Review Article

Advances in the Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 2: Focus on Schizophrenia

Author(s): Artur Świerczek, Agnieszka Jankowska, Grażyna Chłoń-Rzepa, Maciej Pawłowski and Elżbieta Wyska*

Volume 20, Issue 16, 2019

Page: [1652 - 1669] Pages: 18

DOI: 10.2174/1389450120666190801114210

Price: $65

Abstract

Schizophrenia is a debilitating mental disorder with relatively high prevalence (~1%), during which positive manifestations (such as psychotic states) and negative symptoms (e.g., a withdrawal from social life) occur. Moreover, some researchers consider cognitive impairment as a distinct domain of schizophrenia symptoms.

The imbalance in dopamine activity, namely an excessive release of this neurotransmitter in the striatum and insufficient amounts in the prefrontal cortex is believed to be partially responsible for the occurrence of these groups of manifestations. Second-generation antipsychotics are currently the standard treatment of schizophrenia. Nevertheless, the existent treatment is sometimes ineffective and burdened with severe adverse effects, such as extrapyramidal symptoms. Thus, there is an urgent need to search for alternative treatment options of this disease.

This review summarizes the results of recent preclinical and clinical studies on phosphodiesterase 10A (PDE10A), which is highly expressed in the mammalian striatum, as a potential drug target for the treatment of schizophrenia. Based on the literature data, not only selective PDE10A inhibitors but also dual PDE2A/10A, and PDE4B/10A inhibitors, as well as multifunctional ligands with a PDE10A inhibitory potency are compounds that may combine antipsychotic, precognitive, and antidepressant functions. Thus, designing such compounds may constitute a new direction of research for new potential medications for schizophrenia. Despite failures of previous clinical trials of selective PDE10A inhibitors for the treatment of schizophrenia, new compounds with this mechanism of action are currently investigated clinically, thus, the search for new inhibitors of PDE10A, both selective and multitarget, is still warranted.

Keywords: PDE10A inhibitors, multifunctional ligands, antipsychotic activity, procognitive activity, schizophrenia, clinical trials.

Graphical Abstract
[1]
McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30: 67-76.
[http://dx.doi.org/10.1093/epirev/mxn001] [PMID: 18480098]
[2]
Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016; 388(10039): 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[3]
Tripathi A, Kar SK, Shukla R. Cognitive deficits in schizophrenia: understanding the biological correlates and remediation strategies. Clin Psychopharmacol Neurosci 2018; 16(1): 7-17.
[http://dx.doi.org/10.9758/cpn.2018.16.1.7] [PMID: 29397662]
[4]
Buckley PF, Miller BJ, Lehrer DS, Castle DJ. Psychiatric comorbidities and schizophrenia. Schizophr Bull 2009; 35(2): 383-402.
[http://dx.doi.org/10.1093/schbul/sbn135] [PMID: 19011234]
[5]
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 2009; 35(3): 549-62.
[http://dx.doi.org/10.1093/schbul/sbp006] [PMID: 19325164]
[6]
Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 2017; 22(5): 666-79.
[http://dx.doi.org/10.1038/mp.2017.16] [PMID: 28289283]
[7]
Dao-Castellana M-H, Paillère-Martinot M-L, Hantraye P, et al. Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr Res 1997; 23(2): 167-74.
[http://dx.doi.org/10.1016/S0920-9964(96)00102-8] [PMID: 9061812]
[8]
Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry 2017; 81(1): 31-42.
[http://dx.doi.org/10.1016/j.biopsych.2016.03.2104] [PMID: 27206569]
[9]
Yang AC, Tsai S-J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 2017; 18(8): 1689.
[http://dx.doi.org/10.3390/ijms18081689] [PMID: 28771182]
[10]
Eggers AE. A serotonin hypothesis of schizophrenia. Med Hypotheses 2013; 80(6): 791-4.
[http://dx.doi.org/10.1016/j.mehy.2013.03.013] [PMID: 23557849]
[11]
Nutt DJ, Need AC. Where now for schizophrenia research? Eur Neuropsychopharmacol 2014; 24(8): 1181-7.
[http://dx.doi.org/10.1016/j.euroneuro.2014.05.012] [PMID: 24950818]
[12]
Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol (Oxford) 2015; 29(2): 97-115.
[http://dx.doi.org/10.1177/0269881114563634] [PMID: 25586400]
[13]
Solmi M, Murru A, Pacchiarotti I, et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag 2017; 13: 757-77.
[http://dx.doi.org/10.2147/TCRM.S117321] [PMID: 28721057]
[14]
Kikkert MJ, Dekker J. Medication adherence decisions in patients with schizophrenia. Prim Care Companion CNS Disord 2017; 19(6): 19.
[http://dx.doi.org/10.4088/PCC.17n02182] [PMID: 29216418]
[15]
Jankowska A, Świerczek A, Wyska E, et al. Advances in discovery of PDE10A inhibitors for CNS-related disorders. Part 1: Overview of the chemical and biological research. Curr Drug Targets 2019; 20(1): 122-43.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414]
[16]
Celen S, Koole M, De Angelis M, et al. Preclinical evaluation of 18F-JNJ41510417 as a radioligand for PET imaging of phosphodiesterase-10A in the brain. J Nucl Med 2010; 51(10): 1584-91.
[http://dx.doi.org/10.2967/jnumed.110.077040] [PMID: 20847170]
[17]
Tu Z, Xu J, Jones LA, Li S, Mach RH. Carbon-11 labeled papaverine as a PET tracer for imaging PDE10A: radiosynthesis, in vitro and in vivo evaluation. Nucl Med Biol 2010; 37(4): 509-16.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.12.012] [PMID: 20447563]
[18]
Kehler J, Kilburn JP, Estrada S, et al. Discovery and development of 11C-Lu AE92686 as a radioligand for PET imaging of phosphodiesterase10A in the brain. J Nucl Med 2014; 55(9): 1513-8.
[http://dx.doi.org/10.2967/jnumed.114.140178] [PMID: 24994928]
[19]
Lin SF, Labaree D, Chen MK, et al. Further evaluation of [11C]MP-10 as a radiotracer for phosphodiesterase 10A: PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse 2015; 69(2): 86-95.
[http://dx.doi.org/10.1002/syn.21792] [PMID: 25450608]
[20]
Fan J, Zhang X, Li J, et al. Radiosyntheses and in vivo evaluation of carbon-11 PET tracers for PDE10A in the brain of rodent and nonhuman primate. Bioorg Med Chem 2014; 22(9): 2648-54.
[http://dx.doi.org/10.1016/j.bmc.2014.03.028] [PMID: 24721831]
[21]
Hwang DR, Hu E, Allen JR, et al. Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18F]AMG 580 in non-human primates. Nucl Med Biol 2015; 42(8): 654-63.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.04.004] [PMID: 25935386]
[22]
Plisson C, Weinzimmer D, Jakobsen S, et al. Phosphodiesterase 10A PET radioligand development program: from pig to human. J Nucl Med 2014; 55(4): 595-601.
[http://dx.doi.org/10.2967/jnumed.113.131409] [PMID: 24614221]
[23]
Bodén R, Persson J, Wall A, et al. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study. Transl Psychiatry 2017; 7(3)e1050
[http://dx.doi.org/10.1038/tp.2017.11] [PMID: 28267149]
[24]
Goldman AL, Pezawas L, Mattay VS, et al. Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Arch Gen Psychiatry 2009; 66(5): 467-77.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.24] [PMID: 19414706]
[25]
Natesan S, Ashworth S, Nielsen J, et al. Effect of chronic antipsychotic treatment on striatal phosphodiesterase 10A levels: a [¹¹C]MP-10 PET rodent imaging study with ex vivo confirmation. Transl Psychiatry 2014; 4e376.
[http://dx.doi.org/10.1038/tp.2014.17] [PMID: 24690597]
[26]
Graybiel AM. The basal ganglia and cognitive pattern generators. Schizophr Bull 1997; 23(3): 459-69.
[http://dx.doi.org/10.1093/schbul/23.3.459] [PMID: 9327509]
[27]
Schülke J-P, Brandon NJ. Current understanding of PDE10A in the modulation of basal ganglia circuitry. Adv Neurobiol 2017; 17: 15-43.
[http://dx.doi.org/10.1007/978-3-319-58811-7_2] [PMID: 28956328]
[28]
Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 2010; 113(2): 287-302.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06604.x] [PMID: 20089137]
[29]
Bernard JA, Russell CE, Newberry RE, Goen JRM, Mittal VA. Patients with schizophrenia show aberrant patterns of basal ganglia activation: Evidence from ALE meta-analysis. Neuroimage Clin 2017; 14: 450-63.
[http://dx.doi.org/10.1016/j.nicl.2017.01.034] [PMID: 28275545]
[30]
Coskran TM, Morton D, Menniti FS, et al. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 2006; 54(11): 1205-13.
[http://dx.doi.org/10.1369/jhc.6A6930.2006] [PMID: 16864896]
[31]
Seeger TF, Bartlett B, Coskran TM, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res 2003; 985(2): 113-26.
[http://dx.doi.org/10.1016/S0006-8993(03)02754-9] [PMID: 12967715]
[32]
Xie Z, Adamowicz WO, Eldred WD, et al. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 2006; 139(2): 597-607.
[http://dx.doi.org/10.1016/j.neuroscience.2005.12.042] [PMID: 16483723]
[33]
Heinz A, Schlagenhauf F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull 2010; 36(3): 472-85.
[http://dx.doi.org/10.1093/schbul/sbq031] [PMID: 20453041]
[34]
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2012; 2(12)a009621
[http://dx.doi.org/10.1101/cshperspect.a009621] [PMID: 23071379]
[35]
Nishi A, Snyder GL. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: biochemical and behavioral profiles of phosphodiesterase inhibition in dopaminergic neurotransmission. J Pharmacol Sci 2010; 114(1): 6-16.
[http://dx.doi.org/10.1254/jphs.10R01FM] [PMID: 20716858]
[36]
DeLong MR. [Functional and pathophysiological models of the basal ganglia: therapeutic implications] Rinsho Shinkeigaku 2000; 40(12): 1184.
[PMID: 11464452]
[37]
Nishi A, Kuroiwa M, Miller DB, et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci 2008; 28(42): 10460-71.
[http://dx.doi.org/10.1523/JNEUROSCI.2518-08.2008] [PMID: 18923023]
[38]
Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front Neuroanat 2011; 5: 43.
[http://dx.doi.org/10.3389/fnana.2011.00043] [PMID: 21811441]
[39]
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111: 1-16.
[http://dx.doi.org/10.1016/j.phrs.2016.05.010] [PMID: 27178731]
[40]
Siuciak JA, Chapin DS, Harms JF, et al. Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology 2006; 51(2): 386-96.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.013] [PMID: 16780899]
[41]
Polli JW, Kincaid RL. Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J Neurosci 1994; 14(3 Pt 1): 1251-61.
[http://dx.doi.org/10.1523/JNEUROSCI.14-03-01251.1994] [PMID: 8120623]
[42]
Siuciak JA, Chapin DS, McCarthy SA, Martin AN. Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 2007; 192(3): 415-24.
[http://dx.doi.org/10.1007/s00213-007-0727-x] [PMID: 17333137]
[43]
Heckman PRA, Schweimer JV, Sharp T, Prickaerts J, Blokland A. Phosphodiesterase 4 inhibition affects both the direct and indirect pathway: an electrophysiological study examining the tri-phasic response in the substantia nigra pars reticulata. Brain Struct Funct 2018; 223(2): 739-48.
[http://dx.doi.org/10.1007/s00429-017-1518-8] [PMID: 28924693]
[44]
Fienberg AA, Greengard P. The DARPP-32 knockout mouse. Brain Res Brain Res Rev 2000; 31(2-3): 313-9.
[http://dx.doi.org/10.1016/S0165-0173(99)00047-8] [PMID: 10719158]
[45]
Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 2004; 44: 269-96.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121415] [PMID: 14744247]
[46]
Hemmings HC Jr, Greengard P, Tung HYL, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 1984; 310(5977): 503-5.
[http://dx.doi.org/10.1038/310503a0] [PMID: 6087160]
[47]
Wang H, Farhan M, Xu J, Lazarovici P, Zheng W. The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 2017; 8(32): 53791-803.
[http://dx.doi.org/10.18632/oncotarget.17339] [PMID: 28881851]
[48]
Siuciak JA, McCarthy SA, Chapin DS, Martin AN, Harms JF, Schmidt CJ. Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology 2008; 54(2): 417-27.
[http://dx.doi.org/10.1016/j.neuropharm.2007.10.009] [PMID: 18061215]
[49]
Siuciak JA, McCarthy SA, Chapin DS, et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 2006; 51(2): 374-85.
[http://dx.doi.org/10.1016/j.neuropharm.2006.01.012] [PMID: 16769090]
[50]
Piccart E, Gantois I, Laeremans A, et al. Impaired appetitively as well as aversively motivated behaviors and learning in PDE10A-deficient mice suggest a role for striatal signaling in evaluative salience attribution. Neurobiol Learn Mem 2011; 95(3): 260-9.
[http://dx.doi.org/10.1016/j.nlm.2010.11.018] [PMID: 21130175]
[51]
Sano H, Nagai Y, Miyakawa T, Shigemoto R, Yokoi M. Increased social interaction in mice deficient of the striatal medium spiny neuron-specific phosphodiesterase 10A2. J Neurochem 2008; 105(2): 546-56.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05152.x] [PMID: 18088367]
[52]
Rodefer JS, Murphy ER, Baxter MG. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 2005; 21(4): 1070-6.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03937.x] [PMID: 15787711]
[53]
Weber M, Breier M, Ko D, Thangaraj N, Marzan DE, Swerdlow NR. Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology (Berl) 2009; 203(4): 723-35.
[http://dx.doi.org/10.1007/s00213-008-1419-x] [PMID: 19066855]
[54]
Schmidt CJ, Chapin DS, Cianfrogna J, et al. Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 2008; 325(2): 681-90.
[http://dx.doi.org/10.1124/jpet.107.132910] [PMID: 18287214]
[55]
Nikiforuk A, Potasiewicz A, Rafa D, Drescher K, Bespalov A, Popik P. The effects of PDE10 inhibition on attentional set-shifting do not depend on the activation of dopamine D1 receptors. Behav Pharmacol 2016; 27(4): 331-8.
[http://dx.doi.org/10.1097/FBP.0000000000000201] [PMID: 26580130]
[56]
Gresack JE, Seymour PA, Schmidt CJ, Risbrough VB. Inhibition of phosphodiesterase 10A has differential effects on dopamine D1 and D2 receptor modulation of sensorimotor gating. Psychopharmacology (Berl) 2014; 231(10): 2189-97.
[http://dx.doi.org/10.1007/s00213-013-3371-7] [PMID: 24363077]
[57]
Megens AAHP, Hendrickx HMR, Hens KA, et al. Pharmacology of JNJ-42314415, a centrally active phosphodiesterase 10A (PDE10A) inhibitor: a comparison of PDE10A inhibitors with D2 receptor blockers as potential antipsychotic drugs. J Pharmacol Exp Ther 2014; 349(1): 138-54.
[http://dx.doi.org/10.1124/jpet.113.211904] [PMID: 24421319]
[58]
Mango D, Bonito-Oliva A, Ledonne A, et al. Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato- nigral projections under normal and dopamine-depleted conditions. Neuropharmacology 2014; 76(Pt A): 127-36.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.010] [PMID: 23973317]
[59]
Uthayathas S, Masilamoni GJ, Shaffer CL, Schmidt CJ, Menniti FS, Papa SM. Phosphodiesterase 10A inhibitor MP-10 effects in primates: comparison with risperidone and mechanistic implications. Neuropharmacology 2014; 77: 257-67.
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.015] [PMID: 24490227]
[60]
Strick CA, James LC, Fox CB, Seeger TF, Menniti FS, Schmidt CJ. Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology 2010; 58(2): 444-51.
[http://dx.doi.org/10.1016/j.neuropharm.2009.09.008] [PMID: 19765598]
[61]
Kleiman RJ, Kimmel LH, Bove SE, et al. Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther 2011; 336(1): 64-76.
[http://dx.doi.org/10.1124/jpet.110.173294] [PMID: 20923867]
[62]
Gentzel RC, Toolan D, Roberts R, et al. The PDE10A inhibitor MP-10 and haloperidol produce distinct gene expression profiles in the striatum and influence cataleptic behavior in rodents. Neuropharmacology 2015; 99: 256-63.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.024] [PMID: 26044638]
[63]
Wilson JM, Ogden AML, Loomis S, et al. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 2015; 99: 379-86.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.008] [PMID: 26256420]
[64]
Takano A, Stepanov V, Nakao R, et al. Brain pet measurement of PDE10A occupancy by TAK-063, a new PDE10A inhibitor, using [11 c]t-773 in nonhuman primates. Synapse 2016; 70(6): 253-63.
[http://dx.doi.org/10.1002/syn.21896] [PMID: 26878349]
[65]
Li YW, Seager MA, Wojcik T, et al. Biochemical and behavioral effects of PDE10A inhibitors: Relationship to target site occupancy. Neuropharmacology 2016; 102: 121-35.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.037] [PMID: 26522433]
[66]
Shang Y, Wang L, Li Y, Gu P-F. Vinpocetine improves scopolamine induced learning and memory dysfunction in C57 BL/6J mice. Biol Pharm Bull 2016; 39(9): 1412-8.
[http://dx.doi.org/10.1248/bpb.b15-00881] [PMID: 27334578]
[67]
Abdel-Magid AF. Potential treatment of cognitive impairment in schizophrenia by phosphodiesterase 2 (PDE2) inhibitors. ACS Med Chem Lett 2016; 8(1): 17-8.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00514] [PMID: 28105267]
[68]
Rodefer JS, Saland SK, Eckrich SJ. Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology 2012; 62(3): 1182-90.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.008] [PMID: 21856317]
[69]
Lipina TV, Palomo V, Gil C, Martinez A, Roder JC. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology 2013; 64: 205-14.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.032] [PMID: 22749842]
[70]
van der Staay FJ, Rutten K, Bärfacker L, et al. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 2008; 55(5): 908-18.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.005] [PMID: 18674549]
[71]
Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP. Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 2007; 144(1): 239-46.
[http://dx.doi.org/10.1016/j.neuroscience.2006.09.026] [PMID: 17081698]
[72]
Zhang C, Lueptow LM, Zhang HT, O’Donnell JM, Xu Y. The role of phosphodiesterase-2 in psychiatric and neurodegenerative disorders. Adv Neurobiol 2017; 17: 307-47.
[http://dx.doi.org/10.1007/978-3-319-58811-7_12] [PMID: 28956338]
[73]
Li P, Zheng H, Zhao J, et al. Discovery of potent and selective inhibitors of phosphodiesterase 1 for the treatment of cognitive impairment associated with neurodegenerative and neuropsychiatric diseases. J Med Chem 2016; 59(3): 1149-64.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01751] [PMID: 26789933]
[74]
Snyder GL, Prickaerts J, Wadenberg ML, et al. Preclinical profile of ITI-214, an inhibitor of phosphodiesterase 1, for enhancement of memory performance in rats. Psychopharmacology (Berl) 2016; 233(17): 3113-24.
[http://dx.doi.org/10.1007/s00213-016-4346-2] [PMID: 27342643]
[75]
Rezaei F, Mesgarpour B, Jeddian A, et al. Cilostazol adjunctive therapy in treatment of negative symptoms in chronic schizophrenia: Randomized, double-blind, placebo-controlled study. Hum Psychopharmacol 2017; 32(4)e2583
[http://dx.doi.org/10.1002/hup.2583] [PMID: 28421639]
[76]
Brown D, Nakagome K, Cordes J, et al. Evaluation of the efficacy, safety, and tolerability of BI 409306, a novel phosphodiesterase 9 inhibitor, in cognitive impairment in schizophrenia: A Randomized, double-blind, placebo-controlled, phase II trial. Schizophr Bull 2019; 45(2): 350-9.
[http://dx.doi.org/10.1093/schbul/sby049] [PMID: 29718385]
[77]
Frölich L, Wunderlich G, Thamer C, Roehrle M, Garcia M Jr, Dubois B. Evaluation of the efficacy, safety and tolerability of orally administered BI 409306, a novel phosphodiesterase type 9 inhibitor, in two randomised controlled phase II studies in patients with prodromal and mild Alzheimer’s disease. Alzheimers Res Ther 2019; 11(1): 18.
[http://dx.doi.org/10.1186/s13195-019-0467-2] [PMID: 30755255]
[78]
Siuciak JA, McCarthy SA, Chapin DS, Reed TM, Vorhees CV, Repaske DR. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 2007; 53(1): 113-24.
[http://dx.doi.org/10.1016/j.neuropharm.2007.04.009] [PMID: 17559891]
[79]
Repaske DR, Corbin JG, Conti M, Goy MF. A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience 1993; 56(3): 673-86.
[http://dx.doi.org/10.1016/0306-4522(93)90364-L] [PMID: 8305078]
[80]
Deal watch: Intra-cellular therapies and Takeda to develop PDE1 inhibitors for schizophrenia. Nat Rev Drug Discov 2011; 10(5): 329.
[http://dx.doi.org/10.1038/nrd3438] [PMID: 21532553]
[81]
Van Staveren WCG, Steinbusch HWM, Markerink-Van Ittersum M, et al. mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol 2003; 467(4): 566-80.
[http://dx.doi.org/10.1002/cne.10955] [PMID: 14624489]
[82]
Boess FG, Hendrix M, van der Staay FJ, et al. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 2004; 47(7): 1081-92.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.040] [PMID: 15555642]
[83]
Gomez L, Breitenbucher JG. PDE2 inhibition: potential for the treatment of cognitive disorders. Bioorg Med Chem Lett 2013; 23(24): 6522-7.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.014] [PMID: 24189054]
[84]
Houslay MD, Schafer P, Zhang KY. Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 2005; 10(22): 1503-19.
[http://dx.doi.org/10.1016/S1359-6446(05)03622-6] [PMID: 16257373]
[85]
Heckman PRA, van Duinen MA, Bollen EPP, et al. Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: Clinical implications. Int J Neuropsychopharmacol 2016; 19: 1-16.
[http://dx.doi.org/10.1093/ijnp/pyw030] [PMID: 27037577]
[86]
Burgin AB, Magnusson OT, Singh J, et al. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 2010; 28(1): 63-70.
[http://dx.doi.org/10.1038/nbt.1598] [PMID: 20037581]
[87]
Lipina TV, Wang M, Liu F, Roder JC. Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice. Neuropharmacology 2012; 62(3): 1252-62.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.020] [PMID: 21376063]
[88]
Clapcote SJ. Phosphodiesterase-4B as a therapeutic target for cognitive impairment and obesity-related metabolic diseases. Adv Neurobiol 2017; 17: 103-31.
[http://dx.doi.org/10.1007/978-3-319-58811-7_5] [PMID: 28956331]
[89]
Jankowska A, Świerczek A, Chłoń-Rzepa G, Pawłowski M, Wyska E. PDE7-selective and dual inhibitors: advances in chemical and biological research. Curr Med Chem 2017; 24(7): 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
[90]
Świerczek A, Wyska E, Baś S, Woyciechowska M, Mlynarski J. PK/PD studies on non-selective PDE inhibitors in rats using cAMP as a marker of pharmacological response. Naunyn Schmiedebergs Arch Pharmacol 2017; 390(10): 1047-59.
[http://dx.doi.org/10.1007/s00210-017-1406-z] [PMID: 28730281]
[91]
Garcia AM, Martinez A, Gil C. Enhancing cAMP levels as strategy for the treatment of neuropsychiatric disorders. Curr Top Med Chem 2016; 16(29): 3527-35.
[http://dx.doi.org/10.2174/1568026616666160426151306] [PMID: 27112214]
[92]
Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull 2018; 44(5): 973-82.
[http://dx.doi.org/10.1093/schbul/sby024] [PMID: 29648618]
[93]
Müller N. Immunological aspects of the treatment of depression and schizophrenia. Dialogues Clin Neurosci 2017; 19(1): 55-63.
[PMID: 28566947]
[94]
Lankau HJ, Langen B, Grunwald C, et al. (1,2,4)triazolo[4,3- a]quinoxaline derivatives as inhibitors of phosphodiesterases. Patent WO/2012/104293. 2012.
[95]
Andrés JI, Buijnsters P, De Angelis M, et al. Discovery of a new series of [1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors. Bioorg Med Chem Lett 2013; 23(3): 785-90.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.077] [PMID: 23260348]
[96]
Jørgensen M, Bruun AT, Rasmussen LK, Larsen M. Triazolopyrazine derivatives and their use for treating neurological and psychiatric disorders. Patent WO2013034755 A1 2013.
[97]
Jørgensen M, Brunn AT, Rasmussen LK. Preparation of substituted triazolopyrazines useful for treating neurological and psychiatric disorders. Patent WO2013034758 A1 2013.
[98]
Kehler J, Kilburn JP. Patented PDE10A inhibitors: novel compounds since 2007. Expert Opin Ther Pat 2009; 19(12): 1715-25.
[http://dx.doi.org/10.1517/13543770903431050] [PMID: 19939189]
[99]
Redrobe JP, Rasmussen LK, Christoffersen CT, Bundgaard C, Jørgensen M. Characterisation of Lu AF33241: A novel, brain-penetrant, dual inhibitor of phosphodiesterase (PDE) 2A and PDE10A. Eur J Pharmacol 2015; 761: 79-85.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.040] [PMID: 25941078]
[100]
Milelli A, Turrini E, Catanzaro E, Maffei F, Fimognari C. Perspectives in designing multifunctional molecules in antipsychotic drug discovery. Drug Dev Res 2016; 77(8): 437-43.
[http://dx.doi.org/10.1002/ddr.21334] [PMID: 27539712]
[101]
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 2012; 17(12): 1206-27.
[http://dx.doi.org/10.1038/mp.2012.47] [PMID: 22584864]
[102]
Zagórska A, Bucki A, Kołaczkowski M, et al. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine- 2,4(3H,8H)-dione as potential antidepressant agents. J Enzyme Inhib Med Chem 2016; 31(sup3): 10-24.
[http://dx.doi.org/10.1080/14756366.2016.1198902] [PMID: 27353547]
[103]
Chłoń-Rzepa G, Zagórska A, Żmudzki P, et al. Aminoalkyl derivatives of 8-alkoxypurine-2,6-diones: multifunctional 5-HT1A/5-HT7 receptor ligands and PDE inhibitors with antidepressant activity. Arch Pharm (Weinheim) 2016; 349(12): 889-903.
[http://dx.doi.org/10.1002/ardp.201600260] [PMID: 27869315]
[104]
Zagórska A, Gryzło B, Satała G, Bojarski AJ, Głuch-Lutwin M, Mordyl B, et al. Receptor affinity and phosphodiesterases 4B and 10A activity of octahydro- and 6,7-dimethoxy-3,4-dihydro- isoquinolin-2(1H)-yl-alkyl derivatives of imidazo- and pyrimidino[2,1-f]purines. Acta Pol Pharm 2016; 73: 369-77.
[PMID: 27180429]
[105]
Shiraishi E, Suzuki K, Harada A, Suzuki N, Kimura H. The phosphodiesterase 10A selective inhibitor TAK-063 improves cognitive functions associated with schizophrenia in rodent models. J Pharmacol Exp Ther 2016; 356(3): 587-95.
[http://dx.doi.org/10.1124/jpet.115.230482] [PMID: 26675680]
[106]
Tsai M, Chrones L, Xie J, Gevorkyan H, Macek TA. A phase 1 study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-063, a selective PDE10A inhibitor. Psychopharmacology (Berl) 2016; 233(21-22): 3787-95.
[http://dx.doi.org/10.1007/s00213-016-4412-9] [PMID: 27572830]
[107]
Goldsmith P, Affinito J, McCue M, et al. A randomized multiple dose pharmacokinetic study of a novel PDE10A inhibitor TAK-063 in subjects with stable schizophrenia and japanese subjects and modeling of exposure relationships to adverse events. Drugs R D 2017; 17(4): 631-43.
[http://dx.doi.org/10.1007/s40268-017-0214-8] [PMID: 29103081]
[108]
Macek TA, McCue M, Dong X, et al. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr Res 2019; 204: 289-94.
[http://dx.doi.org/10.1016/j.schres.2018.08.028] [PMID: 30190165]
[109]
Abstracts for the 15th International Congress on Schizophrenia Research (ICOSR), March 28-April 1, 2015, Colorado Springs, Colorado. Schizophr Bull 2015; 41(Suppl. 1): S1-S341.
[PMID: 26305006]
[110]
Yu A. Early clinical results of the phosphodiesterase 10 inhibitor OMS643762 in development for the treatment of schizophrenia and huntington’s disease. Schizophr Res 2014; 153: S22.
[http://dx.doi.org/10.1016/S0920-9964(14)70069-6]
[111]
Zagorska A, Partyka A, Bucki A, Gawalska A, Czopek A, Pawlowski M. Phosphodiesterase 10 inhibitors - novel perspectives for psychiatric and neurodegenerative drug discovery. Curr Med Chem 2018; 25(29): 3455-81.
[http://dx.doi.org/10.2174/0929867325666180309110629] [PMID: 29521210]
[112]
Ahmad R, Bourgeois S, Postnov A, et al. PET imaging shows loss of striatal PDE10A in patients with Huntington disease. Neurology 2014; 82(3): 279-81.
[http://dx.doi.org/10.1212/WNL.0000000000000037] [PMID: 24353339]
[113]
Niccolini F, Foltynie T, Reis Marques T, et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain 2015; 138(Pt 10): 3003-15.
[http://dx.doi.org/10.1093/brain/awv219] [PMID: 26210536]
[114]
Li J, Chen J-Y, Deng Y-L, et al. Structure-based design, synthesis, biological evaluation, and molecular docking of novel PDE10 inhibitors with antioxidant activities. Front Chem 2018; 6: 167.
[http://dx.doi.org/10.3389/fchem.2018.00167] [PMID: 29868568]
[115]
Tian X, Vroom C, Ghofrani HA, et al. Phosphodiesterase 10A upregulation contributes to pulmonary vascular remodeling. PLoS One 2011; 6(4)e18136
[http://dx.doi.org/10.1371/journal.pone.0018136] [PMID: 21494592]
[116]
Huang Y-Y, Yu Y-F, Zhang C, et al. Validation of phosphodiesterase-10 as a novel target for pulmonary arterial hypertension via highly selective and subnanomolar inhibitors. J Med Chem 2019; 62(7): 3707-21.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00224] [PMID: 30888810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy