Quantum theory poses deep challenges to the mechanical conception of reality that underlies classical physics. Yet today, over eighty years after its creation, its implications for our picture of reality remain enshrouded in uncertainty. In view of the current search for a more comprehensive theory of physics (a so-called theory of everything), it is vital that these implications be clearly elucidated. In this article, I describe the nature of the challenge posed by quantum theory, and outline efforts that have been made to better understand its nonclassical features, such as non-locality. In particular, I discuss the informational perspective, which, through the study of quantum information processing, has provided deep insights into the nature of quantum reality, and has also revitalized the long-standing quest to reconstruct the content of the rather mysterious mathematical formalism of quantum theory from a set of crisp physical principles. Finally, I indicate some implications of recent reconstructive work for the search for a theory of quantum gravity, and, more broadly, for our picture of physical reality.