Review Article

人类宿主防御肽的抗病毒活性

卷 27, 期 9, 2020

页: [1420 - 1443] 页: 24

弟呕挨: 10.2174/0929867326666190805151654

价格: $65

摘要

具有广谱抗菌活性的肽被发现在整个自然界中广泛表达。由于它们参与哺乳动物先天免疫的许多不同方面,因此被称为宿主防御肽(HDD)。由于它们的共同结构特征,包括两亲性结构和阳离子电荷,它们已被广泛证明与微生物膜相互作用并破坏微生物膜。因此,人类HDP具有针对包膜病毒以及细菌和真菌的活性也就不足为奇了。然而,这些肽还表现出针对多种非包膜病毒的活性,在病毒感染的许多不同步骤中起作用。这篇综述着重于人类宿主防御肽,包括α-防御素和β-防御素以及唯一的人类cathelicidin LL-37对包膜和非包膜病毒的活性。这些肽在体外和体内的广泛抗病毒活性表明,它们在先天抗病毒防御病毒感染中起着重要作用。此外,文献表明它们可以被开发成抗病毒治疗剂。

关键词: 抗菌肽,宿主防御肽,病毒,防御素,LL-37,天然免疫..

[1]
Chatterjee, A.; Modarai, M.; Naylor, N.R.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J.V. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect. Dis., 2018, 18(12), e368-e378.
[http://dx.doi.org/10.1016/S1473-3099(18)30296-2] [PMID: 30172580]
[2]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[3]
de la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, 178, 132-140.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.002] [PMID: 28435091]
[4]
Hancock, R.E. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis., 2001, 1(3), 156-164.
[http://dx.doi.org/10.1016/S1473-3099(01)00092-5] [PMID: 11871492]
[5]
Delattin, N.; Brucker, K.; Cremer, K.; Cammue, B.P.; Thevissen, K. Antimicrobial peptides as a strategy to combat fungal biofilms. Curr. Top. Med. Chem., 2017, 17(5), 604-612.
[http://dx.doi.org/10.2174/1568026616666160713142228] [PMID: 27411323]
[6]
Hans, M.; Madaan Hans, V. Epithelial antimicrobial peptides: guardian of the oral cavity. Int. J. Pept., 2014, 2014, 370297
[http://dx.doi.org/10.1155/2014/370297] [PMID: 25435884]
[7]
Lee, J.; Lee, D.G. Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J. Microbiol. Biotechnol., 2015, 25(6), 759-764.
[http://dx.doi.org/10.4014/jmb.1411.11058] [PMID: 25537721]
[8]
Zhao, L.; Lu, W. Defensins in innate immunity. Curr. Opin. Hematol., 2014, 21(1), 37-42.
[http://dx.doi.org/10.1097/MOH.0000000000000005] [PMID: 24275690]
[9]
Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol., 2003, 3(9), 710-720.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[10]
Nguyen, T.X.; Cole, A.M.; Lehrer, R.I. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides, 2003, 24(11), 1647-1654.
[http://dx.doi.org/10.1016/j.peptides.2003.07.023] [PMID: 15019196]
[11]
Lynn, D.J.; Bradley, D.G. Discovery of α-defensins in basal mammals. Dev. Comp. Immunol., 2007, 31(10), 963-967.
[http://dx.doi.org/10.1016/j.dci.2007.01.007] [PMID: 17367857]
[12]
Beckloff, N.; Diamond, G. Computational analysis suggests beta-defensins are processed to mature peptides by signal peptidase. Protein Pept. Lett., 2008, 15(5), 536-540.
[http://dx.doi.org/10.2174/092986608784567618] [PMID: 18537746]
[13]
Klotman, M.E.; Chang, T.L. Defensins in innate antiviral immunity. Nat. Rev. Immunol., 2006, 6(6), 447-456.
[http://dx.doi.org/10.1038/nri1860] [PMID: 16724099]
[14]
Ding, J.; Chou, Y-Y.; Chang, T.L. Defensins in viral infections. J. Innate Immun., 2009, 1(5), 413-420.
[http://dx.doi.org/10.1159/000226256] [PMID: 20375599]
[15]
Gwyer Findlay, E.; Currie, S.M.; Davidson, D.J. Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs, 2013, 27(5), 479-493.
[http://dx.doi.org/10.1007/s40259-013-0039-0] [PMID: 23649937]
[16]
Wiens, M.E.; Wilson, S.S.; Lucero, C.M.; Smith, J.G. Defensins and viral infection: dispelling common misconceptions. PLoS Pathog., 2014, 10(7), e1004186
[http://dx.doi.org/10.1371/journal.ppat.1004186] [PMID: 25033215]
[17]
Wilson, S.S.; Wiens, M.E.; Holly, M.K.; Smith, J.G. Defensins at the mucosal surface: latest insights into defensin-virus interactions. J. Virol., 2016, 90(11), 5216-5218.
[http://dx.doi.org/10.1128/JVI.00904-15] [PMID: 27009960]
[18]
Holly, M.K.; Diaz, K.; Smith, J.G. Defensins in viral infection and pathogenesis. Annu. Rev. Virol., 2017, 4(1), 369-391.
[http://dx.doi.org/10.1146/annurev-virology-101416-041734] [PMID: 28715972]
[19]
Holly, M.K.; Smith, J.G. Paneth cells during viral infection and pathogenesis. Viruses, 2018, 10(5), E225
[http://dx.doi.org/10.3390/v10050225] [PMID: 29701691]
[20]
Park, M.S.; Kim, J.I.; Lee, I.; Park, S.; Bae, J.Y.; Park, M.S. Towards the application of human defensins as antivirals. Biomol. Ther. (Seoul), 2018, 26(3), 242-254.
[http://dx.doi.org/10.4062/biomolther.2017.172] [PMID: 29310427]
[21]
Wilson, S.S.; Wiens, M.E.; Smith, J.G. Antiviral mechanisms of human defensins. J. Mol. Biol., 2013, 425(24), 4965-4980.
[http://dx.doi.org/10.1016/j.jmb.2013.09.038] [PMID: 24095897]
[22]
Ryan, L.K.; Diamond, G. Modulation of human β-defensin-1 production by viruses. Viruses, 2017, 9(6), E153
[http://dx.doi.org/10.3390/v9060153] [PMID: 28635669]
[23]
Howell, M.D.; Streib, J.E.; Leung, D.Y.M. Antiviral activity of human beta-defensin 3 against vaccinia virus. J. Allergy Clin. Immunol., 2007, 119(4), 1022-1025.
[http://dx.doi.org/10.1016/j.jaci.2007.01.044] [PMID: 17353034]
[24]
Toussirot, E.; Roudier, J.; Roudier, C. Epstein-Barr virus in autoimmune diseases. Best Pract. Res. Clin. Rheumatol., 2008, 22(5), 883-896.
[http://dx.doi.org/10.1016/j.berh.2008.09.007] [PMID: 19028369]
[25]
Fülöp, T.; Larbi, A.; Pawelec, G.; Human, T. Human T cell aging and the impact of persistent viral infections. Front. Immunol., 2013, 4, 271.
[http://dx.doi.org/10.3389/fimmu.2013.00271] [PMID: 24062739]
[26]
Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and regional estimates of prevalent and incident herpes simplex virus Type 1 Infections in 2012. PLoS One, 2015, 10(10), e0140765
[http://dx.doi.org/10.1371/journal.pone.0140765] [PMID: 26510007]
[27]
Ganz, T.; Selsted, M.E.; Szklarek, D.; Harwig, S.S.; Daher, K.; Bainton, D.F.; Lehrer, R.I. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest., 1985, 76(4), 1427-1435.
[http://dx.doi.org/10.1172/JCI112120] [PMID: 2997278]
[28]
Daher, K.A.; Selsted, M.E.; Lehrer, R.I. Direct inactivation of viruses by human granulocyte defensins. J. Virol., 1986, 60(3), 1068-1074.
[http://dx.doi.org/10.1128/JVI.60.3.1068-1074.1986] [PMID: 3023659]
[29]
Gaudreault, E.; Gosselin, J. Leukotriene B4-mediated release of antimicrobial peptides against cytomegalovirus is BLT1 dependent. Viral Immunol., 2007, 20(3), 407-420.
[http://dx.doi.org/10.1089/vim.2006.0099] [PMID: 17931111]
[30]
Yasin, B.; Pang, M.; Turner, J.S.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I.; Wagar, E.A. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19(3), 187-194.
[http://dx.doi.org/10.1007/s100960050457] [PMID: 10795591]
[31]
Isaacs, C.E.; Jia, J.H. The anti-infective activity of human milk is potentially greater than the sum of its microbicidal components. Adv. Exp. Med. Biol., 2004, 554, 439-441.
[http://dx.doi.org/10.1007/978-1-4757-4242-8_60] [PMID: 15384620]
[32]
Yasin, B.; Wang, W.; Pang, M.; Cheshenko, N.; Hong, T.; Waring, A.J.; Herold, B.C.; Wagar, E.A.; Lehrer, R.I. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol., 2004, 78(10), 5147-5156.
[http://dx.doi.org/10.1128/JVI.78.10.5147-5156.2004] [PMID: 15113897]
[33]
Hazrati, E.; Galen, B.; Lu, W.; Wang, W.; Ouyang, Y.; Keller, M.J.; Lehrer, R.I.; Herold, B.C. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol., 2006, 177(12), 8658-8666.
[http://dx.doi.org/10.4049/jimmunol.177.12.8658] [PMID: 17142766]
[34]
Scudiero, O.; Galdiero, S.; Cantisani, M.; Di Noto, R.; Vitiello, M.; Galdiero, M.; Naclerio, G.; Cassiman, J-J.; Pedone, C.; Castaldo, G.; Salvatore, F. Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob. Agents Chemother., 2010, 54(6), 2312-2322.
[http://dx.doi.org/10.1128/AAC.01550-09] [PMID: 20308372]
[35]
Ryan, L.K.; Dai, J.; Yin, Z.; Megjugorac, N.; Uhlhorn, V.; Yim, S.; Schwartz, K.D.; Abrahams, J.M.; Diamond, G.; Fitzgerald-Bocarsly, P. Modulation of human beta-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J. Leukoc. Biol., 2011, 90(2), 343-356.
[http://dx.doi.org/10.1189/jlb.0209079] [PMID: 21551252]
[36]
Crack, L.R.; Jones, L.; Malavige, G.N.; Patel, V.; Ogg, G.S. Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin. Exp. Dermatol., 2012, 37(5), 534-543.
[http://dx.doi.org/10.1111/j.1365-2230.2012.04305.x] [PMID: 22639919]
[37]
Wang, A.; Chen, F.; Wang, Y.; Shen, M.; Xu, Y.; Hu, J.; Wang, S.; Geng, F.; Wang, C.; Ran, X.; Su, Y.; Cheng, T.; Wang, J. Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. J. Virol., 2013, 87(5), 2835-2845.
[http://dx.doi.org/10.1128/JVI.02209-12] [PMID: 23269800]
[38]
Shust, G.F.; Cho, S.; Kim, M.; Madan, R.P.; Guzman, E.M.; Pollack, M.; Epstein, J.; Cohen, H.W.; Keller, M.J.; Herold, B.C. Female genital tract secretions inhibit herpes simplex virus infection: correlation with soluble mucosal immune mediators and impact of hormonal contraception. Am. J. Reprod. Immunol., 2010, 63(2), 110-119.
[http://dx.doi.org/10.1111/j.1600-0897.2009.00768.x] [PMID: 20015330]
[39]
Herold, B.C.; Dezzutti, C.S.; Richardson, B.A.; Marrazzo, J.; Mesquita, P.M.M.; Carpenter, C.; Huber, A.; Louissaint, N.; Marzinke, M.A.; Hillier, S.L.; Hendrix, C.W. Antiviral activity of genital tract secretions after oral or topical tenofovir pre-exposure prophylaxis for HIV-1. J. Acquir. Immune Defic. Syndr., 2014, 66(1), 65-73.
[http://dx.doi.org/10.1097/QAI.0000000000000110] [PMID: 24457633]
[40]
Gropp, R.; Frye, M.; Wagner, T.O.F.; Bargon, J. Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum. Gene Ther., 1999, 10(6), 957-964.
[http://dx.doi.org/10.1089/10430349950018355] [PMID: 10223729]
[41]
Bastian, A.; Schäfer, H. Human α-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul. Pept., 2001, 101(1-3), 157-161.
[http://dx.doi.org/10.1016/S0167-0115(01)00282-8] [PMID: 11495691]
[42]
Harvey, S.A.K.; Romanowski, E.G.; Yates, K.A.; Gordon, Y.J. Adenovirus-directed ocular innate immunity: the role of conjunctival defensin-like chemokines (IP-10, I-TAC) and phagocytic human defensin-α. Invest. Ophthalmol. Vis. Sci., 2005, 46(10), 3657-3665.
[http://dx.doi.org/10.1167/iovs.05-0438] [PMID: 16186347]
[43]
Smith, J.G.; Nemerow, G.R. Mechanism of adenovirus neutralization by Human α-defensins. Cell Host Microbe, 2008, 3(1), 11-19.
[http://dx.doi.org/10.1016/j.chom.2007.12.001] [PMID: 18191790]
[44]
Nemerow, G.R.; Stewart, P.L. Insights into adenovirus uncoating from interactions with integrins and mediators of host immunity. Viruses, 2016, 8(12), E337
[http://dx.doi.org/10.3390/v8120337] [PMID: 28009821]
[45]
Tenge, V.R.; Gounder, A.P.; Wiens, M.E.; Lu, W.; Smith, J.G. Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition. PLoS Pathog., 2014, 10(9), e1004360
[http://dx.doi.org/10.1371/journal.ppat.1004360] [PMID: 25188351]
[46]
Holly, M.K.; Smith, J.G. Adenovirus infection of human enteroids reveals interferon sensitivity and preferential infection of goblet cells. J. Virol., 2018, 92(9), e00250-e18.
[http://dx.doi.org/10.1128/JVI.00250-18] [PMID: 29467318]
[47]
Nguyen, E.K.; Nemerow, G.R.; Smith, J.G. Direct evidence from single-cell analysis that human alpha-defensins block adenovirus uncoating to neutralize infection. J. Virol., 2010, 84(8), 4041-4049.
[http://dx.doi.org/10.1128/JVI.02471-09] [PMID: 20130047]
[48]
Gounder, A.P.; Wiens, M.E.; Wilson, S.S.; Lu, W.; Smith, J.G. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J. Biol. Chem., 2012, 287(29), 24554-24562.
[http://dx.doi.org/10.1074/jbc.M112.354068] [PMID: 22637473]
[49]
Smith, J.G.; Silvestry, M.; Lindert, S.; Lu, W.; Nemerow, G.R.; Stewart, P.L. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog., 2010, 6(6), e1000959
[http://dx.doi.org/10.1371/journal.ppat.1000959] [PMID: 20585634]
[50]
Flatt, J.W.; Kim, R.; Smith, J.G.; Nemerow, G.R.; Stewart, P.L. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One, 2013, 8(4), e61571
[http://dx.doi.org/10.1371/journal.pone.0061571] [PMID: 23620768]
[51]
Snijder, J.; Reddy, V.S.; May, E.R.; Roos, W.H.; Nemerow, G.R.; Wuite, G.J.L. Integrin and defensin modulate the mechanical properties of adenovirus. J. Virol., 2013, 87(5), 2756-2766.
[http://dx.doi.org/10.1128/JVI.02516-12] [PMID: 23269786]
[52]
Vragniau, C.; Hübner, J-M.; Beidler, P.; Gil, S.; Saydaminova, K.; Lu, Z-Z.; Yumul, R.; Wang, H.; Richter, M.; Sova, P.; Drescher, C.; Fender, P.; Lieber, A. Studies on the interaction of tumor-derived hd5 alpha defensins with adenoviruses and implications for oncolytic adenovirus therapy. J. Virol., 2017, 91(6), e02030-e16.
[http://dx.doi.org/10.1128/JVI.02030-16] [PMID: 28077642]
[53]
Virella-Lowell, I.; Poirier, A.; Chesnut, K.A.; Brantly, M.; Flotte, T.R. Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Ther., 2000, 7(20), 1783-1789.
[http://dx.doi.org/10.1038/sj.gt.3301268] [PMID: 11083501]
[54]
Ljubojevic, S.; Skerlev, M. HPV-associated diseases. Clin. Dermatol., 2014, 32(2), 227-234.
[http://dx.doi.org/10.1016/j.clindermatol.2013.08.007] [PMID: 24559558]
[55]
Zhao, S.; Zhou, H.Y.; Li, H.; Yi, T.; Zhao, X. The therapeutic impact of HNP-1 in condyloma acuminatum. Int. J. Dermatol., 2015, 54(10), 1205-1210.
[http://dx.doi.org/10.1111/ijd.12725] [PMID: 25600882]
[56]
Buck, C.B.; Day, P.M.; Thompson, C.D.; Lubkowski, J.; Lu, W.; Lowy, D.R.; Schiller, J.T. Human alpha-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1516-1521.
[http://dx.doi.org/10.1073/pnas.0508033103] [PMID: 16432216]
[57]
Chong, K.T.; Xiang, L.; Wang, X.; Jun, E.L.; Xi, L-F.; Schweinfurth, J.M. High level expression of human epithelial beta-defensins (hBD-1, 2 and 3) in papillomavirus induced lesions. Virol. J., 2006, 3, 75.
[http://dx.doi.org/10.1186/1743-422X-3-75] [PMID: 16961924]
[58]
Szukiewicz, D.; Alkhalayla, H.; Pyzlak, M.; Watroba, M.; Szewczyk, G.; Wejman, J. Human beta-defensin 1, 2 and 3 production by amniotic epithelial cells with respect to human papillomavirus (HPV) infection, HPV oncogenic potential and the mode of delivery. Microb. Pathog., 2016, 97, 154-165.
[http://dx.doi.org/10.1016/j.micpath.2016.06.010] [PMID: 27289038]
[59]
Hubert, P.; Herman, L.; Maillard, C.; Caberg, J-H.; Nikkels, A.; Pierard, G.; Foidart, J-M.; Noel, A.; Boniver, J.; Delvenne, P. Defensins induce the recruitment of dendritic cells in cervical human papillomavirus-associated (pre)neoplastic lesions formed in vitro and transplanted in vivo. FASEB J., 2007, 21(11), 2765-2775.
[http://dx.doi.org/10.1096/fj.06-7646com] [PMID: 17470569]
[60]
Segat, L.; Zupin, L.; Moura, R.R.; Coelho, A.V.C.; Chagas, B.S.; de Freitas, A.C.; Crovella, S. DEFB1 polymorphisms are involved in susceptibility to human papillomavirus infection in Brazilian gynaecological patients. Mem. Inst. Oswaldo Cruz, 2014, 109(7), 918-922.
[http://dx.doi.org/10.1590/0074-0276140220] [PMID: 25410996]
[61]
Wiens, M.E.; Smith, J.G. α-Defensin HD5 inhibits human papillomavirus 16 infection via capsid stabilization and redirection to the lysosome. MBio, 2017, 8(1), e02304-e02316.
[http://dx.doi.org/10.1128/mBio.02304-16] [PMID: 28119475]
[62]
Wiens, M.E.; Smith, J.G. Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J. Virol., 2015, 89(5), 2866-2874.
[http://dx.doi.org/10.1128/JVI.02901-14] [PMID: 25540379]
[63]
Gardner, S.D.; Field, A.M.; Coleman, D.V.; Hulme, B. New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet, 1971, 1(7712), 1253-1257.
[http://dx.doi.org/10.1016/S0140-6736(71)91776-4] [PMID: 4104714]
[64]
J. L.; Chou, S.-M.. Particles resembling papova viruses in human cerebral demyelinating disease. Science, 1962, 135(3509), 1128-1130.
[PMID: 14472429]
[65]
Padgett, B.L.; Walker, D.L.; ZuRhein, G.M.; Eckroade, R.J.; Dessel, B.H. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet, 1971, 1(7712), 1257-1260.
[http://dx.doi.org/10.1016/S0140-6736(71)91777-6] [PMID: 4104715]
[66]
Trang, V.D.; Rockett, R.; Jeoffreys, N.; Trung, N.V.; An, H.H.P.; Kok, J.; Dwyer, D.E. BK polyomavirus: a review of the virology, pathogenesis, clinical and laboratory features, and treatment. Future Virol., 2017, 12(8), 439-459.
[http://dx.doi.org/10.2217/fvl-2017-0013]
[67]
Delbue, S.; Comar, M.; Ferrante, P. Review on the role of the human Polyomavirus JC in the development of tumors. Infect. Agent. Cancer, 2017, 12(1), 10.
[http://dx.doi.org/10.1186/s13027-017-0122-0] [PMID: 28174598]
[68]
Sweet, B.H.; Hilleman, M.R. The vacuolating virus, S.V. 40. Proc. Soc. Exp. Biol. Med., 1960, 105, 420-427.
[http://dx.doi.org/10.3181/00379727-105-26128] [PMID: 13774265]
[69]
Lowe, D.B.; Shearer, M.H.; Jumper, C.A.; Kennedy, R.C. SV40 association with human malignancies and mechanisms of tumor immunity by large tumor antigen. Cell. Mol. Life Sci., 2007, 64(7-8), 803-814.
[http://dx.doi.org/10.1007/s00018-007-6414-6] [PMID: 17260087]
[70]
Dugan, A.S.; Maginnis, M.S.; Jordan, J.A.; Gasparovic, M.L.; Manley, K.; Page, R.; Williams, G.; Porter, E.; O’Hara, B.A.; Atwood, W.J. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem., 2008, 283(45), 31125-31132.
[http://dx.doi.org/10.1074/jbc.M805902200] [PMID: 18782756]
[71]
Zins, S.R.; Nelson, C.D.S.; Maginnis, M.S.; Banerjee, R.; O’Hara, B.A.; Atwood, W.J. The human alpha defensin HD5 neutralizes JC polyomavirus infection by reducing endoplasmic reticulum traffic and stabilizing the viral capsid. J. Virol., 2014, 88(2), 948-960.
[http://dx.doi.org/10.1128/JVI.02766-13] [PMID: 24198413]
[72]
Proud, D.; Sanders, S.P.; Wiehler, S. Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo. J. Immunol., 2004, 172(7), 4637-4645.
[http://dx.doi.org/10.4049/jimmunol.172.7.4637] [PMID: 15034083]
[73]
Chen, W.; Liu, Z.; Zhang, Q.; Yan, Q.; Jing, S. Induction and antiviral activity of human β-defensin 3 in intestinal cells with picornavirus infection. Acta Virol., 2018, 62(3), 287-293.
[http://dx.doi.org/10.4149/av_2018_222] [PMID: 30160144]
[74]
Mattar, E.H.; Almehdar, H.A.; Uversky, V.N.; Redwan, E.M. Virucidal activity of human α- and β-defensins against hepatitis C virus genotype 4. Mol. Biosyst., 2016, 12(9), 2785-2797.
[http://dx.doi.org/10.1039/C6MB00283H] [PMID: 27327492]
[75]
Rusyn, I.; Lemon, S.M. Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies? Cancer Lett., 2014, 345(2), 210-215.
[http://dx.doi.org/10.1016/j.canlet.2013.06.028] [PMID: 23871966]
[76]
Mattar, E.H.; Almehdar, H.A.; AlJaddawi, A.A.; Abu Zeid, I.E.M.; Redwan, E.M. Elevated concentration of defensins in hepatitis c virus-infected patients. J. Immunol. Res., 2016, 20168373819
[http://dx.doi.org/10.1155/2016/8373819] [PMID: 27413763]
[77]
Tolfvenstam, T.; Lindblom, A.; Schreiber, M.J.; Ling, L.; Chow, A.; Ooi, E.E.; Hibberd, M.L. Characterization of early host responses in adults with dengue disease. BMC Infect. Dis., 2011, 11, 209.
[http://dx.doi.org/10.1186/1471-2334-11-209] [PMID: 21810247]
[78]
Castañeda-Sánchez, J.I.; Domínguez-Martínez, D.A.; Olivar-Espinosa, N.; García-Pérez, B.E.; Loroño-Pino, M.A.; Luna-Herrera, J.; Salazar, M.I. Expression of antimicrobial peptides in human monocytic cells and neutrophils in response to dengue virus type 2. Intervirology, 2016, 59(1), 8-19.
[http://dx.doi.org/10.1159/000446282] [PMID: 27318958]
[79]
Bai, X.; Tian, T.; Wang, P.; Yang, X.; Wang, Z.; Dong, M. Potential roles of placental human beta-defensin-3 and apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3G in prevention of intrauterine transmission of hepatitis B virus. J. Med. Virol., 2015, 87(3), 375-379.
[http://dx.doi.org/10.1002/jmv.24072] [PMID: 25196417]
[80]
Boda, B.; Benaoudia, S.; Huang, S.; Bonfante, R.; Wiszniewski, L.; Tseligka, E.D.; Tapparel, C.; Constant, S. Antiviral drug screening by assessing epithelial functions and innate immune responses in human 3D airway epithelium model. Antiviral Res., 2018, 156, 72-79.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.007] [PMID: 29890184]
[81]
Dauletbaev, N.; Gropp, R.; Frye, M.; Loitsch, S.; Wagner, T-O-F.; Bargon, J. Expression of human beta defensin (HBD-1 and HBD-2) mRNA in nasal epithelia of adult cystic fibrosis patients, healthy individuals, and individuals with acute cold. Respiration, 2002, 69(1), 46-51.
[http://dx.doi.org/10.1159/000049369] [PMID: 11844962]
[82]
Kim, J.; Yang, Y.L.; Jang, S-H.; Jang, Y-S. Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol. J., 2018, 15(1), 124.
[http://dx.doi.org/10.1186/s12985-018-1035-2] [PMID: 30089512]
[83]
Kalenik, B.M.; Góra-Sochacka, A.; Sirko, A. B-defensins - Underestimated peptides in influenza combat. Virus Res., 2018, 247, 10-14.
[http://dx.doi.org/10.1016/j.virusres.2018.01.008] [PMID: 29421304]
[84]
Hartshorn, K.L.; White, M.R.; Tecle, T.; Holmskov, U.; Crouch, E.C. Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J. Immunol., 2006, 176(11), 6962-6972.
[http://dx.doi.org/10.4049/jimmunol.176.11.6962] [PMID: 16709857]
[85]
Tripathi, S.; Tecle, T.; Verma, A.; Crouch, E.; White, M.; Hartshorn, K.L. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J. Gen. Virol., 2013, 94(Pt 1), 40-49.
[http://dx.doi.org/10.1099/vir.0.045013-0] [PMID: 23052388]
[86]
Tripathi, S.; Wang, G.; White, M.; Qi, L.; Taubenberger, J.; Hartshorn, K.L. Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A Viruses. PLoS One, 2015, 10(4)e0124706
[http://dx.doi.org/10.1371/journal.pone.0124706] [PMID: 25909853]
[87]
Tecle, T.; White, M.R.; Gantz, D.; Crouch, E.C.; Hartshorn, K.L. Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J. Immunol., 2007, 178(12), 8046-8052.
[http://dx.doi.org/10.4049/jimmunol.178.12.8046] [PMID: 17548642]
[88]
Doss, M.; White, M.R.; Tecle, T.; Gantz, D.; Crouch, E.C.; Jung, G.; Ruchala, P.; Waring, A.J.; Lehrer, R.I.; Hartshorn, K.L. Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J. Immunol., 2009, 182(12), 7878-7887.
[http://dx.doi.org/10.4049/jimmunol.0804049] [PMID: 19494312]
[89]
Salvatore, M.; García-Sastre, A.; Ruchala, P.; Lehrer, R.I.; Chang, T.; Klotman, M.E. alpha-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis., 2007, 196(6), 835-843.
[http://dx.doi.org/10.1086/521027] [PMID: 17703413]
[90]
Demirkhanyan, L.H.; Marin, M.; Padilla-Parra, S.; Zhan, C.; Miyauchi, K.; Jean-Baptiste, M.; Novitskiy, G.; Lu, W.; Melikyan, G.B. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J. Biol. Chem., 2012, 287(34), 28821-28838.
[http://dx.doi.org/10.1074/jbc.M112.375949] [PMID: 22733823]
[91]
Falco, A.; Mas, V.; Tafalla, C.; Perez, L.; Coll, J.M.; Estepa, A. Dual antiviral activity of human alpha-defensin-1 against viral haemorrhagic septicaemia rhabdovirus (VHSV): inactivation of virus particles and induction of a type I interferon-related response. Antiviral Res., 2007, 76(2), 111-123.
[http://dx.doi.org/10.1016/j.antiviral.2007.06.006] [PMID: 17655941]
[92]
Kota, S.; Sabbah, A.; Chang, T.H.; Harnack, R.; Xiang, Y.; Meng, X.; Bose, S. Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem., 2008, 283(33), 22417-22429.
[http://dx.doi.org/10.1074/jbc.M710415200] [PMID: 18567888]
[93]
Aksoy, O.; Parlak, E.; Parlak, M.; Aksoy, H. Serum β-defensin-2 levels and their relationship with the clinical course and prognosis in patients with crimean-congo hemorrhagic fever. Med. Princ. Pract., 2016, 25(2), 163-168.
[http://dx.doi.org/10.1159/000442177] [PMID: 26539993]
[94]
Cohen, M.S.; Hellmann, N.; Levy, J.A.; DeCock, K.; Lange, J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J. Clin. Invest., 2008, 118(4), 1244-1254.
[http://dx.doi.org/10.1172/JCI34706] [PMID: 18382737]
[95]
Reynell, L.; Trkola, A. HIV vaccines: an attainable goal? Swiss Med. Wkly., 2012, 142(0910)w13535
[PMID: 22389197]
[96]
Popovic, M.; Sarin, P.; Robert-Gurroff, M.; Kalyanaraman, V.; Mann, D.; Minowada, J.; Gallo, R.; Axler-Blin, C.; Vezinet-Brun, F.; Rouzioux, C. Isolation and transmission of human retrovirus (human t-cell leukemia virus). Science, 1983, 219(4586), 856-859.
[http://dx.doi.org/10.1126/science.6600519] [PMID: 6600519]
[97]
Robert-Guroff, M.; Nakao, Y.; Notake, K.; Ito, Y.; Sliski, A.; Gallo, R.; Mann, D.; Sidhu, G.; Stahl, R.; Zolla-Pazner, S. Natural antibodies to human retrovirus HTLV in a cluster of Japanese patients with adult T cell leukemia. Science, 1982, 215(4535), 975-978.
[http://dx.doi.org/10.1126/science.6760397] [PMID: 6760397]
[98]
Nakashima, H.; Yamamoto, N.; Masuda, M.; Fujii, N. Defensins inhibit HIV replication in vitro. AIDS, 1993, 7(8), 1129.
[http://dx.doi.org/10.1097/00002030-199308000-00019] [PMID: 8397954]
[99]
Cole, A.M.; Cole, A.L. Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am. J. Reprod. Immunol., 2008, 59(1), 27-34.
[http://dx.doi.org/10.1111/j.1600-0897.2007.00561.x] [PMID: 18154593]
[100]
Weinberg, A.; Quiñones-Mateu, M.E.; Lederman, M.M. Role of human β-defensins in HIV infection. Adv. Dent. Res., 2006, 19(1), 42-48.
[http://dx.doi.org/10.1177/154407370601900109] [PMID: 16672548]
[101]
Eade, C.R.; Wood, M.P.; Cole, A.M. Mechanisms and modifications of naturally occurring host defense peptides for anti-HIV microbicide development. Curr. HIV Res., 2012, 10(1), 61-72.
[http://dx.doi.org/10.2174/157016212799304580] [PMID: 22264047]
[102]
Gianesin, K.; Petrara, R.; Freguja, R.; Zanchetta, M.; Giaquinto, C.; De Rossi, A. Host factors and early treatments to restrict paediatric HIV infection and early disease progression. J. Virus Erad., 2015, 1(3), 140-147.
[PMID: 27482405]
[103]
Nittayananta, W.; Tao, R.; Jiang, L.; Peng, Y.; Huang, Y. Oral innate immunity in HIV infection in HAART era. J. Oral Pathol. Med., 2016, 45(1), 3-8.
[http://dx.doi.org/10.1111/jop.12304] [PMID: 25639844]
[104]
Mehlotra, R.K.; Zimmerman, P.A.; Weinberg, A. Defensin gene variation and HIV/AIDS: a comprehensive perspective needed. J. Leukoc. Biol., 2016, 99(5), 687-692.
[http://dx.doi.org/10.1189/jlb.6RU1215-560R] [PMID: 26957215]
[105]
Pace, B.T.; Lackner, A.A.; Porter, E.; Pahar, B. The role of defensins in HIV pathogenesis. Mediators Inflamm., 2017, 20175186904
[http://dx.doi.org/10.1155/2017/5186904] [PMID: 28839349]
[106]
Garzino-Demo, A. Chemokines and defensins as HIV suppressive factors: an evolving story. Curr. Pharm. Des., 2007, 13(2), 163-172.
[http://dx.doi.org/10.2174/138161207779313696] [PMID: 17269925]
[107]
Kuhn, L.; Trabattoni, D.; Kankasa, C.; Semrau, K.; Kasonde, P.; Lissoni, F.; Sinkala, M.; Ghosh, M.; Vwalika, C.; Aldrovandi, G.M.; Thea, D.M.; Clerici, M. Alpha-defensins in the prevention of HIV transmission among breastfed infants. J. Acquir. Immune Defic. Syndr., 2005, 39(2), 138-142.
[PMID: 15905728]
[108]
Armogida, S.A.; Yannaras, N.M.; Melton, A.L.; Srivastava, M.D. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc., 2004, 25(5), 297-304.
[PMID: 15603202]
[109]
Jia, H.P.; Starner, T.; Ackermann, M.; Kirby, P.; Tack, B.F.; McCray, P.B. Jr. Abundant human beta-defensin-1 expression in milk and mammary gland epithelium. J. Pediatr., 2001, 138(1), 109-112.
[http://dx.doi.org/10.1067/mpd.2001.109375] [PMID: 11148522]
[110]
Tunzi, C.R.; Harper, P.A.; Bar-Oz, B.; Valore, E.V.; Semple, J.L.; Watson-MacDonell, J.; Ganz, T.; Ito, S. β-defensin expression in human mammary gland epithelia. Pediatr. Res., 2000, 48(1), 30-35.
[http://dx.doi.org/10.1203/00006450-200007000-00008] [PMID: 10879797]
[111]
Braida, L.; Boniotto, M.; Pontillo, A.; Tovo, P.A.; Amoroso, A.; Crovella, S. A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS, 2004, 18(11), 1598-1600.
[http://dx.doi.org/10.1097/01.aids.0000131363.82951.fb] [PMID: 15238780]
[112]
Estrada-Aguirre, J.A.; Osuna-Ramírez, I.; Prado Montes de Oca, E.; Ochoa-Ramirez, L.A.; Ramirez, M.; Magallon-Zazueta, L.G.; Gonzalez-Beltran, M.S.; Cazarez-Salazar, S.G.; Rangel-Villalobos, H.; Velarde-Felix, J.S. DEFB1 5'UTR polymorphisms modulate the risk of HIV-1 infection in Mexican women. Curr. HIV Res., 2014, 12(3), 220-226.
[http://dx.doi.org/10.2174/1570162X12666140708102722] [PMID: 25001249]
[113]
Murphy, K.; Richardson, B.A.; Dezzutti, C.S.; Marrazzo, J.; Hillier, S.L.; Hendrix, C.W.; Herold, B.C. Levels of genital tract defensins and cytokines differ between HIV-uninfected US and African women. Am. J. Reprod. Immunol., 2015, 74(4), 313-322.
[http://dx.doi.org/10.1111/aji.12411] [PMID: 26094732]
[114]
Nittayananta, W.; Kemapunmanus, M.; Amornthatree, K.; Talungchit, S.; Sriplung, H. Oral human β-defensin 2 in HIV-infected subjects with long-term use of antiretroviral therapy. J. Oral Pathol. Med., 2013, 42(1), 53-60.
[http://dx.doi.org/10.1111/j.1600-0714.2012.01183.x] [PMID: 22680235]
[115]
Corleis, B.; Lisanti, A.C.; Körner, C.; Schiff, A.E.; Rosenberg, E.S.; Allen, T.M.; Altfeld, M.; Kwon, D.S. Early type I Interferon response induces upregulation of human β-defensin 1 during acute HIV-1 infection. PLoS One, 2017, 12(3)e0173161
[http://dx.doi.org/10.1371/journal.pone.0173161] [PMID: 28253319]
[116]
Zapata, W.; Aguilar-Jiménez, W.; Feng, Z.; Weinberg, A.; Russo, A.; Potenza, N.; Estrada, H.; Rugeles, M.T. Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect., 2016, 18(3), 211-219.
[http://dx.doi.org/10.1016/j.micinf.2015.10.009] [PMID: 26548606]
[117]
Hirbod, T.; Kong, X.; Kigozi, G.; Ndyanabo, A.; Serwadda, D.; Prodger, J.L.; Tobian, A.A.; Nalugoda, F.; Wawer, M.J.; Shahabi, K.; Rojas, O.L.; Gommerman, J.L.; Broliden, K.; Kaul, R.; Gray, R.H. HIV acquisition is associated with increased antimicrobial peptides and reduced HIV neutralizing IgA in the foreskin prepuce of uncircumcised men. PLoS Pathog., 2014, 10(10)e1004416
[http://dx.doi.org/10.1371/journal.ppat.1004416] [PMID: 25275513]
[118]
Zhang, L.; Yu, W.; He, T.; Yu, J.; Caffrey, R.E.; Dalmasso, E.A.; Fu, S.; Pham, T.; Mei, J.; Ho, J.J.; Zhang, W.; Lopez, P.; Ho, D.D. Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science, 2002, 298(5595), 995-1000.
[http://dx.doi.org/10.1126/science.1076185] [PMID: 12351674]
[119]
Zhang, L.; Lopez, P.; He, T.; Yu, W.; Ho, D.D. Retraction of an interpretation. Science, 2004, 303(5657), 467.
[http://dx.doi.org/10.1126/science.303.5657.467b] [PMID: 14739439]
[120]
Mackewicz, C.E.; Yuan, J.; Tran, P.; Diaz, L.; Mack, E.; Selsted, M.E.; Levy, J.A. alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS, 2003, 17(14), F23-F32.
[http://dx.doi.org/10.1097/00002030-200309260-00001] [PMID: 14502030]
[121]
Chang, T.L-Y.; François, F.; Mosoian, A.; Klotman, M.E. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. J. Virol., 2003, 77(12), 6777-6784.
[http://dx.doi.org/10.1128/JVI.77.12.6777-6784.2003] [PMID: 12767998]
[122]
Quiñones-Mateu, M.E.; Lederman, M.M.; Feng, Z.; Chakraborty, B.; Weber, J.; Rangel, H.R.; Marotta, M.L.; Mirza, M.; Jiang, B.; Kiser, P.; Medvik, K.; Sieg, S.F.; Weinberg, A. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS, 2003, 17(16), F39-F48.
[http://dx.doi.org/10.1097/00002030-200311070-00001] [PMID: 14571200]
[123]
Seidel, A.; Ye, Y.; de Armas, L.R.; Soto, M.; Yarosh, W.; Marcsisin, R.A.; Tran, D.; Selsted, M.E.; Camerini, D. Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms. PLoS One, 2010, 5(3)e9737
[http://dx.doi.org/10.1371/journal.pone.0009737] [PMID: 20305815]
[124]
Feng, Z.; Dubyak, G.R.; Lederman, M.M.; Weinberg, A. Cutting edge: human beta defensin 3--a novel antagonist of the HIV-1 coreceptor CXCR4. J. Immunol., 2006, 177(2), 782-786.
[http://dx.doi.org/10.4049/jimmunol.177.2.782] [PMID: 16818731]
[125]
Furci, L.; Tolazzi, M.; Sironi, F.; Vassena, L.; Lusso, P. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One, 2012, 7(9)e45208
[http://dx.doi.org/10.1371/journal.pone.0045208] [PMID: 23028850]
[126]
Furci, L.; Sironi, F.; Tolazzi, M.; Vassena, L.; Lusso, P.; Lindbom, L.; Kiessling, R.; Jörnvall, H.; Wigzell, H.; Gudmundsson, G.H. Alpha-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood, 2007, 109(7), 2928-2935.
[http://dx.doi.org/10.1182/blood-2006-05-024489] [PMID: 17132727]
[127]
Wu, Z.; Cocchi, F.; Gentles, D.; Ericksen, B.; Lubkowski, J.; Devico, A.; Lehrer, R.I.; Lu, W. Human neutrophil α-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett., 2005, 579(1), 162-166.
[http://dx.doi.org/10.1016/j.febslet.2004.11.062] [PMID: 15620707]
[128]
Levinson, P.; Choi, R.Y.; Cole, A.L.; Hirbod, T.; Rhedin, S.; Payne, B.; Guthrie, B.L.; Bosire, R.; Cole, A.M.; Farquhar, C.; Broliden, K. HIV-neutralizing activity of cationic polypeptides in cervicovaginal secretions of women in HIV-serodiscordant relationships. PLoS One, 2012, 7(2)e31996
[http://dx.doi.org/10.1371/journal.pone.0031996] [PMID: 22389677]
[129]
Wang, W.; Owen, S.M.; Rudolph, D.L.; Cole, A.M.; Hong, T.; Waring, A.J.; Lal, R.B.; Lehrer, R.I. Activity of alpha- and theta-defensins against primary isolates of HIV-1. J. Immunol., 2004, 173(1), 515-520.
[http://dx.doi.org/10.4049/jimmunol.173.1.515] [PMID: 15210812]
[130]
Wei, G.; Pazgier, M.; de Leeuw, E.; Rajabi, M.; Li, J.; Zou, G.; Jung, G.; Yuan, W.; Lu, W-Y.; Lehrer, R.I.; Lu, W. Trp-26 imparts functional versatility to human alpha-defensin HNP1. J. Biol. Chem., 2010, 285(21), 16275-16285.
[http://dx.doi.org/10.1074/jbc.M110.102749] [PMID: 20220136]
[131]
Pazgier, M.; Wei, G.; Ericksen, B.; Jung, G.; Wu, Z.; de Leeuw, E.; Yuan, W.; Szmacinski, H.; Lu, W-Y.; Lubkowski, J.; Lehrer, R.I.; Lu, W. Sometimes it takes two to tango: contributions of dimerization to functions of human α-defensin HNP1 peptide. J. Biol. Chem., 2012, 287(12), 8944-8953.
[http://dx.doi.org/10.1074/jbc.M111.332205] [PMID: 22270360]
[132]
Zhao, L.; Tolbert, W.D.; Ericksen, B.; Zhan, C.; Wu, X.; Yuan, W.; Li, X.; Pazgier, M.; Lu, W. Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. PLoS One, 2013, 8(11)e78937
[http://dx.doi.org/10.1371/journal.pone.0078937] [PMID: 24236072]
[133]
Demirkhanyan, L.; Marin, M.; Lu, W.; Melikyan, G.B. Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog., 2013, 9(6)e1003431
[http://dx.doi.org/10.1371/journal.ppat.1003431] [PMID: 23785290]
[134]
Herrera, R.; Morris, M.; Rosbe, K.; Feng, Z.; Weinberg, A.; Tugizov, S. Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology, 2016, 487, 172-187.
[http://dx.doi.org/10.1016/j.virol.2015.09.025] [PMID: 26539799]
[135]
Guo, C-J.; Tan, N.; Song, L.; Douglas, S.D.; Ho, W-Z. Alpha-defensins inhibit HIV infection of macrophages through upregulation of CC-chemokines. AIDS, 2004, 18(8), 1217-1218.
[http://dx.doi.org/10.1097/00002030-200405210-00020] [PMID: 15166542]
[136]
Chang, T.L.; Vargas, J., Jr; DelPortillo, A.; Klotman, M.E.; Klotman, M.E. Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest., 2005, 115(3), 765-773.
[http://dx.doi.org/10.1172/JCI21948] [PMID: 15719067]
[137]
Sun, L.; Finnegan, C.M.; Kish-Catalone, T.; Blumenthal, R.; Garzino-Demo, P.; La Terra Maggiore, G.M.; Berrone, S.; Kleinman, C.; Wu, Z.; Abdelwahab, S.; Lu, W.; Garzino-Demo, A. Human beta-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J. Virol., 2005, 79(22), 14318-14329.
[http://dx.doi.org/10.1128/JVI.79.22.14318-14329.2005] [PMID: 16254366]
[138]
Lafferty, M.K.; Sun, L.; Christensen-Quick, A.; Lu, W.; Garzino-Demo, A. Human beta defensin 2 selectively inhibits HIV-1 in highly permissive CCR6+CD4+ T cells. Viruses, 2017, 9(5)E111
[http://dx.doi.org/10.3390/v9050111] [PMID: 28509877]
[139]
Valere, K.; Rapista, A.; Eugenin, E.; Lu, W.; Chang, T.L. Human alpha-defensin HNP1 increases HIV traversal of the epithelial barrier: a potential role in STI-mediated enhancement of HIV transmission. Viral Immunol., 2015, 28(10), 609-615.
[http://dx.doi.org/10.1089/vim.2014.0137] [PMID: 26379091]
[140]
Klotman, M.E.; Rapista, A.; Teleshova, N.; Micsenyi, A.; Jarvis, G.A.; Lu, W.; Porter, E.; Chang, T.L. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission. J. Immunol., 2008, 180(9), 6176-6185.
[http://dx.doi.org/10.4049/jimmunol.180.9.6176] [PMID: 18424739]
[141]
Rapista, A.; Ding, J.; Benito, B.; Lo, Y-T.; Neiditch, M.B.; Lu, W.; Chang, T.L. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology, 2011, 8, 45.
[http://dx.doi.org/10.1186/1742-4690-8-45] [PMID: 21672195]
[142]
Ding, J.; Tasker, C.; Valere, K.; Sihvonen, T.; Descalzi-Montoya, D.B.; Lu, W.; Chang, T.L. Anti-HIV activity of human defensin 5 in primary CD4+ T cells under serum-deprived conditions is a consequence of defensin-mediated cytotoxicity. PLoS One, 2013, 8(9)e76038
[http://dx.doi.org/10.1371/journal.pone.0076038] [PMID: 24086683]
[143]
Valere, K.; Lu, W.; Chang, T.L. Key determinants of human α-Defensin 5 and 6 for enhancement of HIV infectivity. Viruses, 2017, 9(9)E244
[http://dx.doi.org/10.3390/v9090244] [PMID: 28850095]
[144]
Bandurska, K.; Berdowska, A.; Barczyńska-Felusiak, R.; Krupa, P. Unique features of human cathelicidin LL-37. Biofactors, 2015, 41(5), 289-300.
[http://dx.doi.org/10.1002/biof.1225] [PMID: 26434733]
[145]
Larrick, J.W.; Hirata, M.; Balint, R.F.; Lee, J.; Zhong, J.; Wright, S.C. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun., 1995, 63(4), 1291-1297.
[http://dx.doi.org/10.1128/IAI.63.4.1291-1297.1995] [PMID: 7890387]
[146]
Vandamme, D.; Landuyt, B.; Luyten, W.; Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell. Immunol., 2012, 280(1), 22-35.
[http://dx.doi.org/10.1016/j.cellimm.2012.11.009] [PMID: 23246832]
[147]
Bals, R.; Wilson, J.M. Cathelicidins--a family of multifunctional antimicrobial peptides. Cell. Mol. Life Sci., 2003, 60(4), 711-720.
[http://dx.doi.org/10.1007/s00018-003-2186-9] [PMID: 12785718]
[148]
Barlow, P.G.; Findlay, E.G.; Currie, S.M.; Davidson, D.J. Antiviral potential of cathelicidins. Future Microbiol., 2014, 9(1), 55-73.
[http://dx.doi.org/10.2217/fmb.13.135] [PMID: 24328381]
[149]
Howell, M.D.; Wollenberg, A.; Gallo, R.L.; Flaig, M.; Streib, J.E.; Wong, C.; Pavicic, T.; Boguniewicz, M.; Leung, D.Y.M. Cathelicidin deficiency predisposes to eczema herpeticum. J. Allergy Clin. Immunol., 2006, 117(4), 836-841.
[http://dx.doi.org/10.1016/j.jaci.2005.12.1345] [PMID: 16630942]
[150]
Gordon, Y.J.; Huang, L.C.; Romanowski, E.G.; Yates, K.A.; Proske, R.J.; McDermott, A.M. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr. Eye Res., 2005, 30(5), 385-394.
[http://dx.doi.org/10.1080/02713680590934111] [PMID: 16020269]
[151]
Vilas Boas, L.C.P.; de Lima, L.M.P.; Migliolo, L.; Mendes, G.D.; de Jesus, M.G.; Franco, O.L.; Silva, P.A. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers, 2017, 108(2)e22871
[http://dx.doi.org/10.1002/bip.22871] [PMID: 27161201]
[152]
Bourgade, K.; Garneau, H.; Giroux, G.; Le Page, A.Y.; Bocti, C.; Dupuis, G.; Frost, E.H.; Fülöp, T. Jr β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 2015, 16(1), 85-98.
[http://dx.doi.org/10.1007/s10522-014-9538-8] [PMID: 25376108]
[153]
Roy, M.; Lebeau, L.; Chessa, C.; Damour, A.; Ladram, A.; Oury, B.; Boutolleau, D.; Bodet, C.; Lévêque, N. Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and [K3]SHa to LL-37 and temporin-Tb against herpes simplex virus type 1. Viruses, 2019, 11(1)E77
[http://dx.doi.org/10.3390/v11010077] [PMID: 30669255]
[154]
Ron-Doitch, S.; Sawodny, B.; Kühbacher, A.; David, M.M.N.; Samanta, A.; Phopase, J.; Burger-Kentischer, A.; Griffith, M.; Golomb, G.; Rupp, S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control. Release, 2016, 229, 163-171.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.025] [PMID: 27012977]
[155]
Takiguchi, T.; Morizane, S.; Yamamoto, T.; Kajita, A.; Ikeda, K.; Iwatsuki, K. Cathelicidin antimicrobial peptide LL-37 augments interferon-β expression and antiviral activity induced by double-stranded RNA in keratinocytes. Br. J. Dermatol., 2014, 171(3), 492-498.
[http://dx.doi.org/10.1111/bjd.12942] [PMID: 24601852]
[156]
Lee, C-J.; Buznyk, O.; Kuffova, L.; Rajendran, V.; Forrester, J.V.; Phopase, J.; Islam, M.M.; Skog, M.; Ahlqvist, J.; Griffith, M. Cathelicidin LL-37 and HSV-1 corneal infection: peptide versus gene therapy. Transl. Vis. Sci. Technol., 2014, 3(3), 4.
[http://dx.doi.org/10.1167/tvst.3.3.4] [PMID: 24932432]
[157]
Brice, D.C.; Toth, Z.; Diamond, G. LL-37 disrupts the Kaposi’s sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells. Antiviral Res., 2018, 158, 25-33.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.025] [PMID: 30076864]
[158]
Fathy, H.; Amin, M.M.; El-Gilany, A-H. Upregulation of human β-defensin-3 and cathelicidin LL-37 in Kaposi’s sarcoma. F1000 Res., 2012, 1, 38.
[http://dx.doi.org/10.12688/f1000research.1-38.v2] [PMID: 24358820]
[159]
Howell, M.D.; Jones, J.F.; Kisich, K.O.; Streib, J.E.; Gallo, R.L.; Leung, D.Y.M. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol., 2004, 172(3), 1763-1767.
[http://dx.doi.org/10.4049/jimmunol.172.3.1763] [PMID: 14734759]
[160]
Dean, R.E.; O’Brien, L.M.; Thwaite, J.E.; Fox, M.A.; Atkins, H.; Ulaeto, D.O. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides, 2010, 31(11), 1966-1972.
[http://dx.doi.org/10.1016/j.peptides.2010.07.028] [PMID: 20705109]
[161]
Ulaeto, D.O.; Morris, C.J.; Fox, M.A.; Gumbleton, M.; Beck, K. Destabilization of α-helical structure in solution improves bactericidal activity of antimicrobial peptides: opposite effects on bacterial and viral targets. Antimicrob. Agents Chemother., 2016, 60(4), 1984-1991.
[http://dx.doi.org/10.1128/AAC.02146-15] [PMID: 26824944]
[162]
Braff, M.H.; Hawkins, M.A.; Di Nardo, A.; Lopez-Garcia, B.; Howell, M.D.; Wong, C.; Lin, K.; Streib, J.E.; Dorschner, R.; Leung, D.Y.M.; Gallo, R.L. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J. Immunol., 2005, 174(7), 4271-4278.
[http://dx.doi.org/10.4049/jimmunol.174.7.4271] [PMID: 15778390]
[163]
Howell, M.D.; Gallo, R.L.; Boguniewicz, M.; Jones, J.F.; Wong, C.; Streib, J.E.; Leung, D.Y.M. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity, 2006, 24(3), 341-348.
[http://dx.doi.org/10.1016/j.immuni.2006.02.006] [PMID: 16546102]
[164]
Uchio, E.; Inoue, H.; Kadonosono, K. Anti-adenoviral effects of human cationic antimicrobial protein-18/LL-37, an antimicrobial peptide, by quantitative polymerase chain reaction. Korean J. Ophthalmol., 2013, 27(3), 199-203.
[http://dx.doi.org/10.3341/kjo.2013.27.3.199] [PMID: 23730113]
[165]
Findlay, F.; Pohl, J.; Svoboda, P.; Shakamuri, P.; McLean, K.; Inglis, N.F.; Proudfoot, L.; Barlow, P.G. Carbon nanoparticles inhibit the antimicrobial activities of the human cathelicidin LL-37 through structural alteration. J. Immunol., 2017, 199(7), 2483-2490.
[http://dx.doi.org/10.4049/jimmunol.1700706] [PMID: 28814602]
[166]
Schögler, A.; Muster, R.J.; Kieninger, E.; Casaulta, C.; Tapparel, C.; Jung, A.; Moeller, A.; Geiser, T.; Regamey, N.; Alves, M.P. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur. Respir. J., 2016, 47(2), 520-530.
[http://dx.doi.org/10.1183/13993003.00665-2015] [PMID: 26585423]
[167]
Sousa, F.H.; Casanova, V.; Findlay, F.; Stevens, C.; Svoboda, P.; Pohl, J.; Proudfoot, L.; Barlow, P.G. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides, 2017, 95, 76-83.
[http://dx.doi.org/10.1016/j.peptides.2017.07.013] [PMID: 28764966]
[168]
Ahmed, A.; Siman-Tov, G.; Keck, F.; Kortchak, S.; Bakovic, A.; Risner, K.; Lu, T.K.; Bhalla, N.; de la Fuente-Nunez, C.; Narayanan, A. Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Res., 2019, 164, 61-69.
[http://dx.doi.org/10.1016/j.antiviral.2019.02.002] [PMID: 30738837]
[169]
Iacob, S.A.; Panaitescu, E.; Iacob, D.G.; Cojocaru, M. The human cathelicidin LL37 peptide has high plasma levels in B and C hepatitis related to viral activity but not to 25-hydroxyvitamin D plasma level. Rom. J. Intern. Med., 2012, 50(3), 217-223.
[PMID: 23330289]
[170]
Matsumura, T.; Sugiyama, N.; Murayama, A.; Yamada, N.; Shiina, M.; Asabe, S.; Wakita, T.; Imawari, M.; Kato, T. Antimicrobial peptide LL-37 attenuates infection of hepatitis C virus. Hepatol. Res., 2016, 46(9), 924-932.
[http://dx.doi.org/10.1111/hepr.12627] [PMID: 26606891]
[171]
Alagarasu, K.; Patil, P.S.; Shil, P.; Seervi, M.; Kakade, M.B.; Tillu, H.; Salunke, A. In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides, 2017, 92, 23-30.
[http://dx.doi.org/10.1016/j.peptides.2017.04.002] [PMID: 28400226]
[172]
López-González, M.; Meza-Sánchez, D.; García-Cordero, J.; Bustos-Arriaga, J.; Vélez-Del Valle, C.; Marsch-Moreno, M.; Castro-Jiménez, T.; Flores-Romo, L.; Santos-Argumedo, L.; Gutiérrez-Castañeda, B.; Cedillo-Barrón, L. Human keratinocyte cultures (HaCaT) can be infected by DENV, triggering innate immune responses that include IFNλ and LL37. Immunobiology, 2018, 223(11), 608-617.
[http://dx.doi.org/10.1016/j.imbio.2018.07.006] [PMID: 30007822]
[173]
Hsieh, I-N.; Hartshorn, K.L. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals (Basel), 2016, 9(3)E53
[http://dx.doi.org/10.3390/ph9030053] [PMID: 27608030]
[174]
Gaudreault, E.; Gosselin, J. Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice. J. Immunol., 2008, 180(9), 6211-6221.
[http://dx.doi.org/10.4049/jimmunol.180.9.6211] [PMID: 18424743]
[175]
Bailie, M.B.; Standiford, T.J.; Laichalk, L.L.; Coffey, M.J.; Strieter, R.; Peters-Golden, M. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J. Immunol., 1996, 157(12), 5221-5224.
[PMID: 8955165]
[176]
Tripathi, S.; Verma, A.; Kim, E-J.; White, M.R.; Hartshorn, K.L. LL-37 modulates human neutrophil responses to influenza A virus. J. Leukoc. Biol., 2014, 96(5), 931-938.
[http://dx.doi.org/10.1189/jlb.4A1113-604RR] [PMID: 25082153]
[177]
Tripathi, S.; Wang, G.; White, M.; Rynkiewicz, M.; Seaton, B.; Hartshorn, K. Identifying the critical domain of LL-37 involved in mediating neutrophil activation in the presence of influenza virus: functional and structural analysis. PLoS One, 2015, 10(8)e0133454
[http://dx.doi.org/10.1371/journal.pone.0133454] [PMID: 26308522]
[178]
White, M.R.; Tripathi, S.; Verma, A.; Kingma, P.; Takahashi, K.; Jensenius, J.; Thiel, S.; Wang, G.; Crouch, E.C.; Hartshorn, K.L. Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immun., 2017, 23(1), 77-88.
[http://dx.doi.org/10.1177/1753425916678470] [PMID: 27856789]
[179]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10)e25333
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[180]
Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol., 2008, 181(10), 7090-7099.
[http://dx.doi.org/10.4049/jimmunol.181.10.7090] [PMID: 18981129]
[181]
Harcourt, J.L.; McDonald, M.; Svoboda, P.; Pohl, J.; Tatti, K.; Haynes, L.M. Human cathelicidin, LL-37, inhibits respiratory syncytial virus infection in polarized airway epithelial cells. BMC Res. Notes, 2016, 9, 11.
[http://dx.doi.org/10.1186/s13104-015-1836-y] [PMID: 26732674]
[182]
Currie, S.M.; Gwyer Findlay, E.; McFarlane, A.J.; Fitch, P.M.; Böttcher, B.; Colegrave, N.; Paras, A.; Jozwik, A.; Chiu, C.; Schwarze, J.; Davidson, D.J. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J. Immunol., 2016, 196(6), 2699-2710.
[http://dx.doi.org/10.4049/jimmunol.1502478] [PMID: 26873992]
[183]
Currie, S.M.; Findlay, E.G.; McHugh, B.J.; Mackellar, A.; Man, T.; Macmillan, D.; Wang, H.; Fitch, P.M.; Schwarze, J.; Davidson, D.J. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One, 2013, 8(8)e73659
[http://dx.doi.org/10.1371/journal.pone.0073659] [PMID: 24023689]
[184]
Malm, J.; Sørensen, O.; Persson, T.; Frohm-Nilsson, M.; Johansson, B.; Bjartell, A.; Lilja, H.; Ståhle-Bäckdahl, M.; Borregaard, N.; Egesten, A. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect. Immun., 2000, 68(7), 4297-4302.
[http://dx.doi.org/10.1128/IAI.68.7.4297-4302.2000] [PMID: 10858248]
[185]
Levinson, P.; Kaul, R.; Kimani, J.; Ngugi, E.; Moses, S.; MacDonald, K.S.; Broliden, K.; Hirbod, T. Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition. AIDS, 2009, 23(3), 309-317.
[http://dx.doi.org/10.1097/QAD.0b013e328321809c] [PMID: 19114868]
[186]
Steinstraesser, L.; Tippler, B.; Mertens, J.; Lamme, E.; Homann, H-H.; Lehnhardt, M.; Wildner, O.; Steinau, H-U.; Uberla, K. Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides. Retrovirology, 2005, 2, 2.
[http://dx.doi.org/10.1186/1742-4690-2-2] [PMID: 15656908]
[187]
Bergman, P.; Walter-Jallow, L.; Broliden, K.; Agerberth, B.; Söderlund, J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res., 2007, 5(4), 410-415.
[http://dx.doi.org/10.2174/157016207781023947] [PMID: 17627504]
[188]
Wang, G.; Watson, K.M.; Buckheit, R.W. Jr Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob. Agents Chemother., 2008, 52(9), 3438-3440.
[http://dx.doi.org/10.1128/AAC.00452-08] [PMID: 18591279]
[189]
Wong, J.H.; Legowska, A.; Rolka, K.; Ng, T.B.; Hui, M.; Cho, C.H.; Lam, W.W.L.; Au, S.W.N.; Gu, O.W.; Wan, D.C.C. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides, 2011, 32(6), 1117-1122.
[http://dx.doi.org/10.1016/j.peptides.2011.04.017] [PMID: 21539873]
[190]
Tseng, Y-S.; Agbandje-McKenna, M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front. Immunol., 2014, 5, 9.
[http://dx.doi.org/10.3389/fimmu.2014.00009] [PMID: 24523720]
[191]
Bowdish, D.M.E.; Davidson, D.J.; Hancock, R.E.W. Immunomodulatory properties of defensins and cathelicidins. Curr. Top. Microbiol. Immunol., 2006, 306, 27-66.
[http://dx.doi.org/10.1007/3-540-29916-5_2] [PMID: 16909917]
[192]
Biragyn, A.; Belyakov, I.M.; Chow, Y-H.; Dimitrov, D.S.; Berzofsky, J.A.; Kwak, L.W. DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood, 2002, 100(4), 1153-1159.
[http://dx.doi.org/10.1182/blood-2002-01-0086] [PMID: 12149191]
[193]
Mohan, T.; Verma, P.; Rao, D.N. Comparative mucosal immunogenicity of HIV gp41 membrane-proximal external region (MPER) containing single and multiple repeats of ELDKWA sequence with defensin peptides. Immunobiology, 2014, 219(4), 292-301.
[http://dx.doi.org/10.1016/j.imbio.2013.11.001] [PMID: 24290973]
[194]
Wang, T-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; White, J.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol., 2004, 173(5), 2909-2912.
[http://dx.doi.org/10.4049/jimmunol.173.5.2909] [PMID: 15322146]
[195]
McMahon, L.; Schwartz, K.; Yilmaz, O.; Brown, E.; Ryan, L.K.; Diamond, G. Vitamin D-mediated induction of innate immunity in gingival epithelial cells. Infect. Immun., 2011, 79(6), 2250-2256.
[http://dx.doi.org/10.1128/IAI.00099-11] [PMID: 21422187]
[196]
Beckloff, N.; Laube, D.; Castro, T.; Furgang, D.; Park, S.; Perlin, D.; Clements, D.; Tang, H.; Scott, R.W.; Tew, G.N.; Diamond, G. Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob. Agents Chemother., 2007, 51(11), 4125-4132.
[http://dx.doi.org/10.1128/AAC.00208-07] [PMID: 17785509]
[197]
Ryan, L.K.; Freeman, K.B.; Masso-Silva, J.A.; Falkovsky, K.; Aloyouny, A.; Markowitz, K.; Hise, A.G.; Fatahzadeh, M.; Scott, R.W.; Diamond, G. Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis. Antimicrob. Agents Chemother., 2014, 58(7), 3820-3827.
[http://dx.doi.org/10.1128/AAC.02649-13] [PMID: 24752272]
[198]
Menzel, L.P.; Chowdhury, H.M.; Masso-Silva, J.A.; Ruddick, W.; Falkovsky, K.; Vorona, R.; Malsbary, A.; Cherabuddi, K.; Ryan, L.K.; DiFranco, K.M.; Brice, D.C.; Costanzo, M.J.; Weaver, D.; Freeman, K.B.; Scott, R.W.; Diamond, G. Potent in vitro and in vivo antifungal activity of a small molecule host defense peptide mimic through a membrane-active mechanism. Sci. Rep., 2017, 7(1), 4353.
[http://dx.doi.org/10.1038/s41598-017-04462-6] [PMID: 28659617]
[199]
Heredia, A.; Latinovic, O.S.; Barbault, F.; de Leeuw, E.P.H. A novel small-molecule inhibitor of HIV-1 entry. Drug Des. Devel. Ther., 2015, 9, 5469-5478.
[http://dx.doi.org/10.2147/DDDT.S89338] [PMID: 26491257]
[200]
Scudiero, O.; Nigro, E.; Cantisani, M.; Colavita, I.; Leone, M.; Mercurio, F.A.; Galdiero, M.; Pessi, A.; Daniele, A.; Salvatore, F.; Galdiero, S. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool. Int. J. Nanomedicine, 2015, 10, 6523-6539.
[http://dx.doi.org/10.2147/IJN.S89610] [PMID: 26508857]
[201]
Pachón-Ibáñez, M.E.; Smani, Y.; Pachón, J.; Sánchez-Céspedes, J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol. Rev., 2017, 41(3), 323-342.
[http://dx.doi.org/10.1093/femsre/fux012] [PMID: 28521337]
[202]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy