The gut microbiome is significant in maintaining human health by
facilitating absorption and digestion in the intestine. Probiotics have diverse and
significant applications in the health sector, so probiotic strains require an
understanding of the genome-level organizations. Probiotics elucidate various
functional parameters that control their metabolic functions. Gut dysbiosis leads to
inflammatory bowel disease and other neurological disorders. The application of
probiotic bacteria to modulate the gut microbiota prevents diseases and has gained
large interest. In a recent decade, the development of modern tools in molecular
biology has led to the discovery of genome engineering. Synthetic biology approaches
provide information about diverse biosynthetic pathways and also facilitate novel
metabolic engineering approaches for probiotic strain improvement. The techniques
enable engineering probiotics with the desired functionalities to benefit human health.
This chapter describes the recent advances in probiotic strain improvement for
diagnostic and therapeutic applications via CRISPR-Cas tools. Also, the application of
probiotics, current challenges, and future perspectives in disease treatment are
discussed.
Keywords: Genome editing, Metabolic engineering, Probiotics, Strain improvement.