(例如脂质,蛋白质,mRNA,miRNA和lncRNA)在细胞间通信中起着重要作用。 因此,探索外泌体在光动力抗癌治疗中的作用已引起广泛关注。 在本文中,我们将简要介绍PDT和外泌体的基本原理,并重点讨论外泌体在光动力抗癌治疗中的作用,以进一步丰富和促进PDT的发展。

关键词: 光动力疗法,肿瘤,外泌体,肿瘤微环境,肿瘤转移,肿瘤耐药性。

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Schachtschneider, K.M.; Schwind, R.M.; Newson, J.; Kinachtchouk, N.; Rizko, M.; Mendoza-Elias, N.; Grippo, P.; Principe, D.R.; Park, A.; Overgaard, N.H.; Jungersen, G.; Garcia, K.D.; Maker, A.V.; Rund, L.A.; Ozer, H.; Gaba, R.C.; Schook, L.B. The oncopig cancer model: an innovative large animal translational oncology platform. Front. Oncol., 2017, 7, 190.
[http://dx.doi.org/10.3389/fonc.2017.00190] [PMID: 28879168]
[3]
Mallidi, S.; Anbil, S.; Bulin, A.L.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics, 2016, 6(13), 2458-2487.
[http://dx.doi.org/10.7150/thno.16183] [PMID: 27877247]
[4]
Aubertin, K.; Silva, A.K.; Luciani, N.; Espinosa, A.; Djemat, A.; Charue, D.; Gallet, F.; Blanc-Brude, O.; Wilhelm, C. Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci. Rep., 2016, 6, 35376.
[http://dx.doi.org/10.1038/srep35376] [PMID: 27752092]
[5]
Suchorska, W.M.; Lach, M.S. The role of exosomes in tumor progression and metastasis. (review) Oncol. Rep., 2016, 35(3), 1237-1244.
[http://dx.doi.org/10.3892/or.2015.4507] [PMID: 26707854]
[6]
Jain, M.; Zellweger, M.; Wagnières, G.; van den Bergh, H.; Cook, S.; Giraud, M.N. Photodynamic therapy for the treatment of atherosclerotic plaque: lost in translation? Cardiovasc. Ther., 2017, 35(2)e12238
[http://dx.doi.org/10.1111/1755-5922.12238] [PMID: 27893195]
[7]
Chen, Z.; Woodburn, K.W.; Shi, C.; Adelman, D.C.; Rogers, C.; Simon, D.I. Photodynamic therapy with motexafin lutetium induces redox-sensitive apoptosis of vascular cells. Arterioscler. Thromb. Vasc. Biol., 2001, 21(5), 759-764.
[http://dx.doi.org/10.1161/01.ATV.21.5.759] [PMID: 11348871]
[8]
Rajagopal, C.; Harikumar, K.B. The origin and functions of exosomes in cancer. Front. Oncol., 2018, 8, 66.
[http://dx.doi.org/10.3389/fonc.2018.00066] [PMID: 29616188]
[9]
Simons, M.; Raposo, G. Exosomes-vesicular carriers for intercellular communication. Curr. Opin. Cell Biol., 2009, 21(4), 575-581.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[10]
Ruivo, C.F.; Adem, B.; Silva, M.; Melo, S.A. The biology of cancer exosomes: insights and new perspectives. Cancer Res., 2017, 77(23), 6480-6488.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0994] [PMID: 29162616]
[11]
Schmidt, O.; Teis, D. The ESCRT machinery. Curr. Biol., 2012, 22(4), R116-R120.
[http://dx.doi.org/10.1016/j.cub.2012.01.028] [PMID: 22361144]
[12]
Katzmann, D.J.; Babst, M.; Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell, 2001, 106(2), 145-155.
[http://dx.doi.org/10.1016/S0092-8674(01)00434-2] [PMID: 11511343]
[13]
Wollert, T.; Wunder, C.; Lippincott-Schwartz, J.; Hurley, J.H. Membrane scission by the ESCRT-III complex. Nature, 2009, 458(7235), 172-177.
[http://dx.doi.org/10.1038/nature07836] [PMID: 19234443]
[14]
Stuffers, S.; Sem Wegner, C.; Stenmark, H.; Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 2009, 10(7), 925-937.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00920.x] [PMID: 19490536]
[15]
Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867), 1244-1247.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[16]
Dreux, M.; Garaigorta, U.; Boyd, B.; Décembre, E.; Chung, J.; Whitten-Bauer, C.; Wieland, S.; Chisari, F.V. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe, 2012, 12(4), 558-570.
[http://dx.doi.org/10.1016/j.chom.2012.08.010] [PMID: 23084922]
[17]
Ghossoub, R.; Lembo, F.; Rubio, A.; Gaillard, C.B.; Bouchet, J.; Vitale, N.; Slavík, J.; Machala, M.; Zimmermann, P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun., 2014, 5, 3477.
[http://dx.doi.org/10.1038/ncomms4477] [PMID: 24637612]
[18]
Guo, W.; Gao, Y.; Li, N.; Shao, F.; Wang, C.; Wang, P.; Yang, Z.; Li, R.; He, J. Exosomes: new players in cancer. (review) Oncol. Rep., 2017, 38(2), 665-675.
[http://dx.doi.org/10.3892/or.2017.5714] [PMID: 28627679]
[19]
Kowal, J.; Tkach, M.; Théry, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol., 2014, 29, 116-125.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[20]
Kuninty, P.R.; Schnittert, J.; Storm, G.; Prakash, J. MicroRNA targeting to modulate tumor microenvironment. Front. Oncol., 2016, 6, 3.
[http://dx.doi.org/10.3389/fonc.2016.00003] [PMID: 26835418]
[21]
Bu, L.; Baba, H.; Yoshida, N.; Miyake, K.; Yasuda, T.; Uchihara, T.; Tan, P.; Ishimoto, T. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene, 2019, 38(25), 4887-4901.
[http://dx.doi.org/10.1038/s41388-019-0765-y] [PMID: 30816343]
[22]
Zhao, H.; Yang, L.; Baddour, J.; Achreja, A.; Bernard, V.; Moss, T.; Marini, J.C.; Tudawe, T.; Seviour, E.G.; San Lucas, F.A.; Alvarez, H.; Gupta, S.; Maiti, S.N.; Cooper, L.; Peehl, D.; Ram, P.T.; Maitra, A.; Nagrath, D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 2016, 5e10250
[http://dx.doi.org/10.7554/elife.10250]] [PMID: 26920219]
[23]
Haga, H.; Yan, I.K.; Takahashi, K.; Wood, J.; Zubair, A.; Patel, T. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. J. Extracell. Vesicles, 2015, 4, 24900.
[http://dx.doi.org/10.3402/jev.v4.24900] [PMID: 25557794]
[24]
Webber, J.; Steadman, R.; Mason, M.D.; Tabi, Z.; Clayton, A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res., 2010, 70(23), 9621-9630.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1722] [PMID: 21098712]
[25]
Gu, J.; Qian, H.; Shen, L.; Zhang, X.; Zhu, W.; Huang, L.; Yan, Y.; Mao, F.; Zhao, C.; Shi, Y.; Xu, W. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One, 2012, 7(12)e52465
[http://dx.doi.org/10.1371/journal.pone.0052465] [PMID: 23285052]
[26]
Patel, A.K.; Vipparthi, K.; Thatikonda, V.; Arun, I.; Bhattacharjee, S.; Sharan, R.; Arun, P.; Singh, S. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis, 2018, 7(10), 78.
[http://dx.doi.org/10.1038/s41389-018-0087-x] [PMID: 30287850]
[27]
Rhim, A.D.; Oberstein, P.E.; Thomas, D.H.; Mirek, E.T.; Palermo, C.F.; Sastra, S.A.; Dekleva, E.N.; Saunders, T.; Becerra, C.P.; Tattersall, I.W.; Westphalen, C.B.; Kitajewski, J.; Fernandez-Barrena, M.G.; Fernandez-Zapico, M.E.; Iacobuzio-Donahue, C.; Olive, K.P.; Stanger, B.Z. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 2014, 25(6), 735-747.
[http://dx.doi.org/10.1016/j.ccr.2014.04.021] [PMID: 24856585]
[28]
Harper, J.; Sainson, R.C. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin. Cancer Biol., 2014, 25, 69-77.
[http://dx.doi.org/10.1016/j.semcancer.2013.12.005] [PMID: 24406209]
[29]
Aslan, C.; Maralbashi, S.; Salari, F.; Kahroba, H.; Sigaroodi, F.; Kazemi, T.; Kharaziha, P. Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J. Cell. Physiol., 2019, 234(10), 16885-16903.
[http://dx.doi.org/10.1002/jcp.28374] [PMID: 30793767]
[30]
Shao, C.; Yang, F.; Miao, S.; Liu, W.; Wang, C.; Shu, Y.; Shen, H. Role of hypoxia-induced exosomes in tumor biology. Mol. Cancer, 2018, 17(1), 120.
[http://dx.doi.org/10.1186/s12943-018-0869-y] [PMID: 30098600]
[31]
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest., 2016, 126(4), 1208-1215.
[http://dx.doi.org/10.1172/jci81135] [PMID: 27035812]
[32]
Whiteside, T.L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest., 2016, 126(4), 1216-1223.
[http://dx.doi.org/10.1172/jci81136] [PMID: 26927673]
[33]
Whiteside, T.L. The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Future Oncol., 2017, 13(28), 2583-2592.
[http://dx.doi.org/10.2217/fon-2017-0343] [PMID: 29198150]
[34]
Greening, D.W.; Gopal, S.K.; Xu, R.; Simpson, R.J.; Chen, W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol., 2015, 40, 72-81.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.009] [PMID: 25724562]
[35]
Wan, Z.; Gao, X.; Dong, Y.; Zhao, Y.; Chen, X.; Yang, G.; Liu, L. Exosome-mediated cell-cell communication in tumor progression. Am. J. Cancer Res., 2018, 8(9), 1661-1673.
[PMID: 30323961]
[36]
Diepenbruck, M.; Christofori, G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol., 2016, 43, 7-13.
[http://dx.doi.org/10.1016/j.ceb.2016.06.002] [PMID: 27371787]
[37]
Li, K.; Chen, Y.; Li, A.; Tan, C.; Liu, X. Exosomes play roles in sequential processes of tumor metastasis. Int. J. Cancer, 2019, 144(7), 1486-1495.
[http://dx.doi.org/10.1002/ijc.31774] [PMID: 30155891]
[38]
Wee, I.; Syn, N.; Sethi, G.; Goh, B.C.; Wang, L. Role of tumor-derived exosomes in cancer metastasis. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(1), 12-19.
[http://dx.doi.org/10.1016/j.bbcan.2018.10.004] [PMID: 30419312]
[39]
Franzen, C.A.; Blackwell, R.H.; Todorovic, V.; Greco, K.A.; Foreman, K.E.; Flanigan, R.C.; Kuo, P.C.; Gupta, G.N. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis, 2015, 4(8)e163
[http://dx.doi.org/10.1038/oncsis.2015.21] [PMID: 26280654]
[40]
Le, M.T.; Hamar, P.; Guo, C.; Basar, E.; Perdigão-Henriques, R.; Balaj, L.; Lieberman, J. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J. Clin. Invest., 2014, 124(12), 5109-5128.
[http://dx.doi.org/10.1172/JCI75695] [PMID: 25401471]
[41]
Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[42]
Ostenfeld, M.S.; Jeppesen, D.K.; Laurberg, J.R.; Boysen, A.T.; Bramsen, J.B.; Primdal-Bengtson, B.; Hendrix, A.; Lamy, P.; Dagnaes-Hansen, F.; Rasmussen, M.H.; Bui, K.H.; Fristrup, N.; Christensen, E.I.; Nordentoft, I.; Morth, J.P.; Jensen, J.B.; Pedersen, J.S.; Beck, M.; Theodorescu, D.; Borre, M.; Howard, K.A.; Dyrskjøt, L.; Ørntoft, T.F. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res., 2014, 74(20), 5758-5771.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3512] [PMID: 25261234]
[43]
Reymond, N.; d’Água, B.B.; Ridley, A.J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer, 2013, 13(12), 858-870.
[http://dx.doi.org/10.1038/nrc3628] [PMID: 24263189]
[44]
Heymann, D.; Téllez-Gabriel, M. Circulating tumor cells: the importance of single cell analysis. Adv. Exp. Med. Biol., 2018, 1068, 45-58.
[http://dx.doi.org/10.1007/978-981-13-0502-3_5] [PMID: 29943295]
[45]
Dawood, S.; Cristofanilli, M. Integrating circulating tumor cell assays into the management of breast cancer. Curr. Treat. Options Oncol., 2007, 8(1), 89-95.
[http://dx.doi.org/10.1007/s11864-007-0018-0] [PMID: 17634836]
[46]
Liu, Y.; Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell, 2016, 30(5), 668-681.
[http://dx.doi.org/10.1016/j.ccell.2016.09.011] [PMID: 27846389]
[47]
Kaplan, R.N.; Riba, R.D.; Zacharoulis, S.; Bramley, A.H.; Vincent, L.; Costa, C.; MacDonald, D.D.; Jin, D.K.; Shido, K.; Kerns, S.A.; Zhu, Z.; Hicklin, D.; Wu, Y.; Port, J.L.; Altorki, N.; Port, E.R.; Ruggero, D.; Shmelkov, S.V.; Jensen, K.K.; Rafii, S.; Lyden, D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 2005, 438(7069), 820-827.
[http://dx.doi.org/10.1038/nature04186] [PMID: 16341007]
[48]
Kaiser, J. Malignant messengers. Science, 2016, 352(6282), 164-166.
[http://dx.doi.org/10.1126/science.352.6282.164] [PMID: 27124448]
[49]
Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2012, 18(6), 883-891.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[50]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[51]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17(2), 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[52]
Rana, S.; Malinowska, K.; Zöller, M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia, 2013, 15(3), 281-295.
[http://dx.doi.org/10.1593/neo.122010] [PMID: 23479506]
[53]
Keerthikumar, S.; Gangoda, L.; Liem, M.; Fonseka, P.; Atukorala, I.; Ozcitti, C.; Mechler, A.; Adda, C.G.; Ang, C.S.; Mathivanan, S. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget, 2015, 6(17), 15375-15396.
[http://dx.doi.org/10.18632/oncotarget.3801] [PMID: 25944692]
[54]
Dai, X.; Chen, C.; Yang, Q.; Xue, J.; Chen, X.; Sun, B.; Luo, F.; Liu, X.; Xiao, T.; Xu, H.; Sun, Q.; Zhang, A.; Liu, Q. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis., 2018, 9(5), 454.
[http://dx.doi.org/10.1038/s41419-018-0485-1] [PMID: 29674685]
[55]
Abudoureyimu, M.; Zhou, H.; Zhi, Y.; Wang, T.; Feng, B.; Wang, R.; Chu, X. Recent progress in the emerging role of exosome in hepatocellular carcinoma. Cell Prolif., 2019, 52(2)e12541
[http://dx.doi.org/10.1111/cpr.12541] [PMID: 30397975]
[56]
Zhang, C.; Ji, Q.; Yang, Y.; Li, Q.; Wang, Z. Exosome: function and role in cancer metastasis and drug resistance. Technol. Cancer Res. Treat., 2018, 171533033818763450
[http://dx.doi.org/10.1177/1533033818763450] [PMID: 29681222]
[57]
Xiao, X.; Yu, S.; Li, S.; Wu, J.; Ma, R.; Cao, H.; Zhu, Y.; Feng, J. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One, 2014, 9(2)e89534
[http://dx.doi.org/10.1371/journal.pone.0089534] [PMID: 24586853]
[58]
Lv, M.M.; Zhu, X.Y.; Chen, W.X.; Zhong, S.L.; Hu, Q.; Ma, T.F.; Zhang, J.; Chen, L.; Tang, J.H.; Zhao, J.H. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol., 2014, 35(11), 10773-10779.
[http://dx.doi.org/10.1007/s13277-014-2377-z] [PMID: 25077924]
[59]
Shedden, K.; Xie, X.T.; Chandaroy, P.; Chang, Y.T.; Rosania, G.R. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res., 2003, 63(15), 4331-4337.
[PMID: 12907600]
[60]
Nedaeinia, R.; Manian, M.; Jazayeri, M.H.; Ranjbar, M.; Salehi, R.; Sharifi, M.; Mohaghegh, F.; Goli, M.; Jahednia, S.H.; Avan, A.; Ghayour-Mobarhan, M. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther., 2017, 24(2), 48-56.
[http://dx.doi.org/10.1038/cgt.2016.77] [PMID: 27982021]
[61]
Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol., 2008, 110(1), 13-21.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.033] [PMID: 18589210]
[62]
Wang, M.; Ji, S.; Shao, G.; Zhang, J.; Zhao, K.; Wang, Z.; Wu, A. Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clin. Transl. Oncol., 2018, 20(7), 906-911.
[http://dx.doi.org/10.1007/s12094-017-1805-0] [PMID: 29143228]
[63]
Huang, X.; Yuan, T.; Liang, M.; Du, M.; Xia, S.; Dittmar, R.; Wang, D.; See, W.; Costello, B.A.; Quevedo, F.; Tan, W.; Nandy, D.; Bevan, G.H.; Longenbach, S.; Sun, Z.; Lu, Y.; Wang, T.; Thibodeau, S.N.; Boardman, L.; Kohli, M.; Wang, L. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol., 2015, 67(1), 33-41.
[http://dx.doi.org/10.1016/j.eururo.2014.07.035] [PMID: 25129854]
[64]
Szajnik, M.; Derbis, M.; Lach, M.; Patalas, P.; Michalak, M.; Drzewiecka, H.; Szpurek, D.; Nowakowski, A.; Spaczynski, M.; Baranowski, W.; Whiteside, T.L. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol. Obstet. (Sunnyvale), 2013(Suppl. 4), 3.
[http://dx.doi.org/10.4172/2161-0932.s4-003] [PMID: 24466501]
[65]
Dang, J.; He, H.; Chen, D.; Yin, L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci., 2017, 5(8), 1500-1511.
[http://dx.doi.org/10.1039/C7BM00392G] [PMID: 28681887]
[66]
Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater., 2019, 31(15)e1808200
[http://dx.doi.org/10.1002/adma.201808200] [PMID: 30773718]
[67]
Kubiak, M.; Łysenko, L.; Gerber, H.; Nowak, R. Cell reactions and immune responses to photodynamic therapy in oncology. Postepy Hig. Med. Dosw., 2016, 70(0), 735-742.
[http://dx.doi.org/10.5604/17322693.1208196] [PMID: 27383570]
[68]
Yu, X.; Zheng, H.; Chan, M.T.V.; Wu, W.K.K. Immune consequences induced by photodynamic therapy in non-melanoma skin cancers: a review. Environ. Sci. Pollut. Res. Int., 2018, 25(21), 20569-20574.
[http://dx.doi.org/10.1007/s11356-018-2426-z] [PMID: 29948701]
[69]
Jiang, Y.; Leung, A.W.; Wang, X.; Zhang, H.; Xu, C. Effect of photodynamic therapy with hypocrellin B on apoptosis, adhesion and migration of cancer cells. Int. J. Radiat. Biol., 2014, 90(7), 575-579.
[http://dx.doi.org/10.3109/09553002.2014.906765] [PMID: 24661233]
[70]
Chen, Y.J.; Jiang, H.T.; Cao, J.Y. Influence of photodynamic therapy on apoptosis and invasion of human cholangiocarcinoma QBC939 cell line. Chin. Med. Sci. J., 2015, 30(4), 252-259.
[http://dx.doi.org/10.1016/S1001-9294(16)30009-8] [PMID: 26960307]
[71]
Ghodasra, D.H.; Demirci, H. Photodynamic therapy for choroidal metastasis. Am. J. Ophthalmol., 2016, 161, 104-109.
[http://dx.doi.org/10.1016/j.ajo.2015.09.033] [PMID: 26432928]
[72]
El-Daly, S.M.; Abba, M.L.; Gamal-Eldeen, A.M. The role of microRNAs in photodynamic therapy of cancer. Eur. J. Med. Chem., 2017, 142, 550-555.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.011] [PMID: 29033001]
[73]
Fahey, J.M.; Girotti, A.W. Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: role of nitric oxide. Nitric Oxide, 2015, 49, 47-55.
[http://dx.doi.org/10.1016/j.niox.2015.05.006] [PMID: 26068242]
[74]
Spring, B.Q.; Rizvi, I.; Xu, N.; Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci., 2015, 14(8), 1476-1491.
[http://dx.doi.org/10.1039/C4PP00495G] [PMID: 25856800]
[75]
Rodríguez, M.E.; Catrinacio, C.; Ropolo, A.; Rivarola, V.A.; Vaccaro, M.I. A novel HIF-1α/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem. Photobiol. Sci., 2017, 16(11), 1631-1642.
[http://dx.doi.org/10.1039/C7PP00161D] [PMID: 28936522]
[76]
Rapozzi, V.; Della Pietra, E.; Bonavida, B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol., 2015, 6, 311-317.
[http://dx.doi.org/10.1016/j.redox.2015.07.015] [PMID: 26319434]
[77]
Yang, Y.; Yang, X.; Li, H.; Li, C.; Ding, H.; Zhang, M.; Guo, Y.; Sun, M. Near-infrared light triggered liposomes combining photodynamic and chemotherapy for synergistic breast tumor therapy. Colloids Surf. B Biointerfaces, 2019, 173, 564-570.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.019] [PMID: 30347383]
[78]
Ozog, D.M.; Rkein, A.M.; Fabi, S.G.; Gold, M.H.; Goldman, M.P.; Lowe, N.J.; Martin, G.M.; Munavalli, G.S. Photodynamic therapy: a clinical consensus guide. Dermatol. Surg., 2016, 42(7), 804-827.
[http://dx.doi.org/10.1097/DSS.0000000000000800] [PMID: 27336945]
[79]
Sivasubramanian, M.; Chuang, Y.C.; Lo, L.W. Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules, 2019, 24(3)E520
[http://dx.doi.org/10.3390/molecules24030520] [PMID: 30709030]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy