Review Article

发现中枢神经系统相关疾病的PDE10A抑制剂的进展。 第2部分:专注于精神分裂症

卷 20, 期 16, 2019

页: [1652 - 1669] 页: 18

弟呕挨: 10.2174/1389450120666190801114210

价格: $65

摘要

精神分裂症是一种使人衰弱的精神障碍,患病率相对较高(约1%),在此期间会出现积极的表现(例如精神病状态)和消极的症状(例如退出社交生活)。此外,一些研究人员认为认知障碍是精神分裂症症状的一个独特领域。多巴胺活性的不平衡,即纹状体中这种神经递质的过度释放和额叶前额皮质中的量不足,被认为是造成这些组表现的部分原因。第二代抗精神病药目前是精神分裂症的标准治疗方法。然而,现有的治疗有时是无效的,并且具有严重的副作用,例如锥体外系症状。因此,迫切需要寻找该疾病的替代治疗选择。这篇综述总结了最近在磷酸二酯酶10A(PDE10A)的临床前和临床研究的结果,磷酸二酯酶10A在哺乳动物纹状体中高度表达,作为治疗精神分裂症的潜在药物靶标。根据文献数据,不仅选择性的PDE10A抑制剂而且双重的PDE2A / 10A和PDE4B / 10A抑制剂以及具有PDE10A抑制能力的多功能配体都是可以结合抗精神病药,预知性药物和抗抑郁药功能的化合物。因此,设计此类化合物可能构成精神分裂症潜在药物的新研究方向。尽管先前的选择性PDE10A抑制剂治疗精神分裂症的临床试验失败,但目前正在临床上研究具有这种作用机制的新化合物,因此,仍需要寻找选择性和多靶点PDE10A的新抑制剂。

关键词: PDE10A抑制剂,多功能配体,抗精神病活性,认知活性,精神分裂症,临床试验。

图形摘要
[1]
McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30: 67-76.
[http://dx.doi.org/10.1093/epirev/mxn001] [PMID: 18480098]
[2]
Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016; 388(10039): 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[3]
Tripathi A, Kar SK, Shukla R. Cognitive deficits in schizophrenia: understanding the biological correlates and remediation strategies. Clin Psychopharmacol Neurosci 2018; 16(1): 7-17.
[http://dx.doi.org/10.9758/cpn.2018.16.1.7] [PMID: 29397662]
[4]
Buckley PF, Miller BJ, Lehrer DS, Castle DJ. Psychiatric comorbidities and schizophrenia. Schizophr Bull 2009; 35(2): 383-402.
[http://dx.doi.org/10.1093/schbul/sbn135] [PMID: 19011234]
[5]
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 2009; 35(3): 549-62.
[http://dx.doi.org/10.1093/schbul/sbp006] [PMID: 19325164]
[6]
Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 2017; 22(5): 666-79.
[http://dx.doi.org/10.1038/mp.2017.16] [PMID: 28289283]
[7]
Dao-Castellana M-H, Paillère-Martinot M-L, Hantraye P, et al. Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr Res 1997; 23(2): 167-74.
[http://dx.doi.org/10.1016/S0920-9964(96)00102-8] [PMID: 9061812]
[8]
Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry 2017; 81(1): 31-42.
[http://dx.doi.org/10.1016/j.biopsych.2016.03.2104] [PMID: 27206569]
[9]
Yang AC, Tsai S-J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 2017; 18(8): 1689.
[http://dx.doi.org/10.3390/ijms18081689] [PMID: 28771182]
[10]
Eggers AE. A serotonin hypothesis of schizophrenia. Med Hypotheses 2013; 80(6): 791-4.
[http://dx.doi.org/10.1016/j.mehy.2013.03.013] [PMID: 23557849]
[11]
Nutt DJ, Need AC. Where now for schizophrenia research? Eur Neuropsychopharmacol 2014; 24(8): 1181-7.
[http://dx.doi.org/10.1016/j.euroneuro.2014.05.012] [PMID: 24950818]
[12]
Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol (Oxford) 2015; 29(2): 97-115.
[http://dx.doi.org/10.1177/0269881114563634] [PMID: 25586400]
[13]
Solmi M, Murru A, Pacchiarotti I, et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag 2017; 13: 757-77.
[http://dx.doi.org/10.2147/TCRM.S117321] [PMID: 28721057]
[14]
Kikkert MJ, Dekker J. Medication adherence decisions in patients with schizophrenia. Prim Care Companion CNS Disord 2017; 19(6): 19.
[http://dx.doi.org/10.4088/PCC.17n02182] [PMID: 29216418]
[15]
Jankowska A, Świerczek A, Wyska E, et al. Advances in discovery of PDE10A inhibitors for CNS-related disorders. Part 1: Overview of the chemical and biological research. Curr Drug Targets 2019; 20(1): 122-43.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414]
[16]
Celen S, Koole M, De Angelis M, et al. Preclinical evaluation of 18F-JNJ41510417 as a radioligand for PET imaging of phosphodiesterase-10A in the brain. J Nucl Med 2010; 51(10): 1584-91.
[http://dx.doi.org/10.2967/jnumed.110.077040] [PMID: 20847170]
[17]
Tu Z, Xu J, Jones LA, Li S, Mach RH. Carbon-11 labeled papaverine as a PET tracer for imaging PDE10A: radiosynthesis, in vitro and in vivo evaluation. Nucl Med Biol 2010; 37(4): 509-16.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.12.012] [PMID: 20447563]
[18]
Kehler J, Kilburn JP, Estrada S, et al. Discovery and development of 11C-Lu AE92686 as a radioligand for PET imaging of phosphodiesterase10A in the brain. J Nucl Med 2014; 55(9): 1513-8.
[http://dx.doi.org/10.2967/jnumed.114.140178] [PMID: 24994928]
[19]
Lin SF, Labaree D, Chen MK, et al. Further evaluation of [11C]MP-10 as a radiotracer for phosphodiesterase 10A: PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse 2015; 69(2): 86-95.
[http://dx.doi.org/10.1002/syn.21792] [PMID: 25450608]
[20]
Fan J, Zhang X, Li J, et al. Radiosyntheses and in vivo evaluation of carbon-11 PET tracers for PDE10A in the brain of rodent and nonhuman primate. Bioorg Med Chem 2014; 22(9): 2648-54.
[http://dx.doi.org/10.1016/j.bmc.2014.03.028] [PMID: 24721831]
[21]
Hwang DR, Hu E, Allen JR, et al. Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18F]AMG 580 in non-human primates. Nucl Med Biol 2015; 42(8): 654-63.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.04.004] [PMID: 25935386]
[22]
Plisson C, Weinzimmer D, Jakobsen S, et al. Phosphodiesterase 10A PET radioligand development program: from pig to human. J Nucl Med 2014; 55(4): 595-601.
[http://dx.doi.org/10.2967/jnumed.113.131409] [PMID: 24614221]
[23]
Bodén R, Persson J, Wall A, et al. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study. Transl Psychiatry 2017; 7(3)e1050
[http://dx.doi.org/10.1038/tp.2017.11] [PMID: 28267149]
[24]
Goldman AL, Pezawas L, Mattay VS, et al. Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Arch Gen Psychiatry 2009; 66(5): 467-77.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.24] [PMID: 19414706]
[25]
Natesan S, Ashworth S, Nielsen J, et al. Effect of chronic antipsychotic treatment on striatal phosphodiesterase 10A levels: a [¹¹C]MP-10 PET rodent imaging study with ex vivo confirmation. Transl Psychiatry 2014; 4e376.
[http://dx.doi.org/10.1038/tp.2014.17] [PMID: 24690597]
[26]
Graybiel AM. The basal ganglia and cognitive pattern generators. Schizophr Bull 1997; 23(3): 459-69.
[http://dx.doi.org/10.1093/schbul/23.3.459] [PMID: 9327509]
[27]
Schülke J-P, Brandon NJ. Current understanding of PDE10A in the modulation of basal ganglia circuitry. Adv Neurobiol 2017; 17: 15-43.
[http://dx.doi.org/10.1007/978-3-319-58811-7_2] [PMID: 28956328]
[28]
Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 2010; 113(2): 287-302.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06604.x] [PMID: 20089137]
[29]
Bernard JA, Russell CE, Newberry RE, Goen JRM, Mittal VA. Patients with schizophrenia show aberrant patterns of basal ganglia activation: Evidence from ALE meta-analysis. Neuroimage Clin 2017; 14: 450-63.
[http://dx.doi.org/10.1016/j.nicl.2017.01.034] [PMID: 28275545]
[30]
Coskran TM, Morton D, Menniti FS, et al. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 2006; 54(11): 1205-13.
[http://dx.doi.org/10.1369/jhc.6A6930.2006] [PMID: 16864896]
[31]
Seeger TF, Bartlett B, Coskran TM, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res 2003; 985(2): 113-26.
[http://dx.doi.org/10.1016/S0006-8993(03)02754-9] [PMID: 12967715]
[32]
Xie Z, Adamowicz WO, Eldred WD, et al. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 2006; 139(2): 597-607.
[http://dx.doi.org/10.1016/j.neuroscience.2005.12.042] [PMID: 16483723]
[33]
Heinz A, Schlagenhauf F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull 2010; 36(3): 472-85.
[http://dx.doi.org/10.1093/schbul/sbq031] [PMID: 20453041]
[34]
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2012; 2(12)a009621
[http://dx.doi.org/10.1101/cshperspect.a009621] [PMID: 23071379]
[35]
Nishi A, Snyder GL. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: biochemical and behavioral profiles of phosphodiesterase inhibition in dopaminergic neurotransmission. J Pharmacol Sci 2010; 114(1): 6-16.
[http://dx.doi.org/10.1254/jphs.10R01FM] [PMID: 20716858]
[36]
DeLong MR. [Functional and pathophysiological models of the basal ganglia: therapeutic implications] Rinsho Shinkeigaku 2000; 40(12): 1184.
[PMID: 11464452]
[37]
Nishi A, Kuroiwa M, Miller DB, et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci 2008; 28(42): 10460-71.
[http://dx.doi.org/10.1523/JNEUROSCI.2518-08.2008] [PMID: 18923023]
[38]
Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front Neuroanat 2011; 5: 43.
[http://dx.doi.org/10.3389/fnana.2011.00043] [PMID: 21811441]
[39]
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111: 1-16.
[http://dx.doi.org/10.1016/j.phrs.2016.05.010] [PMID: 27178731]
[40]
Siuciak JA, Chapin DS, Harms JF, et al. Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology 2006; 51(2): 386-96.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.013] [PMID: 16780899]
[41]
Polli JW, Kincaid RL. Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J Neurosci 1994; 14(3 Pt 1): 1251-61.
[http://dx.doi.org/10.1523/JNEUROSCI.14-03-01251.1994] [PMID: 8120623]
[42]
Siuciak JA, Chapin DS, McCarthy SA, Martin AN. Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 2007; 192(3): 415-24.
[http://dx.doi.org/10.1007/s00213-007-0727-x] [PMID: 17333137]
[43]
Heckman PRA, Schweimer JV, Sharp T, Prickaerts J, Blokland A. Phosphodiesterase 4 inhibition affects both the direct and indirect pathway: an electrophysiological study examining the tri-phasic response in the substantia nigra pars reticulata. Brain Struct Funct 2018; 223(2): 739-48.
[http://dx.doi.org/10.1007/s00429-017-1518-8] [PMID: 28924693]
[44]
Fienberg AA, Greengard P. The DARPP-32 knockout mouse. Brain Res Brain Res Rev 2000; 31(2-3): 313-9.
[http://dx.doi.org/10.1016/S0165-0173(99)00047-8] [PMID: 10719158]
[45]
Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 2004; 44: 269-96.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121415] [PMID: 14744247]
[46]
Hemmings HC Jr, Greengard P, Tung HYL, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 1984; 310(5977): 503-5.
[http://dx.doi.org/10.1038/310503a0] [PMID: 6087160]
[47]
Wang H, Farhan M, Xu J, Lazarovici P, Zheng W. The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 2017; 8(32): 53791-803.
[http://dx.doi.org/10.18632/oncotarget.17339] [PMID: 28881851]
[48]
Siuciak JA, McCarthy SA, Chapin DS, Martin AN, Harms JF, Schmidt CJ. Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology 2008; 54(2): 417-27.
[http://dx.doi.org/10.1016/j.neuropharm.2007.10.009] [PMID: 18061215]
[49]
Siuciak JA, McCarthy SA, Chapin DS, et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 2006; 51(2): 374-85.
[http://dx.doi.org/10.1016/j.neuropharm.2006.01.012] [PMID: 16769090]
[50]
Piccart E, Gantois I, Laeremans A, et al. Impaired appetitively as well as aversively motivated behaviors and learning in PDE10A-deficient mice suggest a role for striatal signaling in evaluative salience attribution. Neurobiol Learn Mem 2011; 95(3): 260-9.
[http://dx.doi.org/10.1016/j.nlm.2010.11.018] [PMID: 21130175]
[51]
Sano H, Nagai Y, Miyakawa T, Shigemoto R, Yokoi M. Increased social interaction in mice deficient of the striatal medium spiny neuron-specific phosphodiesterase 10A2. J Neurochem 2008; 105(2): 546-56.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05152.x] [PMID: 18088367]
[52]
Rodefer JS, Murphy ER, Baxter MG. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 2005; 21(4): 1070-6.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03937.x] [PMID: 15787711]
[53]
Weber M, Breier M, Ko D, Thangaraj N, Marzan DE, Swerdlow NR. Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology (Berl) 2009; 203(4): 723-35.
[http://dx.doi.org/10.1007/s00213-008-1419-x] [PMID: 19066855]
[54]
Schmidt CJ, Chapin DS, Cianfrogna J, et al. Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 2008; 325(2): 681-90.
[http://dx.doi.org/10.1124/jpet.107.132910] [PMID: 18287214]
[55]
Nikiforuk A, Potasiewicz A, Rafa D, Drescher K, Bespalov A, Popik P. The effects of PDE10 inhibition on attentional set-shifting do not depend on the activation of dopamine D1 receptors. Behav Pharmacol 2016; 27(4): 331-8.
[http://dx.doi.org/10.1097/FBP.0000000000000201] [PMID: 26580130]
[56]
Gresack JE, Seymour PA, Schmidt CJ, Risbrough VB. Inhibition of phosphodiesterase 10A has differential effects on dopamine D1 and D2 receptor modulation of sensorimotor gating. Psychopharmacology (Berl) 2014; 231(10): 2189-97.
[http://dx.doi.org/10.1007/s00213-013-3371-7] [PMID: 24363077]
[57]
Megens AAHP, Hendrickx HMR, Hens KA, et al. Pharmacology of JNJ-42314415, a centrally active phosphodiesterase 10A (PDE10A) inhibitor: a comparison of PDE10A inhibitors with D2 receptor blockers as potential antipsychotic drugs. J Pharmacol Exp Ther 2014; 349(1): 138-54.
[http://dx.doi.org/10.1124/jpet.113.211904] [PMID: 24421319]
[58]
Mango D, Bonito-Oliva A, Ledonne A, et al. Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato- nigral projections under normal and dopamine-depleted conditions. Neuropharmacology 2014; 76(Pt A): 127-36.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.010] [PMID: 23973317]
[59]
Uthayathas S, Masilamoni GJ, Shaffer CL, Schmidt CJ, Menniti FS, Papa SM. Phosphodiesterase 10A inhibitor MP-10 effects in primates: comparison with risperidone and mechanistic implications. Neuropharmacology 2014; 77: 257-67.
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.015] [PMID: 24490227]
[60]
Strick CA, James LC, Fox CB, Seeger TF, Menniti FS, Schmidt CJ. Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology 2010; 58(2): 444-51.
[http://dx.doi.org/10.1016/j.neuropharm.2009.09.008] [PMID: 19765598]
[61]
Kleiman RJ, Kimmel LH, Bove SE, et al. Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther 2011; 336(1): 64-76.
[http://dx.doi.org/10.1124/jpet.110.173294] [PMID: 20923867]
[62]
Gentzel RC, Toolan D, Roberts R, et al. The PDE10A inhibitor MP-10 and haloperidol produce distinct gene expression profiles in the striatum and influence cataleptic behavior in rodents. Neuropharmacology 2015; 99: 256-63.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.024] [PMID: 26044638]
[63]
Wilson JM, Ogden AML, Loomis S, et al. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 2015; 99: 379-86.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.008] [PMID: 26256420]
[64]
Takano A, Stepanov V, Nakao R, et al. Brain pet measurement of PDE10A occupancy by TAK-063, a new PDE10A inhibitor, using [11 c]t-773 in nonhuman primates. Synapse 2016; 70(6): 253-63.
[http://dx.doi.org/10.1002/syn.21896] [PMID: 26878349]
[65]
Li YW, Seager MA, Wojcik T, et al. Biochemical and behavioral effects of PDE10A inhibitors: Relationship to target site occupancy. Neuropharmacology 2016; 102: 121-35.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.037] [PMID: 26522433]
[66]
Shang Y, Wang L, Li Y, Gu P-F. Vinpocetine improves scopolamine induced learning and memory dysfunction in C57 BL/6J mice. Biol Pharm Bull 2016; 39(9): 1412-8.
[http://dx.doi.org/10.1248/bpb.b15-00881] [PMID: 27334578]
[67]
Abdel-Magid AF. Potential treatment of cognitive impairment in schizophrenia by phosphodiesterase 2 (PDE2) inhibitors. ACS Med Chem Lett 2016; 8(1): 17-8.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00514] [PMID: 28105267]
[68]
Rodefer JS, Saland SK, Eckrich SJ. Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology 2012; 62(3): 1182-90.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.008] [PMID: 21856317]
[69]
Lipina TV, Palomo V, Gil C, Martinez A, Roder JC. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology 2013; 64: 205-14.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.032] [PMID: 22749842]
[70]
van der Staay FJ, Rutten K, Bärfacker L, et al. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 2008; 55(5): 908-18.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.005] [PMID: 18674549]
[71]
Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP. Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 2007; 144(1): 239-46.
[http://dx.doi.org/10.1016/j.neuroscience.2006.09.026] [PMID: 17081698]
[72]
Zhang C, Lueptow LM, Zhang HT, O’Donnell JM, Xu Y. The role of phosphodiesterase-2 in psychiatric and neurodegenerative disorders. Adv Neurobiol 2017; 17: 307-47.
[http://dx.doi.org/10.1007/978-3-319-58811-7_12] [PMID: 28956338]
[73]
Li P, Zheng H, Zhao J, et al. Discovery of potent and selective inhibitors of phosphodiesterase 1 for the treatment of cognitive impairment associated with neurodegenerative and neuropsychiatric diseases. J Med Chem 2016; 59(3): 1149-64.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01751] [PMID: 26789933]
[74]
Snyder GL, Prickaerts J, Wadenberg ML, et al. Preclinical profile of ITI-214, an inhibitor of phosphodiesterase 1, for enhancement of memory performance in rats. Psychopharmacology (Berl) 2016; 233(17): 3113-24.
[http://dx.doi.org/10.1007/s00213-016-4346-2] [PMID: 27342643]
[75]
Rezaei F, Mesgarpour B, Jeddian A, et al. Cilostazol adjunctive therapy in treatment of negative symptoms in chronic schizophrenia: Randomized, double-blind, placebo-controlled study. Hum Psychopharmacol 2017; 32(4)e2583
[http://dx.doi.org/10.1002/hup.2583] [PMID: 28421639]
[76]
Brown D, Nakagome K, Cordes J, et al. Evaluation of the efficacy, safety, and tolerability of BI 409306, a novel phosphodiesterase 9 inhibitor, in cognitive impairment in schizophrenia: A Randomized, double-blind, placebo-controlled, phase II trial. Schizophr Bull 2019; 45(2): 350-9.
[http://dx.doi.org/10.1093/schbul/sby049] [PMID: 29718385]
[77]
Frölich L, Wunderlich G, Thamer C, Roehrle M, Garcia M Jr, Dubois B. Evaluation of the efficacy, safety and tolerability of orally administered BI 409306, a novel phosphodiesterase type 9 inhibitor, in two randomised controlled phase II studies in patients with prodromal and mild Alzheimer’s disease. Alzheimers Res Ther 2019; 11(1): 18.
[http://dx.doi.org/10.1186/s13195-019-0467-2] [PMID: 30755255]
[78]
Siuciak JA, McCarthy SA, Chapin DS, Reed TM, Vorhees CV, Repaske DR. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 2007; 53(1): 113-24.
[http://dx.doi.org/10.1016/j.neuropharm.2007.04.009] [PMID: 17559891]
[79]
Repaske DR, Corbin JG, Conti M, Goy MF. A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience 1993; 56(3): 673-86.
[http://dx.doi.org/10.1016/0306-4522(93)90364-L] [PMID: 8305078]
[80]
Deal watch: Intra-cellular therapies and Takeda to develop PDE1 inhibitors for schizophrenia. Nat Rev Drug Discov 2011; 10(5): 329.
[http://dx.doi.org/10.1038/nrd3438] [PMID: 21532553]
[81]
Van Staveren WCG, Steinbusch HWM, Markerink-Van Ittersum M, et al. mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol 2003; 467(4): 566-80.
[http://dx.doi.org/10.1002/cne.10955] [PMID: 14624489]
[82]
Boess FG, Hendrix M, van der Staay FJ, et al. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 2004; 47(7): 1081-92.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.040] [PMID: 15555642]
[83]
Gomez L, Breitenbucher JG. PDE2 inhibition: potential for the treatment of cognitive disorders. Bioorg Med Chem Lett 2013; 23(24): 6522-7.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.014] [PMID: 24189054]
[84]
Houslay MD, Schafer P, Zhang KY. Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 2005; 10(22): 1503-19.
[http://dx.doi.org/10.1016/S1359-6446(05)03622-6] [PMID: 16257373]
[85]
Heckman PRA, van Duinen MA, Bollen EPP, et al. Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: Clinical implications. Int J Neuropsychopharmacol 2016; 19: 1-16.
[http://dx.doi.org/10.1093/ijnp/pyw030] [PMID: 27037577]
[86]
Burgin AB, Magnusson OT, Singh J, et al. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 2010; 28(1): 63-70.
[http://dx.doi.org/10.1038/nbt.1598] [PMID: 20037581]
[87]
Lipina TV, Wang M, Liu F, Roder JC. Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice. Neuropharmacology 2012; 62(3): 1252-62.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.020] [PMID: 21376063]
[88]
Clapcote SJ. Phosphodiesterase-4B as a therapeutic target for cognitive impairment and obesity-related metabolic diseases. Adv Neurobiol 2017; 17: 103-31.
[http://dx.doi.org/10.1007/978-3-319-58811-7_5] [PMID: 28956331]
[89]
Jankowska A, Świerczek A, Chłoń-Rzepa G, Pawłowski M, Wyska E. PDE7-selective and dual inhibitors: advances in chemical and biological research. Curr Med Chem 2017; 24(7): 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
[90]
Świerczek A, Wyska E, Baś S, Woyciechowska M, Mlynarski J. PK/PD studies on non-selective PDE inhibitors in rats using cAMP as a marker of pharmacological response. Naunyn Schmiedebergs Arch Pharmacol 2017; 390(10): 1047-59.
[http://dx.doi.org/10.1007/s00210-017-1406-z] [PMID: 28730281]
[91]
Garcia AM, Martinez A, Gil C. Enhancing cAMP levels as strategy for the treatment of neuropsychiatric disorders. Curr Top Med Chem 2016; 16(29): 3527-35.
[http://dx.doi.org/10.2174/1568026616666160426151306] [PMID: 27112214]
[92]
Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull 2018; 44(5): 973-82.
[http://dx.doi.org/10.1093/schbul/sby024] [PMID: 29648618]
[93]
Müller N. Immunological aspects of the treatment of depression and schizophrenia. Dialogues Clin Neurosci 2017; 19(1): 55-63.
[PMID: 28566947]
[94]
Lankau HJ, Langen B, Grunwald C, et al. (1,2,4)triazolo[4,3- a]quinoxaline derivatives as inhibitors of phosphodiesterases. Patent WO/2012/104293. 2012.
[95]
Andrés JI, Buijnsters P, De Angelis M, et al. Discovery of a new series of [1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors. Bioorg Med Chem Lett 2013; 23(3): 785-90.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.077] [PMID: 23260348]
[96]
Jørgensen M, Bruun AT, Rasmussen LK, Larsen M. Triazolopyrazine derivatives and their use for treating neurological and psychiatric disorders. Patent WO2013034755 A1 2013.
[97]
Jørgensen M, Brunn AT, Rasmussen LK. Preparation of substituted triazolopyrazines useful for treating neurological and psychiatric disorders. Patent WO2013034758 A1 2013.
[98]
Kehler J, Kilburn JP. Patented PDE10A inhibitors: novel compounds since 2007. Expert Opin Ther Pat 2009; 19(12): 1715-25.
[http://dx.doi.org/10.1517/13543770903431050] [PMID: 19939189]
[99]
Redrobe JP, Rasmussen LK, Christoffersen CT, Bundgaard C, Jørgensen M. Characterisation of Lu AF33241: A novel, brain-penetrant, dual inhibitor of phosphodiesterase (PDE) 2A and PDE10A. Eur J Pharmacol 2015; 761: 79-85.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.040] [PMID: 25941078]
[100]
Milelli A, Turrini E, Catanzaro E, Maffei F, Fimognari C. Perspectives in designing multifunctional molecules in antipsychotic drug discovery. Drug Dev Res 2016; 77(8): 437-43.
[http://dx.doi.org/10.1002/ddr.21334] [PMID: 27539712]
[101]
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 2012; 17(12): 1206-27.
[http://dx.doi.org/10.1038/mp.2012.47] [PMID: 22584864]
[102]
Zagórska A, Bucki A, Kołaczkowski M, et al. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine- 2,4(3H,8H)-dione as potential antidepressant agents. J Enzyme Inhib Med Chem 2016; 31(sup3): 10-24.
[http://dx.doi.org/10.1080/14756366.2016.1198902] [PMID: 27353547]
[103]
Chłoń-Rzepa G, Zagórska A, Żmudzki P, et al. Aminoalkyl derivatives of 8-alkoxypurine-2,6-diones: multifunctional 5-HT1A/5-HT7 receptor ligands and PDE inhibitors with antidepressant activity. Arch Pharm (Weinheim) 2016; 349(12): 889-903.
[http://dx.doi.org/10.1002/ardp.201600260] [PMID: 27869315]
[104]
Zagórska A, Gryzło B, Satała G, Bojarski AJ, Głuch-Lutwin M, Mordyl B, et al. Receptor affinity and phosphodiesterases 4B and 10A activity of octahydro- and 6,7-dimethoxy-3,4-dihydro- isoquinolin-2(1H)-yl-alkyl derivatives of imidazo- and pyrimidino[2,1-f]purines. Acta Pol Pharm 2016; 73: 369-77.
[PMID: 27180429]
[105]
Shiraishi E, Suzuki K, Harada A, Suzuki N, Kimura H. The phosphodiesterase 10A selective inhibitor TAK-063 improves cognitive functions associated with schizophrenia in rodent models. J Pharmacol Exp Ther 2016; 356(3): 587-95.
[http://dx.doi.org/10.1124/jpet.115.230482] [PMID: 26675680]
[106]
Tsai M, Chrones L, Xie J, Gevorkyan H, Macek TA. A phase 1 study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-063, a selective PDE10A inhibitor. Psychopharmacology (Berl) 2016; 233(21-22): 3787-95.
[http://dx.doi.org/10.1007/s00213-016-4412-9] [PMID: 27572830]
[107]
Goldsmith P, Affinito J, McCue M, et al. A randomized multiple dose pharmacokinetic study of a novel PDE10A inhibitor TAK-063 in subjects with stable schizophrenia and japanese subjects and modeling of exposure relationships to adverse events. Drugs R D 2017; 17(4): 631-43.
[http://dx.doi.org/10.1007/s40268-017-0214-8] [PMID: 29103081]
[108]
Macek TA, McCue M, Dong X, et al. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr Res 2019; 204: 289-94.
[http://dx.doi.org/10.1016/j.schres.2018.08.028] [PMID: 30190165]
[109]
Abstracts for the 15th International Congress on Schizophrenia Research (ICOSR), March 28-April 1, 2015, Colorado Springs, Colorado. Schizophr Bull 2015; 41(Suppl. 1): S1-S341.
[PMID: 26305006]
[110]
Yu A. Early clinical results of the phosphodiesterase 10 inhibitor OMS643762 in development for the treatment of schizophrenia and huntington’s disease. Schizophr Res 2014; 153: S22.
[http://dx.doi.org/10.1016/S0920-9964(14)70069-6]
[111]
Zagorska A, Partyka A, Bucki A, Gawalska A, Czopek A, Pawlowski M. Phosphodiesterase 10 inhibitors - novel perspectives for psychiatric and neurodegenerative drug discovery. Curr Med Chem 2018; 25(29): 3455-81.
[http://dx.doi.org/10.2174/0929867325666180309110629] [PMID: 29521210]
[112]
Ahmad R, Bourgeois S, Postnov A, et al. PET imaging shows loss of striatal PDE10A in patients with Huntington disease. Neurology 2014; 82(3): 279-81.
[http://dx.doi.org/10.1212/WNL.0000000000000037] [PMID: 24353339]
[113]
Niccolini F, Foltynie T, Reis Marques T, et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain 2015; 138(Pt 10): 3003-15.
[http://dx.doi.org/10.1093/brain/awv219] [PMID: 26210536]
[114]
Li J, Chen J-Y, Deng Y-L, et al. Structure-based design, synthesis, biological evaluation, and molecular docking of novel PDE10 inhibitors with antioxidant activities. Front Chem 2018; 6: 167.
[http://dx.doi.org/10.3389/fchem.2018.00167] [PMID: 29868568]
[115]
Tian X, Vroom C, Ghofrani HA, et al. Phosphodiesterase 10A upregulation contributes to pulmonary vascular remodeling. PLoS One 2011; 6(4)e18136
[http://dx.doi.org/10.1371/journal.pone.0018136] [PMID: 21494592]
[116]
Huang Y-Y, Yu Y-F, Zhang C, et al. Validation of phosphodiesterase-10 as a novel target for pulmonary arterial hypertension via highly selective and subnanomolar inhibitors. J Med Chem 2019; 62(7): 3707-21.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00224] [PMID: 30888810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy