Review Article

苯并咪唑杂交种抗癌潜力的最新进展

卷 27, 期 35, 2020

页: [5970 - 6014] 页: 45

弟呕挨: 10.2174/0929867326666190808122929

价格: $65

摘要

本文详细介绍了致癌因素和苯并咪唑类抗癌药物的合成设计策略。最近的癌症治疗调查《2017年癌症事实与数据》显示,美国化学学会在对抗癌症方面取得了进步。全世界发达国家和发展中国家的研究人员都在不断努力解决这一严重问题。苯并咪唑及其衍生物由于与天然含氮碱嘌呤的相似性而表现出广泛的生物活性。本文从插层作用、烷基化作用、拓扑异构酶、DHFR酶和微管蛋白抑制剂等不同机理对苯并咪唑类化合物的抗癌性能进行了综述。苯并咪唑衍生物通过不同的机制发挥作用,而先前和最近的研究文献报道的取代基是合成靶向基苯并咪唑衍生物作为抗癌药物的先决条件。综述的重点是通过图中SAR对取代基的效价和选择性进行简单比较。这将进一步为新型苯并咪唑类抗癌药物的开发提供更好的前景或完成所面临的挑战。

关键词: 苯并咪唑,癌症,转移,血管生成,SAR,蛋白激酶抑制剂,癌症增殖

[1]
Singh, P.; Raj, R.; Kumar, V.; Mahajan, M.P.; Bedi, P.M.S.; Kaur, T.; Saxena, A.K. 1,2,3-Triazole tethered β-lactam-Chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur. J. Med. Chem., 2012, 47, 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033 ] [PMID: 22071256]
[2]
Rostom, S.A.F. Synthesis and in vitro antitumor evaluation of some indeno [1,2-c] pyrazol(in)es substituted with sulfonamide, sulfonylurea (thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem., 2006, 14, 6475-6485.
[http://dx.doi.org/10.1016/j.bmc.2006.06.020]
[3]
Chari, R.V.J. Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv. Drug Deliv. Rev., 1998, 31, 89-104.
[http://dx.doi.org/10.1016/S0169-409X(97)00095-1 ] [PMID: 10837619]
[4]
George, R.F. Stereoselective synthesis and QSAR study of cytotoxic 2-(4-oxo-thiazolidin-2-ylidene)-2-cyano-N-arylacetamides. Eur. J. Med. Chem., 2012, 47, 377-386.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.006 ] [PMID: 22119132]
[5]
Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodamine or hydantoin moieties as potential anticancer agents. Eur. J. Med. Chem., 2013, 59, 15-22.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.044 ] [PMID: 23202485]
[6]
El-Nassan, H.B. Synthesis, antitumor activity and SAR study of novel [1,2,4]triazino[4,5-a]benzimidazole derivatives. Eur. J. Med. Chem., 2012, 53, 22-27.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.028 ] [PMID: 22542105]
[7]
Mckenney, C.A.; Romzek, M.R.; Ziemba, S.E. Apoptosis—when cells die. Lab. Med., 1999, 30, 791-795.
[http://dx.doi.org/10.1093/labmed/30.12.791]
[8]
Aliabadi, A.; Shamsa, F.; Ostad, S.N.; Emami, S.; Shafiee, A.; Davoodi, J.; Foroumadi, A. Synthesis and biological evaluation of 2-phenylthiazole-4-carboxamide derivatives as anticancer agents. Eur. J. Med. Chem., 2010, 45, 5384-5389.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.063 ] [PMID: 20846760]
[9]
Caba, O.; Rodríguez-Serrano, F.; Díaz-Gavilán, M.; Conejo-García, A.; Ortiz, R.; Martínez-Amat, A.; Álvarez, P.; Gallo, M.A.; Campos, J.M.; Marchal, J.A.; Aránega, A. The selective cytotoxic activity in breast cancer cells by an anthranilic alcoholderived acyclic 5-fluorouracil O,N-acetal is mediated by endoplasmic reticulum stress-induced apoptosis. Eur. J. Med. Chem., 2012, 50, 376-382.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.017 ] [PMID: 22373735]
[10]
Deslandes, S.; Lamoral-Theys, D.; Frongia, C.; Chassaing, S.; Bruyere, C.; Lozach, O.; Meijer, L.; Ducommun, B.; Kiss, R.; Delfourne, E. Syntheis and biological evaluation of analogs of the marine alkaloids granulatimide and isogranulatimide. Eur. J. Med. Chem., 2012, 54, 626-636.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.012 ] [PMID: 22809559]
[11]
Nitulescu, G.M.; Draghici, C.; Missir, A.V. Synthesis of new pyrazole derivatives and their anticancer evaluation. Eur. J. Med. Chem., 2010, 45, 4914-4919.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.064 ] [PMID: 20728965]
[12]
Basanagouda, M.; Jambagi, V.B.; Barigidad, N.N.; Laxmeshwar, S.S.; Devaru, V. Narayanachar. Synthesis, structureeactivity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and antimycobacterial agents. Eur. J. Med. Chem., 2014, 74, 225-233.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.061 ] [PMID: 24463645]
[13]
Shi, L.; Wu, T.; Wang, Z.; Xue, J.; Xu, Y. Discovery of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinolin-4-amine derivatives as novel VEGFR-2 kinase inhibitors. Eur. J. Med. Chem., 2014, 84, 698-707.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.071 ] [PMID: 25064347]
[14]
Determann, R.; Dreher, J.; Baumann, K.; Preu, L.; Jones, P.G.; Totzke, F.; Schächtele, C.; Kubbutat, M.H.G.; Kunick, C. 2-Anilino-4-(benzimidazol-2-yl)pyrimidines e A multikinase inhibitor scaffold with antiproliferative activity toward cancer cell lines. Eur. J. Med. Chem., 2012, 53, 254-263.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.007 ] [PMID: 22560627]
[15]
Bhuva, H.A.; Kini, S.G. Synthesis, anticancer activity and docking of substituted benzothiazoles as tyrosine kinase inhibitors. J. Mol. Graph. Model., 2010, 29, 32-37.
[http://dx.doi.org/10.1016/j.jmgm.2010.04.003 ] [PMID: 20493747]
[16]
Chen, C.; Chang, D.; Chen, T.; Lee, C.; Hsieh, H.; Huang, F.; Huang, K.; Guh, J.; Lin, J.H. Huang. Structure-based design, synthesis and evaluation of novel anthrax[1,2-d]imidazole-6,11-dione derivatives as telomerase inhibitors and potential for cancer polypharmacology. Eur. J. Med. Chem., 2013, 60, 29-41.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.032]
[17]
Cai, J.; Wei, H.; Hong, K.H.; Wu, X.; Zong, X.; Cao, M. wang, P.; Li, L.; Sun C.; Chen, B.; Zhou, G.; Chen, J.; Ji, M. Discovery, bioactivity and docking simulation of Vorinostat analogues containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors and antitumor agents. Bioorg. Med. Chem., 2015, 23, 3457-3471.
[http://dx.doi.org/10.1016/j.bmc.2015.04.028 ] [PMID: 25953722]
[18]
Choi, W.K.; El-Gamal, M.; Choi, H.S.; Baek, D.; Oh, C. New diarylureas and diarylamides containing 1.3.4-triarylpyrazole scaffold: synthesis, antiproliferative evaluation against melanoma cell lines, ERK kinase inhibition and molecular docking studies. Eur. J. Med. Chem., 2011, 46, 5754-5762.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.013 ] [PMID: 22014559]
[19]
Rang, H.; Dale, M. Pharmacology. [Edinburgh], 6th ed; Churchill Livingstone, 2007, pp. 718-736..
[20]
Özkay, Y.; Isıkdag, I.; Incesu, Z.; Akalın, G. Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity. Eur. J. Med. Chem., 2010, 45, 3320-3328.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.015 ] [PMID: 20451307]
[21]
Lee, C.; Huang, K.; Chang, D.; Hsu, J.; Huang, F.; Shih, K.; Chen, C.; Chen, T.; Chen, R.; Lin, J.; Huang, H. Design, synthesis and evaluation of telomerase inhibitory, hTERT repressing, and anti-proliferation activities of symmetrical 1,8-disubstituted amidoanthraquinones. Eur. J. Med. Chem., 2012, 50, 102-112.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.044 ] [PMID: 22357112]
[22]
Hartwell, L. Rediscovering biology, unit 8 cell biology and cancer, pp. 1-17.. http://www.learner.org/courses/biology/support/8_cancer. pdf
[23]
Foye, W.O.; Lemke, T.L.; Williams, D.A. Cancer and chemotherapy in: Foye's principles of medicinal chemistry, 6th ed., 2008, p. 1147-1190..
[24]
Pommier, Y. DNA Topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev., 2009, 109, 2894-2902.
[http://dx.doi.org/10.1021/cr900097c]
[25]
Gao, C.; Li, B.; Zhang, B.; Sun, Q.; Li, L.; Li, X.; Chen, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorg. Med. Chem., 2015, 23, 1800-1807.
[http://dx.doi.org/10.1016/j.bmc.2015.02.036 ] [PMID: 25778766]
[26]
Kamal, A.; Shaik, A.B.; Polepalli, S.; Kumar, G.B.; Reddy, V.S.; Mahesh, R.; Garimella, S.; Jain, N. Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg. Med. Chem., 2015, 23, 1082-1095.
[http://dx.doi.org/10.1016/j.bmc.2015.01.004 ] [PMID: 25648686]
[27]
Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature, 1984, 312, 237-242.
[http://dx.doi.org/10.1038/312237a0 ] [PMID: 6504138 ]
[28]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[29]
Jordan, A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 42, 53-65.
[http://dx.doi.org/10.1038/nrc1317 ] [PMID: 15057285]
[30]
Naidu, V.G.M.; Kumar, G.J.; Guntuku, L.; Vaidya, J.R. 2-(4-(5-Methyl-1H Benzo[d]imidazol-2-yl)phenyl)-6 Morpholinon4-phenyl-1,3,5-Triazine-2,4-Diamine Derivatives as Anticancer Agents. Indian Patent No.201741002124. 2018.
[31]
Kamal, A.; Shaik, A.B.; Kumar, G.B.; Reddy, V.S. Pyrazole linked benzimidazole conjugates and a process for preparation thereof, US9951049B2, 2018.
[32]
Shankaraiah, N.; Sharma, P.; Reddy, T.S.; Kumar, N.P. Thiazolidinedione-vinyl benzimidazole derivatives as anticancer agents.Indian Patent No.201641035739, 2018.
[33]
Ahmed, K.; Telukutla, S.R.; Vunnam, S.; Ayinampudi, V.S.; Nagula, S.; Madugulla, V.P.S.V.V. Derivatives of 1- (benzimidazol-2-yl)-4-(5-phenyl-1,2,4-oxadiazol-3-yl)- benzene useful as anticancer agents, EP2966073B1. 2016.
[34]
Ahmed, K.; Telukutla, S.R.; Vunnam, S.; Ayinampudi, V.S.; Nagula, S.; Surya, V.P.; Madugulla, V.V. Anticancer agent and process for the preparation thereof US9522907B2, 2016.
[35]
Kumar, P.; Parikh, J.K.; Begari, E. Novel benzimidazole based egfr inhibitors, WO2016079763A1. 2016.
[36]
Rewcastle, G.W.; Gamage, S.A.; Flanagan, J.U.; Giddens, A.C.; Tsang, K.Y. Pyrimidinyl and 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy US9108980B2. 2015.
[37]
Rivero, R.A.; Tedesco, R.; Luengo, J.I. Benzimidazole boronic acid derivatives as PI3 kinase inhibitors, US8778937B2, 2014.
[38]
Brameld, K.A.; Owens, T.A. Benzimidazole derivatives as itk inhibitors WO2014036016A1, 2014.
[39]
Waldmann, H.; Triola, G.; Wittinghofer, A.; Shehab, I.; Bastiaens, P.; Vartak, N.; Papke, B.; Zimmermann, G. Benzimidazoles for the treatment of cancer. E, 2014, 192698367
[40]
Chen, Y.; Chen, Y. Novel therapeutic agents, WO2013113841. 2013.
[41]
Chang, C.; Guh, J.; Teng, C.; Pan, S.; Chang, W.; Liu, J.; Chang, K.; Kuo, S. Benzimidazole compounds and their use as anticancer agents, US8501957B2,. 2013.
[42]
Breitenbucher, J.G.; Lee-Dutra, A.; Neff, D.K. Arylsubstituted benzimidazole and imidazopyridine ethers as anti-cancer agents, CA2572218C. 2013.
[43]
Staehle, W.; Schultz, M.; Schiemann, K. N (benzimimdazol-2-yl)-cyclopropane carboxamides as lysophosphatidic acid antagonists, WO2013020622,. 2013.
[44]
Lelais, G.; Epple, R.; Michellys, P.; Bursulaya, B.; Jiang, S.; Marsilje, I.T.H.; Mcneill, M.H. Compounds and compositions for modulating egfr activity, WO2013184766A1,. 2013.
[45]
Ahmed, K.; Pogula, P.K. Napthalimide-benzimidazole hybrids as potential antitumor agents and process for the preparation thereof, US8288387B2, . 2012.
[46]
Munchhof, M.J.; Reiter, L.A.; Greca, S.D.L.; Jones, C.S.; Li, Q. Benzimidazole derivatives US8148401B2, 2012.
[47]
Nair, S.K.; Planken, S.P.; Plewe, M.B.; Vernier, W.F.; Yang, Y.; Zhu, H. Benzimidazole derivatives WO2011027249A3, 2011.
[48]
Kubota, Y.; Uemura, H.; Nakaigawa, N.; Naito, K. Anticancer agents, US7812044B2. 2010.
[49]
Crew, A.; Cox, M.; Laufer, R.; Pegg, N.; Smith, C.S.; Sun, Y.; Wilkes, R.; Williams, J. N-substituted benzimidazolyl c-Kit inhibitors and combinatorial benzimidazole library US7419995B2, 2008.
[50]
Munchhof, M.J.; Reiter, L.A.; Shavnya, A.; Li, C.S.J.Q; Linde, R.G.I. Benzimidazole derivatives WO2008075196A1, 2008.
[51]
Pfahl, M.; Tachdjian, C.; Wiemann, T.; Cow, C.; Spruce, L.; Giachino, A.; Kaspar, A.; Zapf, J. Benzoxazole, benzothiazole, and benzimidazole derivatives for the treatment of cancer and other diseases, US20050014767A1, . 2005.
[52]
Sircar, J.C.; Richards, M.L. Benzimidazole compounds for modulating IgE and inhibiting cellular proliferation,US6759425B2,. 2004.
[53]
Richards, M.L.; Sircar, J.C. Use of benzimidazole analogs in the treatment of cell proliferation, WO2003082186A3, 2004.25 Mar.
[54]
Matsunaga, A.; Nakajima, Y.; Kohno, H.; Komatsu, H.; Edatsugi, H.; Iwata, D.; Takezawa, K. Benzimidazole derivatives, US5852011A, . 1998.
[55]
Sovic, I.; Jambon, S.; Pavelic, S.K.; Markova-Car, E.; Ilic, N.; Depauw, S.; David-Cordonnier, M.; Karminski-Zamola, G. Synthesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines. Bioorg. Med. Chem., 2018, 26, 1950-1960.
[http://dx.doi.org/10.1016/j.bmc.2018.02.045 ] [PMID: 29519603]
[56]
Sahyon, H.A.; El-Bindary, A.A.; Shoair, A.F.; Abdellatif, A.A. Synthesis and characterization of ruthenium(III) complex containing 2-aminomethyl benzimidazole, and its anticancer activity of in vitro and in vivo models. J. Mol. Liq., 2018, 255, 122-134.
[http://dx.doi.org/10.1016/j.molliq.2018.01.140]
[57]
Cindric, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.; Pavelic, S.K.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzo[b]thieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem., 2017, 136, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.014 ] [PMID: 28525845]
[58]
Hu, J.; Guo, Y.; Zhao, J.; Zhang, J. In vitro antitumor activity of novel benzimidazole-based Cu(II) complexes. Bioorg. Med. Chem., 2017, 25, 5733-5742.
[http://dx.doi.org/10.1016/j.bmc.2017.08.053 ] [PMID: 28917448]
[59]
Kumar, N.P.; Sharma, P.; Kumari, S.S.; Brahma, U.; Nekkanti, S.; Shankaraiah, N.; Kamal, A. Synthesis of substituted phenanthrene-9-benzimidazole conjugates: cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2017, 140, 128-140.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.006 ] [PMID: 28923381]
[60]
Zhao, J.; Yu, H.; Zhi, S.; Mao, R.; Hu, J.; Wang, X. Synthesis, chemical nuclease activity, and in vitro cytotoxicity of benzimidazole-based Cu(II)/Co(II) complexes. Chin. Chem. Lett., 2017, 28, 1539-1546.
[http://dx.doi.org/10.1016/j.cclet.2017.03.025]
[61]
Pastor, J.; Siro, J.; Gmcia-Navio, J.L.; Vaquero, J.J.L.; Rodrigo, M.M.; Ballesteros, M.; Alvarez-Builla, J. Synthesis of new azino fused benzimidazolium salts. A new family of DNA intercalating agents. I. Bioorg. Med. Chem. Lett., 1995, 5, 3043-3048.
[http://dx.doi.org/10.1016/0960-894X(95)00532-4]
[62]
Kumar, A.; Kumar, A.; Gupta, R.K.; Paitandi, R.P.; Singh, K.B.; Trigun, S.K.; Hundal, M.S.; Pandey, D.S. Cationic Ru(II), Rh(III) and Ir(III) complexes containing cyclic π-perimeter and 2-aminophenyl benzimidazole ligands: synthesis, molecular structure, DNA and protein binding, cytotoxicity and anticancer activity. J. Organomet. Chem., 2016, 801, 68-79.
[http://dx.doi.org/10.1016/j.jorganchem.2015.10.008]
[63]
Thimme Gowda, N.R.; Kavitha, C.V.; Chiruvella, K.K. Joy, O.; Rangappa, K.S.; Raghavan, S.C. Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)-1Hbenzimidazole- 5-carboxylic acid derivatives and their precursors as antileukemic agents. Bioorg. Med. Chem. Lett., 2009, 19, 4594-4600.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.103 ] [PMID: 19616939]
[64]
Hranjec, M.; Pavlovi, G.; Marjanovi, M.; Kralj, M.; Zamola, G.K. Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a] quinolines and fluorenes: Synthesis, antitumor evaluation in vitro and crystal structure determination. Eur. J. Med. Chem., 2010, 45, 2405-2417.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.022 ] [PMID: 20207049]
[65]
Fu, X.; Zhang, J.; Liu, D.; Gana, Q.; Gao, H.; Mao, Z.; Le, X. Cu(II)-dipeptide complexes of 2-(4-thiazolyl)benzimidazole: Synthesis, DNA oxidative damage, antioxidant and in- vitro antitumor activity. J. Inorg. Biochem., 2015, 143, 77-87.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.12.006 ] [PMID: 25528481]
[66]
Settimoa, A.D.; Settimo, F.D.; Marini, A.M.; Primofiore, G.; Salerno, S.; Viola, G.; Via, L.D.; Magno, S.M. Synthesis, DNA binding and in-vitro antiproliferative activity of purinoquinazoline, pyridopyrimidopurine and pyridopyrimidobenzimidazole derivatives as potential antitumor agents. Eur. J. Med. Chem., 1998, 33, 685-696.
[http://dx.doi.org/10.1016/S0223-5234(98)80027-5]
[67]
Arjmand, F.; Parveen, S.; Afzal, M.; Shahid, M. Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper (II) benzimidazole complexes. J. Photochem. Photobiol. B, 2012, 114, 15-26.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.05.003 ] [PMID: 22695227]
[68]
Fu, X.; Lin, Z.; Liu, H.; Le, X. A new ternary copper(II) complex derived from 2-(2′-pyridyl) benzimidazole and glycylglycine: Synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 122, 22-33.
[http://dx.doi.org/10.1016/j.saa.2013.11.006 ] [PMID: 24291450]
[69]
Huizhen, Z.; Jianmei, L.; Syed, R.; Chenghe, Z. Design, synthesis, and biological evaluation of novel benzimidazole derivatives and their interaction with calf thymus DNA and synergistic effects with clinical drugs. Sci. China Chem., 2014, 57, 807-822.
[http://dx.doi.org/10.1007/s11426-014-5087-x]
[70]
Azam, M.; Khan, A.A.; Al-Resayes, S.I.; Islam, M.S.; Saxena, A.K.; Dwivedi, S.; Musarrat, J.; Trzesowska-Kruszynska, A.; Kruszynski, R. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 142, 286-291.
[http://dx.doi.org/10.1016/j.saa.2015.01.106 ] [PMID: 25706598]
[71]
Hranjec, M.; Kralj, M.; Piantanida, I.; Sedic, M.; Sÿuman, L.; Pavelic, K.; Karminski-Zamola, G. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, Part 3. J. Med. Chem., 2007, 50, 5696-5711.
[http://dx.doi.org/10.1021/jm070876h ] [PMID: 17935309]
[72]
Hranjec, M.; Piantanida, I.; Kralj, M.; Suman, L.; Pavelic, K.; Karminski-Zamola, G. Novel amidino-substituted thienyl- and furylvinylbenzimidazole: derivatives and their photochemical conversion into corresponding diazacyclopenta[c]fluorenes, synthesis, interactions with DNA and RNA, and antitumor evaluation. 4. J. Med. Chem., 2008, 51, 4899-4910.
[http://dx.doi.org/10.1021/jm8000423 ] [PMID: 18652444]
[73]
Yuan, Z.; Chen, S.; Chen, C.; Chen, J.; Chen, C.; Dai, Q.; Gao, C.; Jiang, Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem., 2017, 138, 1135-1146.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.050 ] [PMID: 28763648]
[74]
Pinar, A.; Yurdakul, P.; Yildiz, I.; Temiz-Arpaci, O.; Acan, N.L.; Aki-Sener, E.; Yalcin, I. Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors. Biochem. Biophys. Res. Commun., 2004, 317, 670-674.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.093 ] [PMID: 15063810]
[75]
Singla, P.; Luxami, V.; Singh, R.; Tandon, V.; Paul, K. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2017, 126, 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.093 ] [PMID: 27744184]
[76]
Coban, G.; Zencir, S.; Zupko, I.; Rethy, B.; Gunes, H.S.; Topcu, Z. Synthesis and biological activity evaluation of 1H-benzimidazoles via mammalian DNA topoisomerase I and cytostaticity assays. Eur. J. Med. Chem., 2009, 44, 2280-2285.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.018 ] [PMID: 18692939]
[77]
Rangarajan, M.; Kim, J.S.; Sim, S.; Liu, A.; Liu, L.F.; Lavoie, E.J.; Topoisomerase, I. Inhibition and cytotoxicity of 5-bromo- and 5 phenylterbenzimidazoles. Bioorg. Med. Chem., 2000, 8, 2591-2600.
[http://dx.doi.org/10.1016/S0968-0896(00)00188-7 ] [PMID: 11092544]
[78]
Temiz-Arpaci, O.; Tekiner-Gulbas, B.; Yildiz, I.; Aki-Sener, E.; Yalcin, I. 3D-QSAR analysis on benzazole derivatives as eukaryotic topoisomerase II inhibitors by using comparative molecular field analysis method. Bioorg. Med. Chem., 2005, 13, 6354-6359.
[http://dx.doi.org/10.1016/j.bmc.2005.06.002 ] [PMID: 15993083]
[79]
Alper, S.; Arpaci, O.T.; Aki, E.S.; Yalcin, I. Some new bi- and ter-benzimidazole derivatives as topoisomerase I inhibitors. Farmaco, 2003, 58, 497-507.
[http://dx.doi.org/10.1016/S0014-827X(03)00042-9 ] [PMID: 12818688]
[80]
Alpan, A.S.; Zencir, S.; Zupko, I.; Coban, G.; Rethy, B.; Gunes, H.S.; Topcu, Z. Biological activity of bis-benzimidazole derivatives on DNA topoisomerase I and HeLa, MCF7 and A431 cells. J. Enzyme Inhib. Med. Chem., 2009, 24, 844-849.
[http://dx.doi.org/10.1080/14756360802420831 ] [PMID: 18951286]
[81]
Sun, Q.; Gatto, B.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Synthesis and evaluation of terbenzimidazoles as topoisomerase I inhibitors. J. Med. Chem., 1996, 38, 3638-3644.
[http://dx.doi.org/10.1021/jm00018a024 ] [PMID: 7658451]
[82]
Meegalla, S.K.; Stevens, G.J.; McQueen, C.A.; Chen, A.Y.; Yu, C.; Liu, L.F.; Barrows, L.R.; Lavoie, E.J. Synthesis and pharmacological evaluation of isoindolo[1,2-b]quinazolinone and isoindolo[2,l-a] benzimidazole derivatives related to the anti-tumor agent batracylin. J. Med. Chem., 1994, 37, 3434-3439.
[http://dx.doi.org/10.1021/jm00046a028 ] [PMID: 7932571]
[83]
Kim, J.S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L.F.; Lavoie, E.J. Substituted 2,5-Bi-1H-benzimidazoles: topoisomerase I inhibition and cytotoxicity. J. Med. Chem., 1996, 39, 992-998.
[http://dx.doi.org/10.1021/jm950412w ] [PMID: 8632422]
[84]
Schulz, W.G.; Skibo, E.B. Inhibitors of topoisomerase ii based on the benzodiimidazole and dipyrroloimidazobenzimidazole ring systems: controlling DT-diaphorase reductive inactivation with steric bulk. J. Med. Chem., 2000, 43, 629-638.
[http://dx.doi.org/10.1021/jm990210q ] [PMID: 10691689]
[85]
Singh, M.; Tandon, V. Synthesis and biological activity of novel inhibitors of topoisomerase I: 2-Aryl-substituted 2-bis-1H-benzimidazoles. Eur. J. Med. Chem., 2011, 46, 659-669.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.046 ] [PMID: 21186067]
[86]
Gellis, A.; Kovacic, H.; Boufatah, N.; Vanelle, P. Synthesis and cytotoxicity evaluation of some benzimidazole-4,7-diones as bioreductive anticancer agents. Eur. J. Med. Chem., 2008, 43, 1858-1864.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.020 ] [PMID: 18222567]
[87]
Gravatt, G.L.; Baguley, B.C.; Wilson, W.R.; Denny, W.A. DNA-directed alkylating agents. 6. synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol (Hoechst 33258). J. Med. Chem., 1994, 37, 4338-4345.
[http://dx.doi.org/10.1021/jm00051a010 ] [PMID: 7527862]
[88]
Islam, I.; Skibo, E.B. Structure-activity studies of antitumor agents based on pyrrolo[1,2-a]benzimidazoles: new reductive alkylating DNA cleaving agents. J. Med. Chem., 1991, 34, 2954-2961.
[http://dx.doi.org/10.1021/jm00114a003 ] [PMID: 1920349]
[89]
Omar, A.M.M.E.; Habib, N.S.; Aboulwafa, O.M. Potential alkylating agents derived from benzimidazole and benzothiazole. J. Pharm. Sci., 1982, 71, 991-993.
[http://dx.doi.org/10.1002/jps.2600710909 ] [PMID: 7131285]
[90]
Singla, P.; Luxami, V.; Paul, K. Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure-activity relationship studies of 1,3,5-triazine analogues. Bioorg. Med. Chem. Lett., 2016, 26, 518-523.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.083 ] [PMID: 26670841]
[91]
Singla, P.; Luxami, V.; Paul, K. Quinazolinone-benzimidazole conjugates: synthesis, characterization, dihydrofolate reductase inhibition, DNA and protein binding properties. J. Photochem. Photobiol. B, 2017, 168, 156-164.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.009 ] [PMID: 28222362]
[92]
Singla, P.; Luxami, V.; Paul, K. Triazine–benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2015, 23, 1691-1700.
[http://dx.doi.org/10.1016/j.bmc.2015.03.012 ] [PMID: 25792141]
[93]
Baig, M.F.; Nayak, V.L.; Budaganaboyina, P.; Mullagiri, K.; Sunkari, S.; Gour, J.; Kamal, A. Synthesis and biological evaluation of imidazo[2,1-b]thiazolebenzimidazole conjugates as microtubule-targeting agents. Bioorg. Chem., 2018, 77, 515-526.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.005 ] [PMID: 29459129]
[94]
Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett., 2016, 26, 4527-4535.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.044 ] [PMID: 27515320]
[95]
Kamal, A.; Nagaseshadri, B.; Nayak, V.L.; Srinivasulu, V.; Sathish, M.; Kapure, J.S.; Reddy, C.S. Synthesis and biological evaluation of benzimidazole-oxindole conjugates as microtubule-targeting agents. Bioorg. Chem., 2015, 63, 72-84.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.003 ] [PMID: 26469740]
[96]
Wang, Y.; Qin, Y.; Yang, N.; Zhang, Y.; Liu, C.; Zhu, H. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur. J. Med. Chem., 2015, 99, 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.021 ] [PMID: 26070164]
[97]
Kamal, A.; Reddy, T.S.; Vishnuvardhan, M.V.P.S.; Nimbarte, V.D.; Subba Rao, A.V.; Srinivasulu, V.; Shankaraiah, N. Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem., 2015, 23, 4608-4623.
[http://dx.doi.org/10.1016/j.bmc.2015.05.060 ] [PMID: 26169762]
[98]
Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities. Eur. J. Med. Chem., 2014, 87, 306-315.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.071 ] [PMID: 25262051]
[99]
Kamal, A.; Reddy, M.K.; Shaik, T.B. Rajender, Srikanth, Y.V.; Reddy, V.S.; Kumar, G.B.; Kalivendi, S.V. Synthesis of terphenyl benzimidazoles as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2012, 50, 9-17.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.004 ] [PMID: 22361684]
[100]
Conconi, M.T.; Marzaro, G.; Urbania, L.; Zanusso, I.; Liddo, R.D.; Castagliuolo, I.; Brun, P.; Tonus, F.; Ferrarese, A.; Guiotto, A.; Chilina, A. Quinazoline-based multi-tyrosine kinase inhibitors: synthesis, modeling, antitumor and antiangiogenic properties. Eur. J. Med. Chem., 2013, 67, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.057 ] [PMID: 23900004]
[101]
Kassisa, P.; Brzeszcza, J.; Bénéteaua, V.; Lozachc, O.; Meijerc, L.; Guéveld, R.L.; Guillouzod, C.; Lewinskie, K.; Bourgb, S.; Colliandrea, L.; Routiera, S.; Mérour, J. Kassisa, P.; Brzeszcza, J.; Bénéteaua, V.; Lozachc, O.; Meijerc, L.; Guéveld, R.L.; Guillouzod, C.; Lewinskie, K.; Bourgb, S.; Colliandrea, L.; Routiera, S.; Mérour, J. Synthesis and biological evaluation of new 3-(6-hydroxyindol- 2-yl)-5-(Phenyl) pyridine or pyrazine V-Shaped molecules as kinase inhibitors and cytotoxic agents. Eur. J. Med. Chem., 2011, 46, 5416-5434
[http://dx.doi.org/10.1016/j.ejmech.2011.08.048 ] [PMID: 21944287]
[102]
Nair, P. Epidermal growth factor receptor family and its role in cancer progression. Curr. Sci., 2005, 88, 890-898.https://www.jstor.com/stable/24110370
[103]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of 22hh2er. Breast Cancer Res. Treat., 2012, 136, 1-21.
[http://dx.doi.org/10.1007/s10549-012-2289-9]
[104]
Voldborg, B.R.; Damstrup, L.; Spang-Thomsen, M.; Poulsen, H.S. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol., 1997, 8, 1197-1206.
[http://dx.doi.org/10.1023/A:1008209720526 ] [PMID: 9496384]
[105]
The Human Epidermal growth factor Receptor (HER) family: structure and function, Guide to Targeted therapies: EGFR Mutations in NSCLC, Springer International Publishing Switzerland, 2014, 1-17..
[106]
Rajkumar, T. Growth factors and growth factor receptors in cancer. Curr. Sci., 2001, 81, 535-541.
[107]
Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers (Basel), 2011, 3, 1513-1526.
[http://dx.doi.org/10.3390/cancers3021513]
[108]
Sasaki, T.; Hiroki, K.; Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Res. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/546318]
[109]
Huang, Y.; Chang, Y. Epidermal growth factor receptor (EGFR) phosphorylation, signaling and trafficking in prostate cancer, prostate cancer - from bench to bedside In. Tech; Dr. Philippe, E. Spiessp. Ed.; 2011, p. 143-172.. 2011.
[111]
Li, Y.; Tan, C.; Gao, C.; Zhang, C.; Luan, X.; Chen, X.; Liu, H.; Chen, Y.; Jiang, Y. Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorg. Med. Chem., 2011, 19, 4529-4535.
[http://dx.doi.org/10.1016/j.bmc.2011.06.022 ] [PMID: 21724404]
[112]
Chhajed, S.S.; Sonawane, S.S.; Upasani, C.D.; Kshirsagar, S.J.; Gupta, P.P. Design, synthesis and molecular modeling studies of few chalcone analogues of benzimidazole for epidermal growth factor receptor inhibitor in search of useful anticancer agent. Comput. Biol. Chem., 2016, 61, 138-144.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.02.001 ] [PMID: 26878127]
[113]
Yan, W.; Wang, X.; Dai, Y.; Zhao, B.; Yang, X.; Fan, J.; Gao, Y.; Meng, F.; Wang, Y.; Luo, C.; Ai, J.; Geng, M.; Duan, W. Discovery of 3-(5′-substituted)-benzimidazole-5-(1-(3,5-dichloropyridin-4-yl)ethoxy)-1h-indazoles as potent fibroblast growth factor receptor inhibitors: design, synthesis, and biological evaluation. J. Med. Chem., 2016, 59, 6690-6708.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00056 ] [PMID: 27348537]
[114]
Hasegawa, M.; Nishigaki, N.; Washio, Y.; Kano, K.; Harris, P.A.; Sato, H.; Mori, I.; West, R.I.; Shibahara, M.; Toyoda, H.; Wang, L.; Nolte, R.T.; Veal, J.M.; Cheung, M. Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors. J. Med. Chem., 2007, 50, 4453-4470.
[http://dx.doi.org/10.1021/jm0611051 ] [PMID: 17676829]
[115]
Kumar, P.; Parikh, J.K.; Begari, E. (EN) Novel benzimidazole based EGFR inhibitors (FR) nouveaux inhibiteurs de L'egfr À base de benzimidazole. International Application No: PCT/IN2015/050172.. 2016.
[116]
Yadav, S.; Sinha, D.; Singh, S.K.; Singh, V.K. Novel Benzimidazole Analogs as Inhibitors of EGFR Tyrosine Kinase. Chem. Biol. Drug Des., 2012, 1-6.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01407.x ] [PMID: 22564276]
[117]
Janeczko, M.; Orzeszko, A.; Kazimierczuk, Z.; Szyszka, R.; Baier, A. CK2α and CK2α′ subunits differ in their sensitivity to 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives. Eur. J. Med. Chem., 2012, 47, 345-350.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.002 ] [PMID: 22115617]
[118]
Łukowska-Chojnacka, E.; Winska, P.; Wielechowska, M.; Poprzeczko, M.; Bretner, M. Synthesis of novel polybrominated benzimidazole derivatives-potential CK2 inhibitors with anticancer and proapoptotic activity. Bioorg. Med. Chem., 2016, 24, 735-741.
[http://dx.doi.org/10.1016/j.bmc.2015.12.041 ] [PMID: 26778657]
[119]
Najda-Bernatowicz, A.; Łebska, M.; Orzeszko, A.; Kopanska, K.; Krzywinska, E.; Muszynska, G.; Bretner, M. Synthesis of new analogs of benzotriazole, benzimidazole and phthalimide-potential inhibitors of human protein kinase CK2. Bioorg. Med. Chem., 2009, 17, 1573-1578.
[http://dx.doi.org/10.1016/j.bmc.2008.12.071 ] [PMID: 19168362]
[120]
Gianoncelli, A.; Cozza, G.; Orzeszko, A.; Meggio, F.; Kazimierczuk, Z.; Pinna, L.A. Tetraiodobenzimidazoles are potent inhibitors of protein kinase CK2. Bioorg. Med. Chem., 2009, 17, 7281-7289.
[http://dx.doi.org/10.1016/j.bmc.2009.08.047 ] [PMID: 19748274]
[121]
Schneider, C.C.; Kartarius, S.; Montenarh, M.; Orzeszko, A.; Kazimierczuk, Z. Modified tetrahalogenated benzimidazoles with CK2 inhibitory activity are active against human prostate cancer cells LNCaP in vitro. Bioorg. Med. Chem., 2012, 20, 4390-4396.
[http://dx.doi.org/10.1016/j.bmc.2012.05.038 ] [PMID: 22698781]
[122]
Battistutta, R.; Mazzorana, M.; Sarno, S.; Kazimierczuk, Z.; Zanotti, G.; Pinna, L.A. Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chem. Biol., 2005, 12, 1211-1219.
[http://dx.doi.org/10.1016/j.chembiol.2005.08.015 ] [PMID: 16298300]
[123]
Zien, P.; Duncan, J.S.; Skierski, J.; Bretner, M.; Litchfield, D.W.; Shugar, D. Tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) as selective inhibitors of protein kinase CK2: evaluation of their effects on cells and different molecular forms of human CK2. Biochim. Biophys. Acta, 2005, 1754, 271-280.
[http://dx.doi.org/10.1016/j.bbapap.2005.07.039 ] [PMID: 16203192]
[124]
Pagano, M.A.; Andrzejewska, M.; Ruzzene, M.; Sarno, S.; Cesaro, L.; Bain, J.; Elliott, M.; Meggio, F.; Kazimierczuk, Z.; Pinna, L.A. Optimization of protein kinase CK2 inhibitors derived from 4,5,6,7 tetrabromobenzimidazole. J. Med. Chem., 2004, 47, 6239-6247.
[http://dx.doi.org/10.1021/jm049854a ] [PMID: 15566294]
[125]
Cozza, G.; Sarno, S.; Ruzzene, M. Girardi, Cristina.; Orzeszko A.; Kazimierczuk, Z.; Zagotto, G.; Bonaiuto, E.; Paolo M.L.D.; Lorenzo, A.P. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases. Biochim. Biophys. Acta, 2013, 1834, 1402-1409.
[http://dx.doi.org/10.1016/j.bbapap.2013.01.018 ] [PMID: 23360763]
[126]
Koronkiewicz, M.; Chilmonczyk, Z.; Kazimerczuk, Z. Orzeszko, Andrzej. Deoxynucleosides with benzimidazoles as aglycone moiety are potent anticancer agents. Eur. J. Pharmacol., 2018, 820, 146-155.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.018] [PMID: 29246854]
[127]
Zhong, M.; Bui, M.; Shen, W.; Baskaran, S.; Allen, D.A.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.O.; Heumann, S.A.; Hoch, U.; Ivy, S.N.; Jacobs, J.W.; Lam, S.; Lee, H.; McDowell, R.S.; Oslob, J.D.; Purkey, H.E.; Romanowski, M.J.; Silverman, J.A.; Tangonan, B.T.; Taverna, P.; Yang, W.; Yoburn, J.C.; Yu, C.H.; Zimmerman, K.M.; Obrien, T.; Lew, W. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19, 5158-5161.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.016 ] [PMID: 1964686674]
[128]
Zheng, Y.; Zheng, M.; Ling, X.; Liu, Y.; Xue, Y.; An, L.; Gu, N.; Jin, M. Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole-benzimidazole derivatives as potent Aurora A/B kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 233, 523-530.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.039 ] [PMID: 23664099]
[129]
Sharma, A.; Luxami, V.; Paul, K. Purine-benzimidazole hybrids: synthesis, single crystal determination and in vitro evaluation of antitumor activities. Eur. J. Med. Chem., 2015, 93, 414-422.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.036 ] [PMID: 25728022]
[130]
Fu, R.; You, Q.; Yang, L.; Wu, W.; Jiang, C.; Xu, X. Design, synthesis and bioevaluation of dihydropyrazolo[3,4-b]pyridine and benzo[4,5]imidazo[1,2-a]pyrimidine compounds as dual KSP and Aurora-A kinase inhibitors for anti-cancer agents. Bioorg. Med. Chem., 2010, 18, 8035-8043.
[http://dx.doi.org/10.1016/j.bmc.2010.09.020 ] [PMID: 20934346]
[131]
Luxami, V.; Rani, R.; Sharma, A.; Paul, K. Quinazoline–benzimidazole hybrid as dual optical sensor for cyanide and Pb2+ ions and Aurora kinase inhibitor. J. Photochem. Photobiol. Chem., 2015, 311, 68-75.
[http://dx.doi.org/10.1016/j.jphotochem.2015.05.025]
[132]
Bamborough, P.; Christopher, J.A.; Cutler, G.J.; Dickson, M.C.; Mellor, G.W.; Morey, J.V.; Patel, C.B.; Shewchuk, L.M. 5-(1H-Benzimidazol-1-yl)-3-alkoxy-2-thiophenecarbonitriles as potent, selective, inhibitors of IKK-e kinase. Bioorg. Med. Chem. Lett., 2006, 16, 6236-6240.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.018 ] [PMID: 16997559]
[133]
Dadiboyena, S.; Arfaoui, A.; Amri, H.; Piedrafita, F.J.; Nefzi, A. Diversity oriented synthesis and IKK inhibition of aminobenzimidazole tethered quinazoline-2,4-diones, thioxoquinazolin-4-ones, benzodiazepine-2,3,5-triones, isoxazoles and isoxazolines. Bioorg. Med. Chem. Lett., 2015, 25, 685-689.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.078 ] [PMID: 25522820]
[134]
Wittman, M.D.; Balasubramanian, B.; Stoffan, K.; Velaparthi, U.; Liu, P.; Krishnanathan, S.; Carboni, J.; Li, A.; Greer, A.; Attar, R.; Gottardis, M.; Chang, C.; Jacobson, B.; Sun, Y.; Hansel, S.; Zoecklerf, M.; Vyas, D.M. Novel 1H-(benzimidazol-2-yl)-1H-pyridin-2-one inhibitors of insulin-like growth factor I (IGF-1R) kinase. Bioorg. Med. Chem. Lett., 2007, 17, 974-977.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.041 ] [PMID: 17187980]
[135]
Hubbard, R.D.; Bamaung, N.Y.; Fidanze, S.D.; Erickson, S.A.; Palazzo, F.; Wilsbacher, J.L.; Zhang, Q.; Tucker, L.A.; Hu, X.; Kovar, P.; Osterling, D.J.; Johnson, E.F.; Bouska, J.; Wang, J.; Davidsen, S.K.; Bell, R.L.; Sheppard, G.S. Development of multitargeted inhibitors of both the insulin-like growth factor receptor (IGF-IR) and members of the epidermal growth factor family of receptor tyrosine kinases. Bioorg. Med. Chem. Lett., 2009, 19, 1718-1721.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.086 ] [PMID: 19217287]
[136]
Velaparthi, U.; Saulnier, M.G.; Wittman, M.D.; Liu, P.; Frennesson, D.B.; Zimmermann, K.; Carboni, J.M.; Gottardis, M.; Li, A.; Greer, A.; Clarke, W.; Yang, Z.; Menard, K.; Lee, F.Y.; Trainor, G.; Vyas, D. Insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitors: SAR of a series of 3-[6-(4-substituted-piperazin-1-yl)-4-methyl-1H-benzimidazol-2-yl]-1H-pyridine- 2-one. Bioorg. Med. Chem. Lett., 2010, 20, 3182-3185.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.057 ] [PMID: 20399649]
[137]
Snow, R.J.; Abeywardane, A.; Campbell, S.; Lord, J.; Kashem, M.A.; Khine, H.H.; King, J.; Kowalski, J.A.; Pullen, S.S.; Roma, T.; Roth, G.P.; Sarko, C.R.; Wilson, N.S.; Winters, M.P.; Wolaka, J.P.; Cywin, C.L. Hit-to-lead studies on benzimidazole inhibitors of ITK: discovery of a novel class of kinase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17, 3660-3665.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.045 ] [PMID: 17499505]
[138]
Moriarty, K.J.; Takahashi, H.; Pullen, S.S.; Khine, H.H.; Sallati, R.H.; Raymond, E.L.; Woska, J.R., Jr; Jeanfavre, D.D.; Roth, G.P.; Winters, M.P.; Qiao, L.; Ryan, D.; Desjarlais, R.; Robinson, D.; Wilson, M.; Bobko, M.; Cook, B.N.; Lo, H.Y.; Nemoto, P.A.; Kashem, M.A.; Wolak, J.P.; White, A.; Magolda, R.L.; Tomczuk, B. Discovery, SAR and X-ray structure of 1H-benzimidazole-5-carboxylic acid cyclohexyl-methyl-amides as inhibitors of inducible T-cell kinase (Itk). Bioorg. Med. Chem. Lett., 2008, 18, 5545-5549.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.015 ] [PMID: 18819799]
[139]
Cook, B.N.; Bentzien, J.; White, A.; Nemoto, P.A.; Wanga, J.; Mana, C.C.; Soleymanzadeh, F.; Khine, H.H.; Kashem, M.A.; Kugler, S.Z. Jr.; Wolak, J.P.; Roth, G.P.; Lombaert, S.D.; Pullen, S.S.; Takahashi, H. Discovery of potent inhibitors of interleukin-2 inducible T-cell kinase (ITK) through structure-based drug design. Bioorg. Med. Chem. Lett., 2009, 19, 773-777.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.028]
[140]
Wang, J.; Li, F.; Li, Y.; Yang, Y.; Wang, B.; Zhang, S.; Yang, L. Insight into the structural requirements of benzimidazole derivatives as interleukin-2 inducible T-cell kinase inhibitors by computational explorations. Int. J. Quantum Chem., 2013, 113, 2385-2396.
[http://dx.doi.org/10.1002/qua.24470]
[141]
Rheault, T.R.; Donaldson, K.H.; Badiang-Alberti, J.G.; Davis-Ward, R.G.; Andrews, C.W.; Bambal, R.; Jackson, J.R.; Cheung, M. Heteroaryl-linked 5-(1H-benzimidazol-1-yl)-2-thiophenecarboxamides: potent inhibitors of polo-like kinase 1 (PLK1) with improved drug-like properties. Bioorg. Med. Chem. Lett., 2010, 20, 4587-4592.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.009 ] [PMID: 20594842]
[142]
Hornberger, K.R.; Badiang, J.G.; Salovich, J.M.; Kuntz, K.W.; Emmitte, K.A.; Cheung, M. Regioselective synthesis of benzimidazole thiophene inhibitors of polo-like kinase 1. Tetrahedron Lett., 2008, 49, 6348-6351.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.077]
[143]
Chekkara, R.; Kandakatla, N.; Gorla, V.R.; Tenkayala, S.R.; Susithra, E. Theoretical studies on benzimidazole and imidazo-[1,2-a]pyridine derivatives as Polo-like kinase 1 (Plk1) inhibitors: pharmacophore modeling, atom-based 3D-QSAR and molecular docking approach. J. Saudi Chem. Soc., 2017, 21, S311-S321.
[http://dx.doi.org/10.1016/j.jscs.2014.03.007]
[144]
Flaherty, P.T.; Chopra, I.; Jain, P.; Yi, S.; Allen, E.; Cavanaugh, J. Identification of benzimidazole-based inhibitors of the mitogen activated kinase-5 signaling pathway. Bioorg. Med. Chem. Lett., 2010, 20, 2892-2896.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.033 ] [PMID: 20382528]
[145]
Flaherty, P.T.; Chopra, I.; Jain, P.; Monlish, D.; Cavanaugh, J. Structure-activity relationships of benzimidazole-based selective inhibitors of the mitogen activated kinase-5 signaling pathway. Bioorg. Med. Chem., 2010, 18, 8054-8060.
[http://dx.doi.org/10.1016/j.bmc.2010.09.017 ] [PMID: 20965737]
[146]
Han, W.; Ding, Y.; Xu, Y.; Pfister, K.; Zhu, S.; Warne, B.; Doyle, M.; Aikawa, M.; Amiri, P.; Appleton, B.; Stuart, D.D.; Fanidi, A.; Shafer, C.M. Discovery of a selective and potent inhibitor of mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) utilizing structure-based drug design. J. Med. Chem., 2016, 59, 3034-3045.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01657 ] [PMID: 27002243]
[147]
Murray, J.M.; Sweeney, Z.K.; Chan, B.K.; Balazs, M.; Bradley, E.; Castanedo, G.; Chabot, C.; Chantry, D.; Flagella, M.; Goldstein, D.M.; Kondru, R.; Lesnick, J.; Li, J.; Lucas, M.C.; Nonomiya, J.; Pang, J.; Price, S.; Salphati, L.; Safina, B.; Savy, P.P.A.; Seward, E.M.; Ultsch, M.; Sutherlin, D.P. Potent and highly selective benzimidazole inhibitors of PI3-kinase delta. J. Med. Chem., 2012, 55, 7686-7695.
[http://dx.doi.org/10.1021/jm300717c ] [PMID: 22877085]
[148]
Rewcastle, G.W.; Gamage, S.A.; Flanagan, J.U.; Kendall, J.D.; Denny, W.A.; Baguley, B.C.; Buchanan, C.M.; Chao, M.; Kestell, P.; Kolekar, S.; Lee, W.; Lill, C.L.; Malik, A.; Singh, R.; Jamieson, S.M.F.; Shepherd, P.R. Synthesis and biological evaluation of novel phosphatidylinositol 3-kinase inhibitors: solubilized 4-substituted benzimidazole analogs of 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474). Eur. J. Med. Chem., 2013, 64, 137-147.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.038 ] [PMID: 23644197]
[149]
Buchstaller, H.; Burgdorf, L.; Finsinger, D.; Stieber, F.; Sirrenberg, C.; Amendt, C.; Grell, M.; Zenke, F.; Krier, M. Design and synthesis of isoquinolines and benzimidazoles as RAF kinase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21, 2264-2269.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.108 ] [PMID: 21420298 ]
[150]
Ramurthy, S.; Subramanian, S.; Aikawa, M.; Amiri, P.; Costales, A.; Dove, J.; Fong, S.; Jansen, J.M.; Levine, B.; Ma, S.; McBride, C.M.; Michaelian, J.; Pick, T.; Poon, D.J.; Girish, S.; Shafer, C.M.; Stuart, D.; Sung, L.; Renhowe, P.A. Design and synthesis of orally bioavailable benzimidazoles as Raf kinase inhibitors. J. Med. Chem., 2008, 51, 7049-7052.
[http://dx.doi.org/10.1021/jm801050k ] [PMID: 18942827 ]
[151]
Sessions, E.H.; Yin, Y.; Bannister, T.D.; Weiser, A.; Griffin, E.; Pocas, J.; Cameron, M.D.; Ruiz, C.; Lin, L.; Schürer, S.C.; Schröter, T.; Grasso, P.L.; Feng, Y. Benzimidazole- and benzoxazole-based inhibitors of Rho kinase. Bioorg. Med. Chem. Lett., 2008, 18, 6390-6393.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.095 ] [PMID: 18996009]
[152]
Sessions, E.H.; Smolinski, M.; Wang, B.; Frackowiak, B.; Chowdhury, S.; Yin, Y.; Chen, T.Y.; Ruiz, C.; Lin, L.; Pocas, J.; Schröter, T.; Cameron, M.D.; Grasso, P.L.; Feng, Y.; Bannister, T.D. The development of benzimidazoles as selective Rho kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20, 1939-1943.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.124 ] [PMID: 20167489]
[153]
Galal, S.A.; Khairat, S.H.M.; Ali, H.I.; Shouman, S.A.; Attia, Y.M.; Ali, M.M.; Mahmoud, A.E.; Abdel-Halim, A.H.; Fyiad, A.A.; Tabll, A.; El-Shenawy, R.; El-Abd, Y.S.; Ramdan, R.; El-Diwani, H.I. New candidates of pyrazole-benzimidazole conjugates as checkpoint kinase 2 (Chk2) inhibitors. Eur. J. Med. Chem., 2018, 144, 859-873.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.023 ] [PMID: 29316526]
[154]
Ni, Z.; Barsanti, P.; Brammeier, N.; Diebes, A.; Poon, D.J.; Ng, S.; Pecchi, S.; Pfister, K.; Renhowe, P.A.; Ramurthy, S.; Wagman, A.S.; Bussiere, D.E.; Le, V.; Zhou, Y.; Jansen, J.M.; Gesner, S.M.T.G. 4-(Aminoalkylamino)-3-benzimidazole-quinolinones as potent CHK-1 inhibitors. Bioorg. Med. Chem. Lett., 2006, 16, 3121-3124.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.059 ] [PMID: 16603354]
[155]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Osman, H.; Parang, K.; Shirazi, A.N. Synthesis and evaluation of novel benzimidazole derivatives as sirtuin inhibitors with antitumor activities. Bioorg. Med. Chem., 2014, 22, 703-710.
[http://dx.doi.org/10.1016/j.bmc.2013.12.029 ] [PMID: 24387981]
[156]
Yoon, Y.K.; Choon, T.S. Structural modifications of benzimidazoles via multi-step synthesis and their impact on sirtuin-inhibitory activity. Arch. Pharm. Chem. Life Sci., 2016, 349, 1-8.
[http://dx.doi.org/10.1002/ardp.201500337 ] [PMID: 26616218]
[157]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Shirazi, A.N.; Parang, K.; Choon, T.S. Benzimidazoles as new scaffold of sirtuin inhibitors: green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties. Eur. J. Med. Chem., 2014, 83, 448-454.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.060 ] [PMID: 24992072]
[158]
Rudolph, J.; Crawford, J.J. Klaus, Hoeflich, P; Wang, W. Inhibitors of p21-Activated Kinases (PAKs). J. Med. Chem., 2015, 58, 111-129.
[http://dx.doi.org/10.1021/jm501613q ] [PMID: 25415869]
[159]
Kumar, R.; Gururaj, A.E.; Barnes, C.J. p21-activated kinases in cancer. Nat. Rev. Cancer, 2006, 6, 459-471.
[http://dx.doi.org/10.1038/nrc1892]
[160]
Maksimoska, J.; Feng, L.; Harms, K.; Yi, C.; Kissil, J.; Marmorstein, R.; Meggers, E. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J. Am. Chem. Soc., 2008, 130, 15764-15765.
[http://dx.doi.org/10.1021/ja805555a ] [PMID: 18973295 ]
[161]
Woo, T.; Yoon, M.; Hong, S.; Choi, J.; Ha, N.; Sun, H.; Park, B. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest. Oncotarget, 2017, 8, 23690-23701.
[http://dx.doi.org/10.18632/oncotarget.15783 ] [PMID: 28423593 ]
[162]
Staben, S.T.; Feng, J.A.; Lyle, K. Back pocket flexibility provides group ii p21-activated kinase (PAK) selectivity for type I 1/2 kinase inhibitors. J. Med. Chem., 2014, 57, 1033-1045.
[http://dx.doi.org/10.1021/jm401768t ] [PMID: 24432870 ]
[163]
Abdullaziz, M.A.; Abdel-Mohsen, H.T.; El-Kerdawy, A.M.; Ragab, F.A.F.; Ali, M.M.; Abu-bakr, S.M.; Girgis, A.S.; El-Diwan, H.I. Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors. Eur. J. Med. Chem., 2017, 136, 315-329.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.068 ] [PMID: 28505536 ]
[164]
Bistrovic, A.; Krstulovic, L.; Harej, A.; Grbcic, P.; Sedi, M.; Kostrun, S.; Kraljevi, S.; Baji, P.M.; Mali, S.R. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem., 2018, 143, 1616-1634.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.061 ] [PMID: 29133046 ]
[165]
Ramya, P.V.S.; Angapelly, S.; Rani, R.S.; Digwal, C.S.; Kumar, C.G.; Babu, B.N.; Guntuku, L.; Kamal, A. Hypervalent iodine(III) catalysed rapid and efficient access to benzimidazoles, benzothiazoles and quinoxalines: biological evaluation of some new benzimidazole-imidazo[1,2-a]pyridine conjugates. Arab. J. Chem., 2020, 13(1), 120-133.
[http://dx.doi.org/10.1016/j.arabjc.2017.02.007]
[166]
Perin, N.; Bobanovic, K.; Zlatar, I.; Jelic, D.; Kelava, V.; Kostrun, S.; Markovic, V.G.; Brajsa, K.; Hranjec, M. Antiproliferative activity of amino substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles explored by 2D and 3D cell culture system. Eur. J. Med. Chem., 2016, 125, 722-735.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.084 ] [PMID: 27721156]
[167]
Zhang, J.; Yao, D.; Jiang, Y.; Huang, J.; Yang, S.; Wang, J. Synthesis and biological evaluation of benzimidazole derivatives as the G9a Histone Methyltransferase inhibitors that induce autophagy and apoptosis of breast cancer cells. Bioorg. Chem., 2017, 72, 168-181.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.005 ] [PMID: 28460359 ]
[168]
Shao, K.P.; Zhang, X.Y.; Chen, P.J.; Xue, D.Q.; He, P.; Ma, L.Y.; Zheng, J.X.; Zhang, Q.R.; Liu, H.M. Synthesis and biological evaluation of novel pyrimidine-benzimidazol hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24, 3877-3881.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.050 ] [PMID: 25001482 ]
[169]
Bhambra, A.S.; Edgar, M.; Elsegood, M.R.J.; Horsburgh, L.; Kryštof, V.; Lucas, P.D.; Mojally, M.; Teat, S.J.; Warwick, T.G.; Weaver, G.W.; Zeinali, F. Novel fluorinated benzimidazole-based scaffolds and their anticancer activity in vitro. J. Fluor. Chem., 2016, 188, 99-109.
[http://dx.doi.org/10.1016/j.jfluchem.2016.06.009]
[170]
Prosser, K.E.; Chang, S.W.; Saraci, F.; Le, P.H.; Walsby, C.J. Anticancer copper pyridine benzimidazole complexes: ROS generation, biomolecule interactions, and cytotoxicity. J. Inorg. Biochem., 2017, 167, 89-99.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.006 ] [PMID: 27915178 ]
[171]
Abdel-Mohsen, H.T.; Ragab, F.A.F.; Ramla, M.M.; El-Diwani, H.I. Novel benzimidazole–pyrimidine conjugates as potent antitumor agents. Eur. J. Med. Chem., 2010, 45, 2336-2344.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.011 ] [PMID: 20356655 ]
[172]
Refaat, H.M. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45, 2949-2956.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.022 ] [PMID: 20399544 ]
[173]
Rashid, M.; Husain, A.; Mishra, R.; Karim, S.; Khan, S.; Ahmad, M.; Al-wabel, N.; Husain, A.; Ahmad, A.; Khan, S.A. Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolothiadiazines as a source of new anticancer agents. Arab. J. Chem., 2015, 8(12), 3202-3224.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.019]
[174]
Madabhushi, S.; Mallu, K.K.R.; Vangipuram, V.S.; Kurva, S.; Poornachandra, Y.; Kumar, G.C. Synthesis of novel benzimidazole functionalized chiral thioureas and evaluation of their antibacterial and anticancer activities. Bioorg. Med. Chem. Lett., 2014, 24, 4822-4825.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.064]
[175]
Husain, A.; Rashid, M.; Shaharyar, M.; Siddiqui, A.A.; Mishra, R. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: new anticancer agents. Eur. J. Med. Chem., 2013, 62, 785-798.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.011]
[176]
Salahuddin, S.M.; Mazumder, A.; Ahsan, M.J. Synthesis, characterization and anticancer evaluation of 2-(naphthalen-1-ylmethyl/naphthalen-2 yloxymethyl)-1-[5-(substituted phenyl)-[1,3,4]oxadiazol-2-ylmethyl]-1H-benzimidazole. Arab. J. Chem., 2014, 7, 418-424.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.001]
[177]
Demirayak, S.; Kayagil, I.; Yurttas, L. Microwave supported synthesis of some novel 1,3-diarylpyrazino[1,2-a]benzimidazole derivatives and investigation of their anticancer activities. Eur. J. Med. Chem., 2011, 46, 411-416.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.007]
[178]
Hranjec, M.; Lucic, B.; Ratkaj, I.; Pavelic, S.K.; Piantanida, I.; Pavelic, K.; Karminski-Zamola, G. Novel imidazo[4,5-b]pyridine and triaza-benzo[c]fluorene derivatives: synthesis, antiproliferative activity and DNA binding studies. Eur. J. Med. Chem., 2011, 46, 2748-2758.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.062]
[179]
Schulz, W.G.; Islam, I.; Skibo, E.B. Pyrrolo[ 1,2-a]benzimidazole-based quinones and iminoquinones. The role of the 3-substituent on cytotoxicity. J. Med. Chem., 1995, 38, 109-118.
[http://dx.doi.org/10.1021/jm00001a016]
[180]
Luo, Y.; Xiao, F.; Qian, S.; Lu, W.; Yang, B. Synthesis and in vitro cytotoxic evaluation of some thiazolylbenzimidazole derivatives. Eur. J. Med. Chem., 2011, 46, 417-422.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.014]
[181]
Mavrova, A.; Wesselinova, D.; Vassilev, N.; Tsenov, J.A. Synthesis, characterization and cytotoxicity of some novel 1,3-disubstituted-2,3-dihydro-2-iminobenzimidazoles. Eur. J. Med. Chem., 2011, 46, 3362-3367.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.061]
[182]
Mavrova, A.; Wesselinova, D.; Vassilev, N.; Tsenov, J.A. Design, synthesis and antiproliferative properties of some new 5-substituted-2-iminobenzimidazole derivatives. Eur. J. Med. Chem., 2013, 63, 696-701.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.010]
[183]
Onnis, V.; Demurtas, M.; Deplano, A.; Balboni, G.; Baldisserotto, A.; Manfredini, S.; Pacifico, S.; Liekens, S.; Balzarini, J. Design, synthesis and evaluation of antiproliferative activity of new benzimidazolehydrazones. Molecules, 2016, 21, 1-9.
[http://dx.doi.org/10.3390/molecules21050579]
[184]
Abdel Ghani, N.T.; Mansour, A.M. Novel palladium(II) and platinum(II) complexes with 1H-benzimidazol-2-ylmethyl-N-(4-bromo-phenyl)-amine: structural studies and anticancer activity. Eur. J. Med. Chem., 2012, 47, 399-411.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.008]
[185]
Paul, K.; Sharma, A.; Luxami, V. Synthesis and in vitro antitumor evaluation of primary amine substituted quinazoline linked benzimidazole. Bioorg. Med. Chem. Lett., 2014, 24, 624-629.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.005]
[186]
Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027]
[187]
Thimme Gowda, N.R.; Swamy, S.N.; Kumar, C.S.; Kumar, Y.C.; Chandrappa, S.; Yip, G.W.; Rangappa, K.S. Synthesis, characterization and evaluation of benzimidazole derivative and its precursors as inhibitors of MDA-MB-231 human breast cancer cell proliferation. Bioorg. Med. Chem. Lett., 2008, 18, 432-435.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.07]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy