Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review

Author(s): Nina Japundžić-Žigon*, Maja Lozić, Olivera Šarenac and David Murphy

Volume 18, Issue 1, 2020

Page: [14 - 33] Pages: 20

DOI: 10.2174/1570159X17666190717150501

Price: $65

Abstract

Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.

Keywords: Vasopressin, oxytocin, blood pressure, heart rate, short-term variability, stress, hypertension, heart failure.

Graphical Abstract
[1]
Du Vigneaud, V.; Ressler, C.; Trippett, S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem., 1953, 205(2), 949-957.
[PMID: 13129273]
[2]
Duvigneaud, V.; Lawler, H.C.; Popenoe, E.A. Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Am. Chem. Soc., 1953, 75(19), 4880-4881.
[http://dx.doi.org/10.1021/ja01115a554]
[3]
Acher, R.; Chauvet, J. The structure of bovine vasopressin. Biochim. Biophys. Acta, 1953, 12(3), 487-488.
[http://dx.doi.org/10.1016/0006-3002(53)90173-5] [PMID: 13115463]
[4]
Barlow, M. Vasopressin. Emerg. Med. (Fremantle), 2002, 14(3), 304-314.
[http://dx.doi.org/10.1046/j.1442-2026.2002.00349_2.x] [PMID: 12487048]
[5]
Treschan, T.A.; Peters, J. The vasopressin system: physiology and clinical strategies. Anesthesiology, 2006, 105(3), 599-612.
[http://dx.doi.org/10.1097/00000542-200609000-00026] [PMID: 16931995]
[6]
Ukor, I.F.; Walley, K.R. Vasopressin in vasodilatory shock. Crit. Care Clin., 2019, 35(2), 247-261.
[http://dx.doi.org/10.1016/j.ccc.2018.11.004] [PMID: 30784607]
[7]
Gutkowska, J.; Jankowski, M. Oxytocin revisited: its role in cardiovascular regulation. J. Neuroendocrinol., 2012, 24(4), 599-608.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02235.x] [PMID: 21981277]
[8]
Jankowski, M.; Broderick, T.L.; Gutkowska, J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr. Disord., 2016, 16(1), 34.
[http://dx.doi.org/10.1186/s12902-016-0110-1] [PMID: 27268060]
[9]
Japundžić-Žigon, N. Vasopressin and oxytocin in control of the cardiovascular system. Curr. Neuropharmacol., 2013, 11(2), 218-230.
[http://dx.doi.org/10.2174/1570159X11311020008] [PMID: 23997756]
[10]
De Bree, F.M.; Van Der Kleij, A.A.; Nijenhuis, M.; Zalm, R.; Murphy, D.; Burbach, J.P. The hormone domain of the vasopressin prohormone is required for the correct prohormone trafficking through the secretory pathway. J. Neuroendocrinol., 2003, 15(12), 1156-1163.
[http://dx.doi.org/10.1111/j.1365-2826.2003.01114.x] [PMID: 14636177]
[11]
Burbach, J.P.; Luckman, S.M.; Murphy, D.; Gainer, H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol. Rev., 2001, 81(3), 1197-1267.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1197] [PMID: 11427695]
[12]
Geerling, J.C.; Shin, J.W.; Chimenti, P.C.; Loewy, A.D. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J. Comp. Neurol., 2010, 518(9), 1460-1499.
[http://dx.doi.org/10.1002/cne.22283] [PMID: 20187136]
[13]
Landgraf, R.; Neumann, I.D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol., 2004, 25(3-4), 150-176.
[http://dx.doi.org/10.1016/j.yfrne.2004.05.001] [PMID: 15589267]
[14]
Brinton, R.E.; Gee, K.W.; Wamsley, J.K.; Davis, T.P.; Yamamura, H.I. Regional distribution of putative vasopressin receptors in rat brain and pituitary by quantitative autoradiography. Proc. Natl. Acad. Sci. USA, 1984, 81(22), 7248-7252.
[http://dx.doi.org/10.1073/pnas.81.22.7248] [PMID: 6095279]
[15]
Ostrowski, N.L.; Lolait, S.J.; Bradley, D.J.; O’Carroll, A.M.; Brownstein, M.J.; Young, W.S. III Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology, 1992, 131(1), 533-535.
[http://dx.doi.org/10.1210/endo.131.1.1535312] [PMID: 1535312]
[16]
Ostrowski, N.L.; Lolait, S.J.; Young, W.S. III Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology, 1994, 135(4), 1511-1528.
[http://dx.doi.org/10.1210/endo.135.4.7925112] [PMID: 7925112]
[17]
Hirasawa, A.; Hashimoto, K.; Tsujimoto, G. Distribution and developmental change of vasopressin V1A and V2 receptor mRNA in rats. Eur. J. Pharmacol., 1994, 267(1), 71-75.
[http://dx.doi.org/10.1016/0922-4106(94)90226-7] [PMID: 8206132]
[18]
Hurbin, A.; Orcel, H.; Alonso, G.; Moos, F.; Rabié, A. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology, 2002, 143(2), 456-466.
[http://dx.doi.org/10.1210/endo.143.2.8643] [PMID: 11796498]
[19]
Kato, Y.; Igarashi, N.; Hirasawa, A.; Tsujimoto, G.; Kobayashi, M. Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation, 1995, 59(3), 163-169.
[http://dx.doi.org/10.1046/j.1432-0436.1995.5930163.x] [PMID: 7589900]
[20]
Hernando, F.; Schoots, O.; Lolait, S.J.; Burbach, J.P. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology, 2001, 142(4), 1659-1668.
[http://dx.doi.org/10.1210/endo.142.4.8067] [PMID: 11250948]
[21]
Vargas, K.J.; Sarmiento, J.M.; Ehrenfeld, P.; Añazco, C.C.; Villanueva, C.I.; Carmona, P.L.; Brenet, M.; Navarro, J.; Müller-Esterl, W.; González, C.B. Postnatal expression of V2 vasopressin receptor splice variants in the rat cerebellum. Differentiation, 2009, 77(4), 377-385.
[http://dx.doi.org/10.1016/j.diff.2008.11.002] [PMID: 19281786]
[22]
Barberis, C.; Mouillac, B.; Durroux, T. Structural bases of vasopressin/oxytocin receptor function. J. Endocrinol., 1998, 156(2), 223-229.
[http://dx.doi.org/10.1677/joe.0.1560223] [PMID: 9518866]
[23]
Birnbaumer, M. Vasopressin receptors. Trends Endocrinol. Metab., 2000, 11(10), 406-410.
[http://dx.doi.org/10.1016/S1043-2760(00)00304-0] [PMID: 11091117]
[24]
Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev., 2001, 81(2), 629-683.
[http://dx.doi.org/10.1152/physrev.2001.81.2.629] [PMID: 11274341]
[25]
Thibonnier, M.; Coles, P.; Thibonnier, A.; Shoham, M. The basic and clinical pharmacology of nonpeptide vasopressin receptor antagonists. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 175-202.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.175]
[26]
Tribollet, E.; Barberis, C.; Jard, S.; Dubois-Dauphin, M.; Dreifuss, J.J. Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res., 1988, 442(1), 105-118.
[http://dx.doi.org/10.1016/0006-8993(88)91437-0] [PMID: 2834008]
[27]
Manning, M.; Misicka, A.; Olma, A.; Bankowski, K.; Stoev, S.; Chini, B.; Durroux, T.; Mouillac, B.; Corbani, M.; Guillon, G. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J. Neuroendocrinol., 2012, 24(4), 609-628.
[http://dx.doi.org/10.1111/j.1365-2826.2012.02303.x] [PMID: 22375852]
[28]
Wong, L.L.; Verbalis, J.G. Vasopressin V2 receptor antagonists. Cardiovasc. Res., 2001, 51(3), 391-402.
[http://dx.doi.org/10.1016/S0008-6363(01)00315-7] [PMID: 11476729]
[29]
Kimura, T.; Tanizawa, O.; Mori, K.; Brownstein, M.J.; Okayama, H. Structure and expression of a human oxytocin receptor. Nature, 1992, 356(6369), 526-529.
[http://dx.doi.org/10.1038/356526a0] [PMID: 1313946]
[30]
Birnbaumer, M.; Seibold, A.; Gilbert, S.; Ishido, M.; Barberis, C.; Antaramian, A.; Brabet, P.; Rosenthal, W. Molecular cloning of the receptor for human antidiuretic hormone. Nature, 1992, 357(6376), 333-335.
[http://dx.doi.org/10.1038/357333a0] [PMID: 1534149]
[31]
Lolait, S.J.; O’Carroll, A.M.; McBride, O.W.; Konig, M.; Morel, A.; Brownstein, M.J. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature, 1992, 357(6376), 336-339.
[http://dx.doi.org/10.1038/357336a0] [PMID: 1534150]
[32]
Morel, A.; O’Carroll, A.M.; Brownstein, M.J.; Lolait, S.J. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature, 1992, 356(6369), 523-526.
[http://dx.doi.org/10.1038/356523a0] [PMID: 1560825]
[33]
Sugimoto, T.; Saito, M.; Mochizuki, S.; Watanabe, Y.; Hashimoto, S.; Kawashima, H. Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J. Biol. Chem., 1994, 269(43), 27088-27092.
[PMID: 7929452]
[34]
Thibonnier, M.; Auzan, C.; Madhun, Z.; Wilkins, P.; Berti-Mattera, L.; Clauser, E. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J. Biol. Chem., 1994, 269(5), 3304-3310.
[PMID: 8106369]
[35]
Wacker, D.; Ludwig, M. The role of vasopressin in olfactory and visual processing. Cell Tissue Res., 2019, 375(1), 201-215.
[http://dx.doi.org/10.1007/s00441-018-2867-1] [PMID: 29951699]
[36]
Georgiev, T.; Tolekova, A.; Kalfin, R.; Hadzhibozheva, P. Short-term administration of melatonin or ghrelin on diabetic rats: effects on angiotensin II and vasopressin-induced uterine contractility. Physiol. Res., 2017, 66(1), 125-133.
[PMID: 27782742]
[37]
Gizowski, C.; Trudel, E.; Bourque, C.W. Central and peripheral roles of vasopressin in the circadian defense of body hydration. Best Pract. Res. Clin. Endocrinol. Metab., 2017, 31(6), 535-546.
[http://dx.doi.org/10.1016/j.beem.2017.11.001] [PMID: 29224666]
[38]
Hernández, V.S.H.O.; Hernández, O.R.; Perez de la Mora, M.; Gómora, M.J.; Fuxe, K.; Eiden, L.E.; Zhang, L. Hypothalamic vasopressinergic projections innervate central amygdala gabaergic neurons: Implications for anxiety and stress coping. Front. Neural Circuits, 2016, 10(92), 92.
[http://dx.doi.org/10.3389/fncir.2016.00092] [PMID: 27932956]
[39]
Milutinović, S.; Murphy, D.; Japundzić-Zigon, N. The role of central vasopressin receptors in the modulation of autonomic cardiovascular controls: a spectral analysis study. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291(6), R1579-R1591.
[http://dx.doi.org/10.1152/ajpregu.00764.2005] [PMID: 17085750]
[40]
Kc, P.; Haxhiu, M.A.; Tolentino-Silva, F.P.; Wu, M.; Trouth, C.O.; Mack, S.O. Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites. Respir. Physiol. Neurobiol., 2002, 133(1-2), 75-88.
[http://dx.doi.org/10.1016/S1569-9048(02)00131-3] [PMID: 12385733]
[41]
Altura, B.M.; Altura, B.T. Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle. Fed. Proc., 1984, 43(1), 80-86.
[PMID: 6690341]
[42]
Aperia, A.; Sahlgren, B.; Eklöf, A.C.; Lundin, S.; Melin, P. Role of arginine-vasopressin for the development of hypertension following aortic constriction. Acta Physiol. Scand., 1986, 128(4), 495-499.
[http://dx.doi.org/10.1111/j.1748-1716.1986.tb08004.x] [PMID: 3811978]
[43]
Mancinelli, R.; Franchitto, A.; Glaser, S.; Vetuschi, A.; Venter, J.; Sferra, R.; Pannarale, L.; Olivero, F.; Carpino, G.; Alpini, G.; Onori, P.; Gaudio, E. Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease. Lab. Invest., 2016, 96(11), 1147-1155.
[http://dx.doi.org/10.1038/labinvest.2016.93] [PMID: 27571215]
[44]
Eugenín, E.A.G.H.; González, H.; Sáez, C.G.; Sáez, J.C. Gap junctional communication coordinates vasopressin-induced glycogenolysis in rat hepatocytes. Am. J. Physiol., 1998, 274(6), G1109-G1116.
[PMID: 9696712]
[45]
Aoyagi, T.; Koshimizu, T.A.; Tanoue, A. Vasopressin regulation of blood pressure and volume: findings from V1a receptor-deficient mice. Kidney Int., 2009, 76(10), 1035-1039.
[http://dx.doi.org/10.1038/ki.2009.319] [PMID: 19693000]
[46]
Bharati, K.P.P.U.; Prashanth, U.R. Von Willebrand disease: an overview. Indian J. Pharm. Sci., 2011, 73(1), 7-16.
[http://dx.doi.org/10.4103/0250-474X.89751] [PMID: 22131616]
[47]
Jung, H.J.; Kwon, T.H. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am. J. Physiol. Renal Physiol., 2016, 311(6), F1318-F1328.
[http://dx.doi.org/10.1152/ajprenal.00485.2016] [PMID: 27760771]
[48]
Bankir, L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc. Res., 2001, 51(3), 372-390.
[http://dx.doi.org/10.1016/S0008-6363(01)00328-5] [PMID: 11476728]
[49]
Rivier, C.; Vale, W. Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology, 1983, 113(3), 939-942.
[http://dx.doi.org/10.1210/endo-113-3-939] [PMID: 6307672]
[50]
Lolait, S.J.; O’Carroll, A.M.; Mahan, L.C.; Felder, C.C.; Button, D.C.; Young, W.S., III; Mezey, E.; Brownstein, M.J. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl. Acad. Sci. USA, 1995, 92(15), 6783-6787.
[http://dx.doi.org/10.1073/pnas.92.15.6783] [PMID: 7624319]
[51]
Stemmelin, J.; Lukovic, L.; Salome, N.; Griebel, G. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology, 2005, 30(1), 35-42.
[http://dx.doi.org/10.1038/sj.npp.1300562] [PMID: 15367924]
[52]
Griebel, G.; Simiand, J.; Serradeil-Le Gal, C.; Wagnon, J.; Pascal, M.; Scatton, B.; Maffrand, J.P.; Soubrie, P. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6370-6375.
[http://dx.doi.org/10.1073/pnas.092012099] [PMID: 11959912]
[53]
Iijima, M.; Yoshimizu, T.; Shimazaki, T.; Tokugawa, K.; Fukumoto, K.; Kurosu, S.; Kuwada, T.; Sekiguchi, Y.; Chaki, S. Antidepressant and anxiolytic profiles of newly synthesized arginine vasopressin V1B receptor antagonists: TASP0233278 and TASP0390325. Br. J. Pharmacol., 2014, 171(14), 3511-3525.
[http://dx.doi.org/10.1111/bph.12699] [PMID: 24654684]
[54]
Brunner, S.M.; Farzi, A.; Locker, F.; Holub, B.S.; Drexel, M.; Reichmann, F.; Lang, A.A.; Mayr, J.A.; Vilches, J.J.; Navarro, X.; Lang, R.; Sperk, G.; Holzer, P.; Kofler, B. GAL3 receptor KO mice exhibit an anxiety-like phenotype. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 7138-7143.
[http://dx.doi.org/10.1073/pnas.1318066111] [PMID: 24782539]
[55]
Grippo, A.J.; Trahanas, D.M.; Zimmerman, R.R., II; Porges, S.W.; Carter, C.S. Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology, 2009, 34(10), 1542-1553.
[http://dx.doi.org/10.1016/j.psyneuen.2009.05.017] [PMID: 19553027]
[56]
Krause, E.G.; de Kloet, A.D.; Flak, J.N.; Smeltzer, M.D.; Solomon, M.B.; Evanson, N.K.; Woods, S.C.; Sakai, R.R.; Herman, J.P. Hydration state controls stress responsiveness and social behavior. J. Neurosci., 2011, 31(14), 5470-5476.
[http://dx.doi.org/10.1523/JNEUROSCI.6078-10.2011] [PMID: 21471383]
[57]
Lee, P.R.; Brady, D.L.; Shapiro, R.A.; Dorsa, D.M.; Koenig, J.I. Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology, 2005, 30(10), 1883-1894.
[http://dx.doi.org/10.1038/sj.npp.1300722] [PMID: 15798779]
[58]
Windle, R.J.; Shanks, N.; Lightman, S.L.; Ingram, C.D. Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 1997, 138(7), 2829-2834.
[http://dx.doi.org/10.1210/endo.138.7.5255] [PMID: 9202224]
[59]
Windle, R.J.; Kershaw, Y.M.; Shanks, N.; Wood, S.A.; Lightman, S.L.; Ingram, C.D. Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J. Neurosci., 2004, 24(12), 2974-2982.
[http://dx.doi.org/10.1523/JNEUROSCI.3432-03.2004] [PMID: 15044536]
[60]
Wsol, A.; Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E.; Kowalewski, S.; Puchalska, L. Oxytocin in the cardiovascular responses to stress. J. Physiol. Pharmacol., 2008, 59(8), 123-127.
[61]
Mileva-Seitz, V.; Steiner, M.; Atkinson, L.; Meaney, M.J.; Levitan, R.; Kennedy, J.L.; Sokolowski, M.B.; Fleming, A.S. Interaction between oxytocin genotypes and early experience predicts quality of mothering and postpartum mood. PLoS One, 2013, 8(4)e61443
[http://dx.doi.org/10.1371/journal.pone.0061443] [PMID: 23637833]
[62]
Dumais, K.M.; Veenema, A.H. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front. Neuroendocrinol., 2016, 40, 1-23.
[63]
Bredewold, R.; Veenema, A.H. Sex differences in the regulation of social and anxiety-related behaviors: Insights from vasopressin and oxytocin brain systems. Curr. Opin. Neurobiol., 2018, 49, 132-140.
[64]
McKinley, M.J.; Mathai, M.L.; McAllen, R.M.; McClear, R.C.; Miselis, R.R.; Pennington, G.L.; Vivas, L.; Wade, J.D.; Oldfield, B.J. Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. J. Neuroendocrinol., 2004, 16(4), 340-347.
[http://dx.doi.org/10.1111/j.0953-8194.2004.01184.x] [PMID: 15089972]
[65]
Hasser, E.M.; Bishop, V.S.; Hay, M. Interactions between vasopressin and baroreflex control of the sympathetic nervous system. Clin. Exp. Pharmacol. Physiol., 1997, 24(1), 102-108.
[http://dx.doi.org/10.1111/j.1440-1681.1997.tb01791.x] [PMID: 9043814]
[66]
Coote, J.H. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp. Physiol., 2005, 90(2), 169-173.
[http://dx.doi.org/10.1113/expphysiol.2004.029041] [PMID: 15604110]
[67]
Kc, P.; Dick, T.E. Modulation of cardiorespiratory function mediated by the paraventricular nucleus. Respir. Physiol. Neurobiol., 2010, 174(1-2), 55-64.
[http://dx.doi.org/10.1016/j.resp.2010.08.001] [PMID: 20708107]
[68]
Hirsch, A.T.; Dzau, V.J.; Majzoub, J.A.; Creager, M.A. Vasopressin-mediated forearm vasodilation in normal humans. Evidence for a vascular vasopressin V2 receptor. J. Clin. Invest., 1989, 84(2), 418-426.
[http://dx.doi.org/10.1172/JCI114182] [PMID: 2527249]
[69]
Russ, R.D.; Resta, T.C.; Walker, B.R. Pulmonary vasodilatory response to neurohypophyseal peptides in the rat. J. Appl. Physiol., 1992, 73(2), 473-478.
[70]
Aki, Y.; Tamaki, T.; Kiyomoto, H.; He, H.; Yoshida, H.; Iwao, H.; Abe, Y. Nitric oxide may participate in V2 vasopressin-receptor-mediated renal vasodilation. J. Cardiovasc. Pharmacol., 1994, 23(2), 331-336.
[http://dx.doi.org/10.1097/00005344-199402000-00023] [PMID: 7511766]
[71]
Cowley, A.W., Jr Control of the renal medullary circulation by vasopressin v1 and v2 receptors in the rat. Exp. Physiol., 2000, 223S-231S.
[72]
Russ, R.D.; Walker, B.R. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am. J. Physiol., 1992, 262(3 Pt 2), H743-H747.
[PMID: 1558183]
[73]
Altemus, M.; Redwine, L.S.; Leong, Y.M.; Frye, C.A.; Porges, S.W.; Carter, C.S. Responses to laboratory psychosocial stress in postpartum women. Psychosom. Med., 2001, 63(5), 814-821.
[http://dx.doi.org/10.1097/00006842-200109000-00015] [PMID: 11573030]
[74]
Loichot, C.; Krieger, J.P.; De Jong, W.; Nisato, D.; Imbs, J.L.; Barthelmebs, M. High concentrations of oxytocin cause vasoconstriction by activating vasopressin V1A receptors in the isolated perfused rat kidney. Naunyn Schmiedebergs Arch. Pharmacol., 2001, 363(4), 369-375.
[http://dx.doi.org/10.1007/s002100000372] [PMID: 11330329]
[75]
Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Plesnicher, C.L.; Dweik, R.A.; Erzurum, S.C. Human vascular endothelial cells express oxytocin receptors. Endocrinology, 1999, 140(3), 1301-1309.
[http://dx.doi.org/10.1210/endo.140.3.6546] [PMID: 10067857]
[76]
Katusic, Z.S.; Shepherd, J.T.; Vanhoutte, P.M. Oxytocin causes endothelium-dependent relaxations of canine basilar arteries by activating V1-vasopressinergic receptors. J. Pharmacol. Exp. Ther., 1986, 236(1), 166-170.
[PMID: 3001282]
[77]
Miller, M.E.; Davidge, S.T.; Mitchell, B.F. Oxytocin does not directly affect vascular tone in vessels from nonpregnant and pregnant rats. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(4), H1223-H1228.
[http://dx.doi.org/10.1152/ajpheart.00774.2001] [PMID: 11893555]
[78]
Japundzic-Zigon, N. Effects of nonpeptide V1a and V2 antagonists on blood pressure fast oscillations in conscious rats. Clin. Exp. Hypertens., 2001, 23(4), 277-292.
[http://dx.doi.org/10.1081/CEH-100102667] [PMID: 11349820]
[79]
Petersson, M.; Alster, P.; Lundeberg, T.; Uvnäs-Moberg, K. Oxytocin causes a long-term decrease of blood pressure in female and male rats. Physiol. Behav., 1996, 60(5), 1311-1315.
[http://dx.doi.org/10.1016/S0031-9384(96)00261-2] [PMID: 8916187]
[80]
Zerbe, R.L.F.G.; Meyer, D.K.; Kopin, I.J. Cardiovascular, sympathetic, and renin-angiotensin system responses to hemorrhage in vasopressin-deficient rats. Endocrinology, 1982, 111, 608-613.
[http://dx.doi.org/10.1210/endo-111-2-608]
[81]
Koshimizu, T.A.; Nasa, Y.; Tanoue, A.; Oikawa, R.; Kawahara, Y.; Kiyono, Y.; Adachi, T.; Tanaka, T.; Kuwaki, T.; Mori, T.; Takeo, S.; Okamura, H.; Tsujimoto, G. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7807-7812.
[http://dx.doi.org/10.1073/pnas.0600875103] [PMID: 16682631]
[82]
Bernatova, I.; Rigatto, K.V.; Key, M.P.; Morris, M. Stress-induced pressor and corticosterone responses in oxytocin-deficient mice. Exp. Physiol., 2004, 89(5), 549-557.
[http://dx.doi.org/10.1113/expphysiol.2004.027714] [PMID: 15184356]
[83]
Pelletier, J.S.D.B.; Bigam, D.; Cheung, P.Y. Cardiac effects of vasopressin. Cardiovasc Pharmacol., 2014, 34, 100-107.
[84]
Conrad, K.P.; Gellai, M.; North, W.G.; Valtin, H. Influence of oxytocin on renal hemodynamics and sodium excretion. Ann. N. Y. Acad. Sci., 1993, 689, 346-362.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb55559.x]
[85]
Gutkowska, J.; Jankowski, M.; Lambert, C.; Mukaddam-Daher, S.; Zingg, H.H.; McCann, S.M. Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart. Proc. Natl. Acad. Sci. USA, 1997, 94(21), 11704-11709.
[http://dx.doi.org/10.1073/pnas.94.21.11704] [PMID: 9326674]
[86]
Jankowski, M.; Hajjar, F.; Kawas, S.A.; Mukaddam-Daher, S.; Hoffman, G.; McCann, S.M.; Gutkowska, J. Rat heart: a site of oxytocin production and action. Proc. Natl. Acad. Sci. USA, 1998, 95(24), 14558-14563.
[http://dx.doi.org/10.1073/pnas.95.24.14558] [PMID: 9826739]
[87]
Jankowski, M.; Wang, D.; Hajjar, F.; Mukaddam-Daher, S.; McCann, S.M.; Gutkowska, J. Oxytocin and its receptors are synthesized in the rat vasculature. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 6207-6211.
[http://dx.doi.org/10.1073/pnas.110137497] [PMID: 10811917]
[88]
Leng, G.; Russell, J.A. The osmoresponsiveness of oxytocin and vasopressin neurones: Mechanisms, allostasis and evolution. J. Neuroendocrinol., 2019, 31(3)e12662
[http://dx.doi.org/10.1111/jne.12662] [PMID: 30451331]
[89]
Andersen, L.J.; Norsk, P.; Johansen, L.B.; Christensen, P.; Engstrom, T.; Bie, P. Osmoregulatory control of renal sodium excretion after sodium loading in humans. Am. J. Physiol., 1998, 275(6), R1833-R1842.
[PMID: 9843872]
[90]
Rasmussen, M.S.; Simonsen, J.A.; Sandgaard, N.C.; Høilund-Carlsen, P.F.; Bie, P. Mechanisms of acute natriuresis in normal humans on low sodium diet. J. Physiol., 2003, 546(Pt 2), 591-603.
[http://dx.doi.org/10.1113/jphysiol.2002.027425] [PMID: 12527745]
[91]
Jankowski, M.; Danalache, B.; Wang, D.; Bhat, P.; Hajjar, F.; Marcinkiewicz, M.; Paquin, J.; McCann, S.M.; Gutkowska, J. Oxytocin in cardiac ontogeny. Proc. Natl. Acad. Sci. USA, 2004, 101(35), 13074-13079.
[http://dx.doi.org/10.1073/pnas.0405324101] [PMID: 15316117]
[92]
Oyama, T.; Nagai, T.; Wada, H.; Naito, A.T.; Matsuura, K.; Iwanaga, K.; Takahashi, T.; Goto, M.; Mikami, Y.; Yasuda, N.; Akazawa, H.; Uezumi, A.; Takeda, S.; Komuro, I. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J. Cell Biol., 2007, 176(3), 329-341.
[http://dx.doi.org/10.1083/jcb.200603014] [PMID: 17261849]
[93]
Matsuura, K.; Nagai, T.; Nishigaki, N.; Oyama, T.; Nishi, J.; Wada, H.; Sano, M.; Toko, H.; Akazawa, H.; Sato, T.; Nakaya, H.; Kasanuki, H.; Komuro, I. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem., 2004, 279(12), 11384-11391.
[http://dx.doi.org/10.1074/jbc.M310822200] [PMID: 14702342]
[94]
Mukaddam-Daher, S.; Yin, Y.L.; Roy, J.; Gutkowska, J.; Cardinal, R. Negative inotropic and chronotropic effects of oxytocin. Hypertension, 2001, 38(2), 292-296.
[http://dx.doi.org/10.1161/01.HYP.38.2.292] [PMID: 11509492]
[95]
Das, B.; Sarkar, C. Is preconditioning by oxytocin administration mediated by iNOS and/or mitochondrial K(ATP) channel activation in the in vivo anesthetized rabbit heart? Life Sci., 2012, 90(19-20), 763-769.
[http://dx.doi.org/10.1016/j.lfs.2012.03.030] [PMID: 22525371]
[96]
Gonzalez-Reyes, A.; Menaouar, A.; Yip, D.; Danalache, B.; Plante, E.; Noiseux, N.; Gutkowska, J.; Jankowski, M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Mol. Cell. Endocrinol., 2015, 412, 170-181.
[http://dx.doi.org/10.1016/j.mce.2015.04.028]
[97]
Işeri, S.O.; Sener, G.; Saglam, B.; Gedik, N.; Ercan, F.; Yegen, B.C. Oxytocin protects against sepsis-induced multiple organ damage: role of neutrophils. J. Surg. Res., 2005, 126(1), 73-81.
[http://dx.doi.org/10.1016/j.jss.2005.01.021] [PMID: 15916978]
[98]
Jankowski, M.; Bissonauth, V.; Gao, L.; Gangal, M.; Wang, D.; Danalache, B.; Wang, Y.; Stoyanova, E.; Cloutier, G.; Blaise, G.; Gutkowska, J. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res. Cardiol., 2010, 105(2), 205-218.
[http://dx.doi.org/10.1007/s00395-009-0076-5] [PMID: 20012748]
[99]
Jung, C.; Wernly, B.; Bjursell, M.; Wiseman, J.; Admyre, T.; Wikström, J.; Palmér, M.; Seeliger, F.; Lichtenauer, M.; Franz, M.; Frick, C.; Andersson, A.K.; Elg, M.; Pernow, J.; Sjöquist, P.O.; Bohlooly-Y, M.; Wang, Q.D. Cardiac-specific overexpression of oxytocin receptor leads to cardiomyopathy in mice. J. Card. Fail., 2018, 24(7), 470-478.
[http://dx.doi.org/10.1016/j.cardfail.2018.05.004] [PMID: 29802896]
[100]
Undesser, K.P.; Hasser, E.M.; Haywood, J.R.; Johnson, A.K.; Bishop, V.S. Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits. Circ. Res., 1985, 56(3), 410-417.
[http://dx.doi.org/10.1161/01.RES.56.3.410] [PMID: 3971513]
[101]
Brizzee, B.L.; Walker, B.R. Vasopressinergic augmentation of cardiac baroreceptor reflex in conscious rats. Am. J. Physiol., 1990, 258(4 Pt 2), R860-R868.
[PMID: 2331030]
[102]
Cowley, A.W., Jr; Monos, E.; Guyton, A.C. Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ. Res., 1974, 34(4), 505-514.
[http://dx.doi.org/10.1161/01.RES.34.4.505] [PMID: 4826927]
[103]
Bishop, V.S.; Hasser, E.M.; Nair, U.C. Baroreflex control of renal nerve activity in conscious animals. Circ. Res., 1987, 61(4 Pt 2), I76-I81.
[PMID: 3652406]
[104]
Rocha, E.S.M., Jr; Rosenberg, M. The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J. Physiol., 1969, 202(3), 535-557.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008826] [PMID: 5789937]
[105]
Laycock, J.F.; Penn, W.; Shirley, D.G.; Walter, S.J. The role of vasopressin in blood pressure regulation immediately following acute haemorrhage in the rat. J. Physiol., 1979, 296, 267-275.
[106]
Fujisawa, Y.; Miyatake, A.; Hayashida, Y.; Aki, Y.; Kimura, S.; Tamaki, T.; Abe, Y. Role of vasopressin on cardiovascular changes during hemorrhage in conscious rats. Am. J. Physiol., 1994, 267(5 Pt 2), H1713-H1718.
[PMID: 7977803]
[107]
Imai, Y.; Kim, C.Y.; Hashimoto, J.; Minami, N.; Munakata, M.; Abe, K. Role of vasopressin in neurocardiogenic responses to hemorrhage in conscious rats. Hypertension, 1996, 27(1), 136-143.
[http://dx.doi.org/10.1161/01.HYP.27.1.136] [PMID: 8591876]
[108]
Kakiya, S.; Arima, H.; Yokoi, H.; Murase, T.; Yambe, Y.; Oiso, Y. Effects of acute hypotensive stimuli on arginine vasopressin gene transcription in the rat hypothalamus. Am. J. Physiol. Endocrinol. Metab., 2000, 279(4), E886-E892.
[http://dx.doi.org/10.1152/ajpendo.2000.279.4.E886] [PMID: 11001772]
[109]
Peuler, J.D.; Schmid, P.G.; Morgan, D.A.; Mark, A.L. Inhibition of renal sympathetic activity and heart rate by vasopressin in hemorrhaged diabetes insipidus rats. Am. J. Physiol., 1990, 258(3 Pt 2), H706-H712.
[PMID: 2316685]
[110]
Julien, C.; Chapuis, B.; Cheng, Y.; Barrès, C. Dynamic interactions between arterial pressure and sympathetic nerve activity: role of arterial baroreceptors. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 285(4), R834-R841.
[http://dx.doi.org/10.1152/ajpregu.00102.2003] [PMID: 12805090]
[111]
Yang, Z.; Wheatley, M.; Coote, J.H. Neuropeptides, amines and amino acids as mediators of the sympathetic effects of paraventricular nucleus activation in the rat. Exp. Physiol., 2002, 87(6), 663-674.
[http://dx.doi.org/10.1113/eph8702439] [PMID: 12530399]
[112]
Redgate, E.S. Hypothalamic influence on respiration. Ann. N. Y. Acad. Sci., 1963, 109, 606-618.
[http://dx.doi.org/10.1111/j.1749-6632.1963.tb13491.x]
[113]
Duan, Y.F.; Winters, R.; McCabe, P.M.; Green, E.J.; Huang, Y.; Schneiderman, N. Cardiorespiratory components of defense reaction elicited from paraventricular nucleus. Physiol. Behav., 1997, 61(2), 325-330.
[http://dx.doi.org/10.1016/S0031-9384(96)00410-6] [PMID: 9035265]
[114]
Schlenker, E.; Barnes, L.; Hansen, S.; Martin, D. Cardiorespiratory and metabolic responses to injection of bicuculline into the hypothalamic paraventricular nucleus (PVN) of conscious rats. Brain Res., 2001, 895(1-2), 33-40.
[http://dx.doi.org/10.1016/S0006-8993(01)02011-X] [PMID: 11259757]
[115]
Swanson, L.W.; Sawchenko, P.E. Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci., 1983, 6, 269-324.
[116]
Koshiya, N.; Guyenet, P.G. NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am. J. Physiol., 1996, 270(6 Pt 2), R1273-R1278.
[PMID: 8764294]
[117]
Narkiewicz, K.; Grassi, G. Impaired baroreflex sensitivity as a potential marker of cardiovascular risk in hypertension. J. Hypertens., 2008, 26(7), 1303-1304.
[http://dx.doi.org/10.1097/HJH.0b013e328305e1a5] [PMID: 18551001]
[118]
Dampney, R.A.L. Resetting of the baroreflex control of sympathetic vasomotor activity during natural behaviors: Description and conceptual model of central mechanisms. Front. Neurosci., 2017, 11, 461.
[119]
Montani, J.P.; Liard, J.F.; Schoun, J.; Möhring, J. Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentrations in conscious dogs. Circ. Res., 1980, 47(3), 346-355.
[http://dx.doi.org/10.1161/01.RES.47.3.346] [PMID: 7408117]
[120]
Leslie, R.A.; Gwyn, D.G. Neuronal connections of the area postrema. Fed. Proc., 1984, 43(15), 2941-2943.
[PMID: 6389179]
[121]
Shapiro, R.E.; Miselis, R.R. The central neural connections of the area postrema of the rat. J. Comp. Neurol., 1985, 234(3), 344-364.
[http://dx.doi.org/10.1002/cne.902340306] [PMID: 3988989]
[122]
Elliott, J.M.; West, M.J.; Chalmers, J. Effects of vasopressin on heart rate in conscious rabbits. J. Cardiovasc. Pharmacol., 1985, 7(1), 6-11.
[http://dx.doi.org/10.1097/00005344-198501000-00002] [PMID: 2580152]
[123]
Michelini, L.C.; Bonagamba, L.G. Baroreceptor reflex modulation by vasopressin microinjected into the nucleus tractus solitarii of conscious rats. Hypertension, 1988, 11(2 Pt 2), I75-I79.
[http://dx.doi.org/10.1161/01.HYP.11.2_Pt_2.I75] [PMID: 3346066]
[124]
Suzuki, S.; Takeshita, A.; Imaizumi, T.; Hirooka, Y.; Yoshida, M.; Ando, S.; Nakamura, M. Central nervous system mechanisms involved in inhibition of renal sympathetic nerve activity induced by arginine vasopressin. Circ. Res., 1989, 65(5), 1390-1399.
[http://dx.doi.org/10.1161/01.RES.65.5.1390] [PMID: 2805250]
[125]
Hasser, E.M.; Bishop, V.S. Reflex effect of vasopressin after blockade of V1 receptors in the area postrema. Circ. Res., 1990, 67(2), 265-271.
[http://dx.doi.org/10.1161/01.RES.67.2.265] [PMID: 2376071]
[126]
Imai, Y.; Nolan, P.L.; Johnston, C.I. Endogenous vasopressin modulates the baroreflex sensitivity in rats. Clin. Exp. Pharmacol. Physiol., 1983, 10(3), 289-292.
[http://dx.doi.org/10.1111/j.1440-1681.1983.tb00199.x] [PMID: 6627742]
[127]
Sampey, D.B.; Burrell, L.M.; Widdop, R.E. Vasopressin V2 receptor enhances gain of baroreflex in conscious spontaneously hypertensive rats. Am. J. Physiol., 1999, 276(3), R872-R879.
[PMID: 10070150]
[128]
Nakayama, Y.; Takano, Y.; Eguchi, K.; Migita, K.; Saito, R.; Tsujimoto, G.; Kamiya, H. Modulation of the arterial baroreceptor reflex by the vasopressin receptor in the area postrema of the hypertensive rats. Neurosci. Lett., 1997, 226(3), 179-182.
[http://dx.doi.org/10.1016/S0304-3940(97)00274-7] [PMID: 9175596]
[129]
Oikawa, R.; Nasa, Y.; Ishii, R.; Kuwaki, T.; Tanoue, A.; Tsujimoto, G.; Takeo, S. Vasopressin V1A receptor enhances baroreflex via the central component of the reflex arc. Eur. J. Pharmacol., 2007, 558(1-3), 144-150.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.063] [PMID: 17224142]
[130]
Fujiwara, Y.; Tanoue, A.; Tsujimoto, G.; Koshimizu, T.A. The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice. Clin. Exp. Nephrol., 2012, 16(1), 30-34.
[http://dx.doi.org/10.1007/s10157-011-0497-y] [PMID: 22038263]
[131]
Lovick, T.A.; Malpas, S.; Mahony, M.T. Renal vasodilatation in response to acute volume load is attenuated following lesions of parvocellular neurones in the paraventricular nucleus in rats. J. Auton. Nerv. Syst., 1993, 43(3), 247-255.
[http://dx.doi.org/10.1016/0165-1838(93)90331-N] [PMID: 8366254]
[132]
Haselton, J.R.; Goering, J.; Patel, K.P. Parvocellular neurons of the paraventricular nucleus are involved in the reduction in renal nerve discharge during isotonic volume expansion. J. Auton. Nerv. Syst., 1994, 50(1), 1-11.
[http://dx.doi.org/10.1016/0165-1838(94)90117-1] [PMID: 7844308]
[133]
Deng, Y.; Kaufman, S. Effect of pregnancy on activation of central pathways following atrial distension. Am. J. Physiol., 1995, 269(3 Pt 2), R552-R556.
[PMID: 7573555]
[134]
Lovick, T.A.; Coote, J.H. Circulating atrial natriuretic factor activates vagal afferent inputs to paraventriculo-spinal neurones in the rat. J. Auton. Nerv. Syst., 1989, 26(2), 129-134.
[http://dx.doi.org/10.1016/0165-1838(89)90161-6] [PMID: 2524519]
[135]
Lovick, T.A.; Coote, J.H. Effects of volume loading on paraventriculo-spinal neurones in the rat. J. Auton. Nerv. Syst., 1988, 25(2-3), 135-140.
[http://dx.doi.org/10.1016/0165-1838(88)90018-5] [PMID: 3235776]
[136]
Lovick, T.A.; Coote, J.H. Electrophysiological properties of paraventriculo-spinal neurones in the rat. Brain Res., 1988, 454(1-2), 123-130.
[http://dx.doi.org/10.1016/0006-8993(88)90810-4] [PMID: 2900661]
[137]
Strack, A.M.; Sawyer, W.B.; Hughes, J.H.; Platt, K.B.; Loewy, A.D. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res., 1989, 491(1), 156-162.
[http://dx.doi.org/10.1016/0006-8993(89)90098-X] [PMID: 2569907]
[138]
Schramm, L.P.; Strack, A.M.; Platt, K.B.; Loewy, A.D. Peripheral and central pathways regulating the kidney: a study using pseudorabies virus. Brain Res., 1993, 616(1-2), 251-262.
[http://dx.doi.org/10.1016/0006-8993(93)90216-A] [PMID: 7689411]
[139]
Reddy, M.K.; Patel, K.P.; Schultz, H.D. Differential role of the paraventricular nucleus of the hypothalamus in modulating the sympathoexcitatory component of peripheral and central chemoreflexes. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 289(3), R789-R797.
[http://dx.doi.org/10.1152/ajpregu.00222.2005] [PMID: 15919733]
[140]
Yeh, E.R.; Erokwu, B.; LaManna, J.C.; Haxhiu, M.A. The paraventricular nucleus of the hypothalamus influences respiratory timing and activity in the rat. Neurosci. Lett., 1997, 232(2), 63-66.
[http://dx.doi.org/10.1016/S0304-3940(97)00579-X] [PMID: 9302087]
[141]
Mack, S.O.; Kc, P.; Wu, M.; Coleman, B.R.; Tolentino-Silva, F.P.; Haxhiu, M.A. Paraventricular oxytocin neurons are involved in neural modulation of breathing. J. Appl. Physiol., 2002, 92(2), 826-834.
[142]
Kc, P.; Balan, K.V.; Tjoe, S.S.; Martin, R.J.; Lamanna, J.C.; Haxhiu, M.A.; Dick, T.E. Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats. J. Physiol., 2010, 588(Pt 4), 725-740.
[http://dx.doi.org/10.1113/jphysiol.2009.184580] [PMID: 20051497]
[143]
Mack, S.O.; Wu, M.; Kc, P.; Haxhiu, M.A. Stimulation of the hypothalamic paraventricular nucleus modulates cardiorespiratory responses via oxytocinergic innervation of neurons in pre-botzinger complex. J. Appl. Physiol., 2007, 102(1), 189-199.
[144]
Japundzic-Zigon, N. Physiological mechanisms in regulation of blood pressure fast frequency variations. Clin. Exp. Hypertens., 1998, 20(4), 359-388.
[http://dx.doi.org/10.3109/10641969809053219] [PMID: 9607401]
[145]
Japundzić-Zigon, N.; Milutinović, S.; Jovanović, A. Effects of nonpeptide and selective V1 and V2 antagonists on blood pressure short-term variability in spontaneously hypertensive rats. J. Pharmacol. Sci., 2004, 95(1), 47-55.
[http://dx.doi.org/10.1254/jphs.95.47] [PMID: 15153650]
[146]
Milutinović, S.; Murphy, D.; Japundzić-Zigon, N. Central cholinergic modulation of blood pressure short-term variability. Neuropharmacology, 2006, 50(7), 874-883.
[http://dx.doi.org/10.1016/j.neuropharm.2005.12.009] [PMID: 16487550]
[147]
Yang, S.J.; Lee, K.Z.; Wu, C.H.; Lu, K.T.; Hwang, J.C. Vasopressin produces inhibition on phrenic nerve activity and apnea through V(1A) receptors in the area postrema in rats. Chin. J. Physiol., 2006, 49(6), 313-325.
[PMID: 17357538]
[148]
Zera, T.; Przybylski, J.; Grygorowicz, T.; Kasarello, K.; Podobinska, M.; Mirowska-Guzel, D.; Cudnoch-Jedrzejewska, A. Vasopressin v1a receptors are present in the carotid body and contribute to the control of breathing in male sprague-dawley rats. Peptides, 2018, 102, 68-74.
[149]
Brotman, D.J.; Golden, S.H.; Wittstein, I.S. The cardiovascular toll of stress. Lancet, 2007, 370(9592), 1089-1100.
[http://dx.doi.org/10.1016/S0140-6736(07)61305-1] [PMID: 17822755]
[150]
Japundžić-Žigon, N.; Šarenac, O.; Lozić, M.; Vasić, M.; Tasić, T.; Bajić, D.; Kanjuh, V.; Murphy, D. Sudden death: Neurogenic causes, prediction and prevention. Eur. J. Prev. Cardiol., 2018, 25(1), 29-39.
[http://dx.doi.org/10.1177/2047487317736827] [PMID: 29053016]
[151]
Šarenac, O.; Lozic, M.; Drakulić, S.; Bajić, D.; Paton, J.F.; Murphy, D.; Japundžić-Žigon, N. Autonomic mechanisms underpinning the stress response in borderline hypertensive rats. Exp. Physiol., 2011, 96, 574-589.
[http://dx.doi.org/10.1113/expphysiol.2010.055970]
[152]
Sawchenko, P.E.; Li, H.Y.; Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Prog. Brain Res., 2000, 122, 61-78.
[153]
Carrasco, G.A.; Van de Kar, L.D. Neuroendocrine pharmacology of stress. Eur. J. Pharmacol., 2003, 463(1-3), 235-272.
[http://dx.doi.org/10.1016/S0014-2999(03)01285-8] [PMID: 12600714]
[154]
Scantamburlo, G.; Ansseau, M.; Legros, J.J. Role of the neurohypophysis in psychological stress. Encephale, 2001, 27(3), 245-259.
[PMID: 11488255]
[155]
Benarroch, E.E. Paraventricular nucleus, stress response, and cardiovascular disease. Clin. Auton. Res., 2005, 15(4), 254-263.
[http://dx.doi.org/10.1007/s10286-005-0290-7] [PMID: 16032381]
[156]
Carter, R.N.; Pinnock, S.B.; Herbert, J. Does the amygdala modulate adaptation to repeated stress? Neuroscience, 2004, 126(1), 9-19.
[http://dx.doi.org/10.1016/j.neuroscience.2004.01.018] [PMID: 15145069]
[157]
Gray, M.; Innala, L.; Viau, V. Central vasopressin V1A receptor blockade impedes hypothalamic-pituitary-adrenal habituation to repeated restraint stress exposure in adult male rats. Neuropsychopharmacology, 2012, 37(12), 2712-2719.
[http://dx.doi.org/10.1038/npp.2012.136] [PMID: 22828750]
[158]
Ciriello, J.; Calaresu, F.R. Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Am. J. Physiol., 1980, 239(1), R137-R142.
[PMID: 7396029]
[159]
Matsuguchi, H.; Sharabi, F.M.; Gordon, F.J.; Johnson, A.K.; Schmid, P.G. Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacology, 1982, 21(7), 687-693.
[http://dx.doi.org/10.1016/0028-3908(82)90012-0] [PMID: 7121740]
[160]
Schmid, P.G.; Sharabi, F.M.; Guo, G.B.; Abboud, F.M.; Thames, M.D. Vasopressin and oxytocin in the neural control of the circulation. Fed. Proc., 1984, 43(1), 97-102.
[PMID: 6690343]
[161]
Brattström, A.; de Jong, W.; De Wied, D. Central vasopressin impairs the baroreceptor heart rate reflex in conscious rats. J. Cardiovasc. Pharmacol., 1990, 15(1), 114-117.
[http://dx.doi.org/10.1097/00005344-199001000-00018] [PMID: 1688967]
[162]
Stojicić, S.; Milutinović, S.; Sarenac, O.; Zivković, S.; Japundzić-Zigon, N. Central vasopressin V(1a) and V(1b) receptors modulate the cardiovascular response to air-jet stress in conscious rats. Biomed. Tech. (Berl.), 2006, 51(4), 268-271.
[http://dx.doi.org/10.1515/BMT.2006.053] [PMID: 17061955]
[163]
Stojicić, S.; Milutinović-Smiljanić, S.; Sarenac, O.; Milosavljević, S.; Paton, J.F.; Murphy, D.; Japundzić-Zigon, N. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats. Neuropharmacology, 2008, 54(5), 824-836.
[http://dx.doi.org/10.1016/j.neuropharm.2007.12.013] [PMID: 18339407]
[164]
Unger, T.; Rohmeiss, P.; Demmert, G.; Ganten, D.; Lang, R.E.; Luft, F.C. Differential modulation of the baroreceptor reflex by brain and plasma vasopressin. Hypertension, 1986, 8(6 Pt 2), II157-II162.
[http://dx.doi.org/10.1161/01.HYP.8.6_Pt_2.II157] [PMID: 2941369]
[165]
Milutinović-Smiljanić, S.; Šarenac, O.; Lozić-Djurić, M.; Murphy, D.; Japundžić-Žigon, N. Evidence for involvement of central vasopressin V1b and V2 receptors in stress-induced baroreflex desensitization. Br. J. Pharmacol., 2013, 169, 900-908.
[http://dx.doi.org/10.1111/bph.12161]
[166]
Michelini, L.C. Endogenous vasopressin and the central control of heart rate during dynamic exercise. Braz. J. Med. Biol. Res., 1998, 31(9), 1185-1195.
[http://dx.doi.org/10.1590/S0100-879X1998000900012] [PMID: 9876286]
[167]
Dufloth, D.L.; Morris, M.; Michelini, L.C. Modulation of exercise tachycardia by vasopressin in the nucleus tractus solitarii. Am. J. Physiol., 1997, 273(4), R1271-R1282.
[PMID: 9362290]
[168]
Morris, M.; Callahan, M.F.; Li, P.; Lucion, A.B. Central oxytocin mediates stress-induced tachycardia. J. Neuroendocrinol., 1995, 7(6), 455-459.
[http://dx.doi.org/10.1111/j.1365-2826.1995.tb00781.x] [PMID: 7550292]
[169]
Li, Y.F.; Mayhan, W.G.; Patel, K.P. NMDA-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. Am. J. Physiol. Heart Circ. Physiol., 2001, 281(6), H2328-H2336.
[http://dx.doi.org/10.1152/ajpheart.2001.281.6.H2328] [PMID: 11709399]
[170]
Li, Y.F.; Jackson, K.L.; Stern, J.E.; Rabeler, B.; Patel, K.P. Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(6), H2847-H2856.
[http://dx.doi.org/10.1152/ajpheart.00625.2005] [PMID: 16877560]
[171]
Japundzic, N.; Grichois, M.L.; Zitoun, P.; Laude, D.; Elghozi, J.L. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J. Auton. Nerv. Syst., 1990, 30(2), 91-100.
[http://dx.doi.org/10.1016/0165-1838(90)90132-3] [PMID: 1973426]
[172]
Liebsch, G.; Wotjak, C.T.; Landgraf, R.; Engelmann, M. Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci. Lett., 1996, 217(2-3), 101-104.
[http://dx.doi.org/10.1016/0304-3940(96)13069-X] [PMID: 8916082]
[173]
Ebner, K.; Wotjak, C.T.; Landgraf, R.; Engelmann, M. Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. Eur. J. Neurosci., 2002, 15(2), 384-388.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01869.x] [PMID: 11849304]
[174]
Lolait, S.J.; Stewart, L.Q.; Jessop, D.S.; Young, W.S., III; O’Carroll, A.M. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology, 2007, 148(2), 849-856.
[http://dx.doi.org/10.1210/en.2006-1309] [PMID: 17122081]
[175]
Roper, J.A.; Craighead, M.; O’Carroll, A.M.; Lolait, S.J. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist. J. Neuroendocrinol., 2010, 22(11), 1173-1180.
[http://dx.doi.org/10.1111/j.1365-2826.2010.02070.x] [PMID: 20846299]
[176]
Stewart, L.Q.; Roper, J.A.; Young, W.S., III; O’Carroll, A.M.; Lolait, S.J. Pituitary-adrenal response to acute and repeated mild restraint, forced swim and change in environment stress in arginine vasopressin receptor 1b knockout mice. J. Neuroendocrinol., 2008, 20(5), 597-605.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01704.x] [PMID: 18363802]
[177]
Grewen, K.M.; Light, K.C. Plasma oxytocin is related to lower cardiovascular and sympathetic reactivity to stress. Biol. Psychol., 2011, 87(3), 340-349.
[http://dx.doi.org/10.1016/j.biopsycho.2011.04.003] [PMID: 21540072]
[178]
Pow, D.V.; Morris, J.F. Membrane routing during exocytosis and endocytosis in neuroendocrine neurones and endocrine cells: use of colloidal gold particles and immunocytochemical discrimination of membrane compartments. Cell Tissue Res., 1991, 264(2), 299-316.
[http://dx.doi.org/10.1007/BF00313967] [PMID: 1715242]
[179]
Freund-Mercier, M.J.; Stoeckel, M.E.; Klein, M.J. Oxytocin receptors on oxytocin neurones: Histoautoradiographic detection in the lactating rat. J. Physiol., 1994, 480(1), 155-161.
[180]
Ludwig, M.; Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci., 2006, 7(2), 126-136.
[http://dx.doi.org/10.1038/nrn1845] [PMID: 16429122]
[181]
Rossoni, E.; Feng, J.; Tirozzi, B.; Brown, D.; Leng, G.; Moos, F. Emergent synchronous bursting of oxytocin neuronal network. PLOS Comput. Biol., 2008, 4(7)e1000123
[http://dx.doi.org/10.1371/journal.pcbi.1000123] [PMID: 18636098]
[182]
Leng, G.; Brown, C.; Sabatier, N.; Scott, V. Population dynamics in vasopressin cells. Neuroendocrinology, 2008, 88(3), 160-172.
[http://dx.doi.org/10.1159/000149827] [PMID: 18667805]
[183]
Son, S.J.; Filosa, J.A.; Potapenko, E.S.; Biancardi, V.C.; Zheng, H.; Patel, K.P.; Tobin, V.A.; Ludwig, M.; Stern, J.E. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron, 2013, 78(6), 1036-1049.
[http://dx.doi.org/10.1016/j.neuron.2013.04.025] [PMID: 23791197]
[184]
Sladek, C.D.M.L.; Michelini, L.C.; Stachenfeld, N.S.; Stern, J.E.; Urban, J.H. Endocrine-autonomic linkages. Compr. Physiol., 2015, 5(3), 1281-1323.
[http://dx.doi.org/10.1002/cphy.c140028] [PMID: 26140719]
[185]
Hilton, S. The defence-arousal system and its relevance for circulatory and respiratory control. J. Exp. Biol., 1982, 100, 159-174.
[186]
Lozic, M.; Tasic, T.; Martin, A.; Greenwood, M.; Sarenac, O.; Hindmarch, C.; Paton, J.F.; Murphy, D.; Japundzic-Zigon, N. Over-expression of v1a receptors in pvn modulates autonomic cardiovascular control. Pharmacol. Res., 2016, 114, 185-195.
[187]
Murphy, D.; Konopacka, A.; Hindmarch, C.; Paton, J.F.; Sweedler, J.V.; Gillette, M.U.; Ueta, Y.; Grinevich, V.; Lozic, M.; Japundzic-Zigon, N. The hypothalamic-neurohypophyseal system: from genome to physiology. J. Neuroendocrinol., 2012, 24(4), 539-553.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02241.x] [PMID: 22448850]
[188]
Lozić, M.; Greenwood, M.; Šarenac, O.; Martin, A.; Hindmarch, C.; Tasić, T.; Paton, J.; Murphy, D.; Japundžić-Žigon, N. Overexpression of oxytocin receptors in the hypothalamic PVN increases baroreceptor reflex sensitivity and buffers BP variability in conscious rats. Br. J. Pharmacol., 2014, 171(19), 4385-4398.
[http://dx.doi.org/10.1111/bph.12776] [PMID: 24834854]
[189]
Mehlum, M.H.; Liestøl, K.; Kjeldsen, S.E.; Julius, S.; Hua, T.A.; Rothwell, P.M.; Mancia, G.; Parati, G.; Weber, M.A.; Berge, E. Blood pressure variability and risk of cardiovascular events and death in patients with hypertension and different baseline risks. Eur. Heart J., 2018, 39(24), 2243-2251.
[http://dx.doi.org/10.1093/eurheartj/ehx760] [PMID: 29365085]
[190]
Ribeiro, N. Panizza, Hdo.N.; Santos, K.M.; Ferreira-Neto, H.C.; Antunes, V.R. Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, 309(11), R1369-R1379.
[http://dx.doi.org/10.1152/ajpregu.00312.2015] [PMID: 26354848]
[191]
Volpi, S.; Rabadan-Diehl, C.; Aguilera, G. Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress, 2004, 7(2), 75-83.
[http://dx.doi.org/10.1080/10253890410001733535] [PMID: 15512850]
[192]
El-Werfali, W.; Toomasian, C.; Maliszewska-Scislo, M.; Li, C.; Rossi, N.F. Haemodynamic and renal sympathetic responses to V1b vasopressin receptor activation within the paraventricular nucleus. Exp. Physiol., 2015, 100(5), 553-565.
[http://dx.doi.org/10.1113/expphysiol.2014.084426] [PMID: 25605313]
[193]
Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[194]
Brailoiu, G.C.; Dun, S.L.; Yang, J.; Ohsawa, M.; Chang, J.K.; Dun, N.J. Apelin-immunoreactivity in the rat hypothalamus and pituitary. Neurosci. Lett., 2002, 327(3), 193-197.
[http://dx.doi.org/10.1016/S0304-3940(02)00411-1] [PMID: 12113910]
[195]
De Mota, N.; Reaux-Le Goazigo, A.; El Messari, S.; Chartrel, N.; Roesch, D.; Dujardin, C.; Kordon, C.; Vaudry, H.; Moos, F.; Llorens-Cortes, C. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc. Natl. Acad. Sci. USA, 2004, 101(28), 10464-10469.
[http://dx.doi.org/10.1073/pnas.0403518101] [PMID: 15231996]
[196]
Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; Kurokawa, T.; Onda, H.; Fujino, M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun., 1998, 251(2), 471-476.
[http://dx.doi.org/10.1006/bbrc.1998.9489] [PMID: 9792798]
[197]
O’Dowd, B.F.; Heiber, M.; Chan, A.; Heng, H.H.; Tsui, L.C.; Kennedy, J.L.; Shi, X.; Petronis, A.; George, S.R.; Nguyen, T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene, 1993, 136(1-2), 355-360.
[http://dx.doi.org/10.1016/0378-1119(93)90495-O] [PMID: 8294032]
[198]
O’Carroll, A.M.; Lolait, S.J. Regulation of rat APJ receptor messenger ribonucleic acid expression in magnocellular neurones of the paraventricular and supraopric nuclei by osmotic stimuli. J. Neuroendocrinol., 2003, 15(7), 661-666.
[http://dx.doi.org/10.1046/j.1365-2826.2003.01044.x] [PMID: 12787050]
[199]
Burrell, L.M.; Phillips, P.A.; Risvanis, J.; Aldred, K.L.; Hutchins, A.M.; Johnston, C.I. Attenuation of genetic hypertension after short-term vasopressin V1A receptor antagonism. Hypertension, 1995, 26(5), 828-834.
[http://dx.doi.org/10.1161/01.HYP.26.5.828] [PMID: 7591025]
[200]
Crofton, J.T.; Share, L.; Shade, R.E.; Allen, C.; Tarnowski, D. Vasopressin in the rat with spontaneous hypertension. Am. J. Physiol., 1978, 235(4), H361-H366.
[PMID: 696877]
[201]
Lo, M.; Julien, C.; Barres, C.; Medeiros, I.; Allevard, A.M.; Vincent, M.; Sassard, J. Blood pressure maintenance in hypertensive sympathectomized rats. II. Renin-angiotensin system and vasopressin. Am. J. Physiol., 1991, 261(4 Pt 2), R1052-R1056.
[PMID: 1833988]
[202]
Ogura, T.; Mitsui, T.; Yamamoto, I.; Katayama, E.; Ota, Z.; Ogawa, N. Differential changes in atrial natriuretic peptide and vasopressin receptor bindings in kidney of spontaneously hypertensive rat. Life Sci., 1987, 40(3), 233-238.
[http://dx.doi.org/10.1016/0024-3205(87)90337-7] [PMID: 3025543]
[203]
Vågnes, O.; Feng, J.J.; Iversen, B.M.; Arendshorst, W.J. Upregulation of V(1) receptors in renal resistance vessels of rats developing genetic hypertension. Am. J. Physiol. Renal Physiol., 2000, 278(6), F940-F948.
[http://dx.doi.org/10.1152/ajprenal.2000.278.6.F940] [PMID: 10836981]
[204]
Yamada, Y.; Yamamura, Y.; Chihara, T.; Onogawa, T.; Nakamura, S.; Yamashita, T.; Mori, T.; Tominaga, M.; Yabuuchi, Y. OPC-21268, a vasopressin V1 antagonist, produces hypotension in spontaneously hypertensive rats. Hypertension, 1994, 23(2), 200-204.
[http://dx.doi.org/10.1161/01.HYP.23.2.200] [PMID: 8307629]
[205]
Crofton, J.T.; Share, L.; Shade, R.E.; Lee-Kwon, W.J.; Manning, M.; Sawyer, W.H. The importance of vasopressin in the development and maintenance of DOC-salt hypertension in the rat. Hypertension, 1979, 1(1), 31-38.
[http://dx.doi.org/10.1161/01.HYP.1.1.31] [PMID: 544512]
[206]
Johnston, C.I. Vasopressin in circulatory control and hypertension. J. Hypertens., 1985, 3(6), 557-569.
[http://dx.doi.org/10.1097/00004872-198512000-00001] [PMID: 2935570]
[207]
Möhring, J.; Kintz, J.; Schoun, J.; McNeill, J.R. Pressor responsiveness and cardiovascular reflex activity in spontaneously hypertensive and normotensive rates during vasopressin infusion. J. Cardiovasc. Pharmacol., 1981, 3(5), 948-957.
[http://dx.doi.org/10.1097/00005344-198109000-00004] [PMID: 6168862]
[208]
Cowley, A.W., Jr Szczepanska-Sadowska, E.; Stepniakowski, K.; Mattson, D. Chronic intravenous administration of V1 arginine vasopressin agonist results in sustained hypertension. Am. J. Physiol., 1994, 267(2 Pt 2), H751-H756.
[PMID: 8067431]
[209]
Szczepanska-Sadowska, E.; Stepniakowski, K.; Skelton, M.M.; Cowley, A.W., Jr Prolonged stimulation of intrarenal V1 vasopressin receptors results in sustained hypertension. Am. J. Physiol., 1994, 267(5 Pt 2), R1217-R1225.
[PMID: 7977848]
[210]
Yuan, B.; Cowley, A.W., Jr Evidence that reduced renal medullary nitric oxide synthase activity of dahl s rats enables small elevations of arginine vasopressin to produce sustained hypertension. Hypertension, 2001, 37(2 Pt 2), 524-528.
[http://dx.doi.org/10.1161/01.HYP.37.2.524] [PMID: 11230329]
[211]
Swords, B.H.; Wyss, J.M.; Berecek, K.H. Central vasopressin receptors are upregulated by deoxycorticosterone acetate. Brain Res., 1991, 559(1), 10-16.
[http://dx.doi.org/10.1016/0006-8993(91)90280-9] [PMID: 1838296]
[212]
Szczepańska-Sadowska, E.; Paczwa, P.; Loń, S.; Ganten, D. Increased pressor function of central vasopressinergic system in hypertensive renin transgenic rats. J. Hypertens., 1998, 16(10), 1505-1514.
[http://dx.doi.org/10.1097/00004872-199816100-00016] [PMID: 9814623]
[213]
Jackiewicz, E.; Szczepanska-Sadowska, E.; Dobruch, J. Altered expression of angiotensin AT1a and vasopressin V1a receptors and nitric oxide synthase mRNA in the brain of rats with renovascular hypertension. J. Physiol. Pharmacol., 2004, 55(4), 725-737.
[PMID: 15613739]
[214]
Yi, S.S.; Kim, H.J.; Do, S.G.; Lee, Y.B.; Ahn, H.J.; Hwang, I.K.; Yoon, Y.S. Arginine vasopressin (AVP) expressional changes in the hypothalamic paraventricular and supraoptic nuclei of stroke-prone spontaneously hypertensive rats. Anat. Cell Biol., 2012, 45(2), 114-120.
[http://dx.doi.org/10.5115/acb.2012.45.2.114] [PMID: 22822466]
[215]
Coleman, C.G.; Wang, G.; Park, L.; Anrather, J.; Delagrammatikas, G.J.; Chan, J.; Zhou, J.; Iadecola, C.; Pickel, V.M. Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus. J. Neurosci., 2010, 30(36), 12103-12112.
[http://dx.doi.org/10.1523/JNEUROSCI.3367-10.2010] [PMID: 20826673]
[216]
Littlejohn, N.K.; Siel, R.B., Jr; Ketsawatsomkron, P.; Pelham, C.J.; Pearson, N.A.; Hilzendeger, A.M.; Buehrer, B.A.; Weidemann, B.J.; Li, H.; Davis, D.R.; Thompson, A.P.; Liu, X.; Cassell, M.D.; Sigmund, C.D.; Grobe, J.L. Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(10), R818-R828.
[http://dx.doi.org/10.1152/ajpregu.00082.2013] [PMID: 23535460]
[217]
Shafton, A.D.; Ryan, A.; Badoer, E. Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res., 1998, 801(1-2), 239-243.
[http://dx.doi.org/10.1016/S0006-8993(98)00587-3] [PMID: 9729407]
[218]
Pyner, S.; Coote, J.H. Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience, 2000, 100(3), 549-556.
[http://dx.doi.org/10.1016/S0306-4522(00)00283-9] [PMID: 11098118]
[219]
Motawei, K.; Pyner, S.; Ranson, R.N.; Kamel, M.; Coote, J.H. Terminals of paraventricular spinal neurones are closely associated with adrenal medullary sympathetic preganglionic neurones: immunocytochemical evidence for vasopressin as a possible neurotransmitter in this pathway. Exp. Brain Res., 1999, 126(1), 68-76.
[http://dx.doi.org/10.1007/s002210050717] [PMID: 10333008]
[220]
Ranson, R.N.; Motawei, K.; Pyner, S.; Coote, J.H. The paraventricular nucleus of the hypothalamus sends efferents to the spinal cord of the rat that closely appose sympathetic preganglionic neurones projecting to the stellate ganglion. Exp. Brain Res., 1998, 120(2), 164-172.
[http://dx.doi.org/10.1007/s002210050390] [PMID: 9629958]
[221]
Hallbeck, M.; Blomqvist, A. Spinal cord-projecting vasopressinergic neurons in the rat paraventricular hypothalamus. J. Comp. Neurol., 1999, 411(2), 201-211.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990823)411:2<201:AID-CNE3>3.0.CO;2-3] [PMID: 10404248]
[222]
Hallbeck, M.; Larhammar, D.; Blomqvist, A. Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord. J. Comp. Neurol., 2001, 433(2), 222-238.
[http://dx.doi.org/10.1002/cne.1137] [PMID: 11283961]
[223]
Hallbeck, M. Dynorphin mRNA-expressing neurons in the rat paraventricular hypothalamic nucleus project to the spinal cord. Neurosci. Lett., 2000, 285(3), 161-164.
[http://dx.doi.org/10.1016/S0304-3940(00)01093-4] [PMID: 10806311]
[224]
Pyner, S. Neurochemistry of the paraventricular nucleus of the hypothalamus: Implications for cardiovascular regulation. J. Chem. Neuroanat., 2009, 38(3), 197-208.
[http://dx.doi.org/10.1016/j.jchemneu.2009.03.005] [PMID: 19778682]
[225]
Pietranera, L.; Brocca, M.E.; Cymeryng, C.; Gomez-Sanchez, E.; Gomez-Sanchez, C.E.; Roig, P.; Lima, A.; De Nicola, A.F. Increased expression of the mineralocorticoid receptor in the brain of spontaneously hypertensive rats. J. Neuroendocrinol., 2012, 24(9), 1249-1258.
[http://dx.doi.org/10.1111/j.1365-2826.2012.02332.x] [PMID: 22564091]
[226]
Chen, A.; Huang, B.S.; Wang, H.W.; Ahmad, M.; Leenen, F.H. Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. J. Physiol., 2014, 592(16), 3523-3536.
[http://dx.doi.org/10.1113/jphysiol.2014.275560] [PMID: 24973408]
[227]
Huber, M.J.; Fan, Y.; Jiang, E.; Zhu, F.; Larson, R.A.; Yan, J.; Li, N.; Chen, Q.H.; Shan, Z. Increased activity of the orexin system in the paraventricular nucleus contributes to salt-sensitive hypertension. Am. J. Physiol. Heart Circ. Physiol., 2017, 313(6), H1075-H1086.
[http://dx.doi.org/10.1152/ajpheart.00822.2016] [PMID: 28667055]
[228]
Kim, Y.B.; Kim, Y.S.; Kim, W.B.; Shen, F.Y.; Lee, S.W.; Chung, H.J.; Kim, J.S.; Han, H.C.; Colwell, C.S.; Kim, Y.I. GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ. Res., 2013, 113(12), 1296-1307.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301814] [PMID: 24103391]
[229]
Choe, K.Y.; Han, S.Y.; Gaub, P.; Shell, B.; Voisin, D.L.; Knapp, B.A.; Barker, P.A.; Brown, C.H.; Cunningham, J.T.; Bourque, C.W. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron, 2015, 85(3), 549-560.
[http://dx.doi.org/10.1016/j.neuron.2014.12.048] [PMID: 25619659]
[230]
Hewitt, S.A.; Wamsteeker, J.I.; Kurz, E.U.; Bains, J.S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci., 2009, 12(4), 438-443.
[http://dx.doi.org/10.1038/nn.2274] [PMID: 19252497]
[231]
Khor, S.; Cai, D. Hypothalamic and inflammatory basis of hypertension. Clin. Sci. (Lond.), 2017, 131(3), 211-223.
[http://dx.doi.org/10.1042/CS20160001] [PMID: 28057892]
[232]
Ferri, C.C.; Ferguson, A.V. Interleukin-1 beta depolarizes paraventricular nucleus parvocellular neurones. J. Neuroendocrinol., 2003, 15(2), 126-133.
[http://dx.doi.org/10.1046/j.1365-2826.2003.00870.x] [PMID: 12535154]
[233]
Wheeler, D.; Knapp, E.; Bandaru, V.V.; Wang, Y.; Knorr, D.; Poirier, C.; Mattson, M.P.; Geiger, J.D.; Haughey, N.J. Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J. Neurochem., 2009, 109(5), 1237-1249.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06038.x] [PMID: 19476542]
[234]
Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., III; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 2013, 155(7), 1596-1609.
[http://dx.doi.org/10.1016/j.cell.2013.11.030] [PMID: 24360280]
[235]
Li, D.P.; Zhu, L.H.; Pachuau, J.; Lee, H.A.; Pan, H.L. mGluR5 Upregulation increases excitability of hypothalamic presympathetic neurons through NMDA receptor trafficking in spontaneously hypertensive rats. J. Neurosci., 2014, 34(12), 4309-4317.
[http://dx.doi.org/10.1523/JNEUROSCI.4295-13.2014] [PMID: 24647951]
[236]
Shen, X.Z.; Li, Y.; Li, L.; Shah, K.H.; Bernstein, K.E.; Lyden, P.; Shi, P. Microglia participate in neurogenic regulation of hypertension. Hypertension, 2015, 66(2), 309-316.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05333] [PMID: 26056339]
[237]
Zhang, M.; Biancardi, V.C.; Stern, J.E. An increased extrasynaptic NMDA tone inhibits A-type K+ current and increases excitability of hypothalamic neurosecretory neurons in hypertensive rats. J. Physiol., 2017, 595(14), 4647-4661.
[http://dx.doi.org/10.1113/JP274327] [PMID: 28378360]
[238]
Biancardi, V.C.; Campos, R.R.; Stern, J.E. Altered balance of gamma-aminobutyric acidergic and glutamatergic afferent inputs in rostral ventrolateral medulla-projecting neurons in the paraventricular nucleus of the hypothalamus of renovascular hypertensive rats. J. Comp. Neurol., 2010, 518(5), 567-585.
[http://dx.doi.org/10.1002/cne.22256] [PMID: 20034060]
[239]
Li, D.P.; Pan, H.L. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension, 2007, 49(4), 916-925.
[http://dx.doi.org/10.1161/01.HYP.0000259666.99449.74] [PMID: 17309953]
[240]
Stern, J.E.; Son, S.; Biancardi, V.C.; Zheng, H.; Sharma, N.; Patel, K.P. Astrocytes contribute to angiotensin ii stimulation of hypothalamic neuronal activity and sympathetic outflow. Hypertension, 2016, 68(6), 1483-1493.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07747] [PMID: 27698069]
[241]
Dange, R.B.; Agarwal, D.; Teruyama, R.; Francis, J. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J. Neuroinflammation, 2015, 12, 31.
[242]
Petersson, M.; Lundeberg, T.; Uvnäs-Moberg, K. Oxytocin decreases blood pressure in male but not in female spontaneously hypertensive rats. J. Auton. Nerv. Syst., 1997, 66(1-2), 15-18.
[http://dx.doi.org/10.1016/S0165-1838(97)00040-4] [PMID: 9334988]
[243]
Jameson, H.; Bateman, R.; Byrne, P.; Dyavanapalli, J.; Wang, X.; Jain, V.; Mendelowitz, D. Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats. Am. J. Physiol. Heart Circ. Physiol., 2016, 310(11), H1549-H1557.
[http://dx.doi.org/10.1152/ajpheart.00808.2015] [PMID: 27016581]
[244]
Cai, A.; Wang, L.; Zhou, Y. Hypertension and obstructive sleep apnea. Hypertens. Res., 2016, 39(6), 391-395.
[http://dx.doi.org/10.1038/hr.2016.11] [PMID: 26888120]
[245]
Jain, V.; Marbach, J.; Kimbro, S.; Andrade, D.C.; Jain, A.; Capozzi, E.; Mele, K.; Del Rio, R.; Kay, M.W.; Mendelowitz, D. Benefits of oxytocin administration in obstructive sleep apnea. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(5), L825-L833.
[http://dx.doi.org/10.1152/ajplung.00206.2017] [PMID: 28798255]
[246]
Burnett, H.; Earley, A.; Voors, A.A.; Senni, M.; McMurray, J.J.; Deschaseaux, C.; Cope, S. Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction: A network meta-analysis. Circ Heart Fail, 2017, 10(1)e003529
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003529] [PMID: 28087688]
[247]
Konstam, M.A.G.M.; Gheorghiade, M.; Burnett, J.C., Jr; Grinfeld, L.; Maggioni, A.P.; Swedberg, K.; Udelson, J.E.; Zannad, F.; Cook, T.; Ouyang, J.; Zimmer, C.; Orlandi, C. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA, 2007, 297(12), 1319-1331.
[http://dx.doi.org/10.1001/jama.297.12.1319] [PMID: 17384437]
[248]
Annane, D.; Decaux, G.; Smith, N. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am. J. Med. Sci., 2009, 337(1), 28-36.
[http://dx.doi.org/10.1097/MAJ.0b013e31817b8148] [PMID: 19057376]
[249]
Li, D.P.; Chen, S.R.; Finnegan, T.F.; Pan, H.L. Signalling pathway of nitric oxide in synaptic GABA release in the rat paraventricular nucleus. J. Physiol., 2004, 554(Pt 1), 100-110.
[http://dx.doi.org/10.1113/jphysiol.2003.053371] [PMID: 14678495]
[250]
Li, Y.F.; Cornish, K.G.; Patel, K.P. Alteration of NMDA NR1 receptors within the paraventricular nucleus of hypothalamus in rats with heart failure. Circ. Res., 2003, 93(10), 990-997.
[http://dx.doi.org/10.1161/01.RES.0000102865.60437.55] [PMID: 14576197]
[251]
Carillo, B.A.; Oliveira-Sales, E.B.; Andersen, M.; Tufik, S.; Hipolide, D.; Santos, A.A.; Tucci, P.J.; Bergamaschi, C.T.; Campos, R.R. Changes in GABAergic inputs in the paraventricular nucleus maintain sympathetic vasomotor tone in chronic heart failure. Auton. Neurosci., 2012, 171(1-2), 41-48.
[http://dx.doi.org/10.1016/j.autneu.2012.10.005] [PMID: 23146621]
[252]
Pandit, S.; Jo, J.Y.; Lee, S.U.; Lee, Y.J.; Lee, S.Y.; Ryu, P.D.; Lee, J.U.; Kim, H.W.; Jeon, B.H.; Park, J.B. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure. J. Neurophysiol., 2015, 114(2), 914-926.
[http://dx.doi.org/10.1152/jn.00080.2015] [PMID: 26063771]
[253]
Park, J.B.; Skalska, S.; Son, S.; Stern, J.E. Dual GABAA receptor-mediated inhibition in rat presympathetic paraventricular nucleus neurons. J. Physiol., 2007, 582(Pt 2), 539-551.
[http://dx.doi.org/10.1113/jphysiol.2007.133223] [PMID: 17495040]
[254]
Lee, S.; Yoon, B.E.; Berglund, K.; Oh, S.J.; Park, H.; Shin, H.S.; Augustine, G.J.; Lee, C.J. Channel-mediated tonic GABA release from glia. Science, 2010, 330(6005), 790-796.
[http://dx.doi.org/10.1126/science.1184334] [PMID: 20929730]
[255]
Ferreira-Neto, H.C.; Biancardi, V.C.; Stern, J.E. A reduction in SK channels contributes to increased activity of hypothalamic magnocellular neurons during heart failure. J. Physiol., 2017, 595(20), 6429-6442.
[http://dx.doi.org/10.1113/JP274730] [PMID: 28714070]
[256]
Tan, J.; Wang, H.; Leenen, F.H. Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(5), H1665-H1671.
[http://dx.doi.org/10.1152/ajpheart.00858.2003] [PMID: 14693687]
[257]
Wei, S.G.; Yu, Y.; Zhang, Z.H.; Weiss, R.M.; Felder, R.B. Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats. Hypertension, 2008, 52(4), 679-686.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.113639] [PMID: 18768402]
[258]
Zhu, G.Q.; Gao, L.; Patel, K.P.; Zucker, I.H.; Wang, W. Ang ii in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J. Appl. Physiol., 2004, 97(5), 1746-1754.
[259]
Sharma, N.M.; Llewellyn, T.L.; Zheng, H.; Patel, K.P. Angiotensin II-mediated posttranslational modification of nNOS in the PVN of rats with CHF: role for PIN. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(6), H843-H855.
[http://dx.doi.org/10.1152/ajpheart.00170.2013] [PMID: 23832698]
[260]
Sato, T.; Kadowaki, A.; Suzuki, T.; Ito, H.; Watanabe, H.; Imai, Y.; Kuba, K. Loss of apelin augments angiotensin ii-induced cardiac dysfunction and pathological remodeling. Int. J. Mol. Sci., 2019, 20(2)E239
[http://dx.doi.org/10.3390/ijms20020239] [PMID: 30634441]
[261]
Sandgren, J.A.; Linggonegoro, D.W.; Zhang, S.Y.; Sapouckey, S.A.; Claflin, K.E.; Pearson, N.A.; Leidinger, M.R.; Pierce, G.L.; Santillan, M.K.; Gibson-Corley, K.N.; Sigmund, C.D.; Grobe, J.L. Angiotensin AT1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 314(6), R770-R780.
[http://dx.doi.org/10.1152/ajpregu.00435.2017] [PMID: 29364700]
[262]
Roy, R.K.; Augustine, R.A.; Brown, C.H.; Schwenke, D.O. Activation of oxytocin neurons in the paraventricular nucleus drives cardiac sympathetic nerve activation following myocardial infarction in rats. Commun. Biol., 2018, 1, 160.
[http://dx.doi.org/10.1038/s42003-018-0169-5]
[263]
Francis, J.; Chu, Y.; Johnson, A.K.; Weiss, R.M.; Felder, R.B. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(6), H2264-H2271.
[http://dx.doi.org/10.1152/ajpheart.01072.2003] [PMID: 15148057]
[264]
Francis, J.; Zhang, Z.H.; Weiss, R.M.; Felder, R.B. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(2), H791-H797.
[http://dx.doi.org/10.1152/ajpheart.00099.2004] [PMID: 15277202]
[265]
Engblom, D.; Ek, M.; Saha, S.; Ericsson-Dahlstrand, A.; Jakobsson, P.J.; Blomqvist, A. Prostaglandins as inflammatory messengers across the blood-brain barrier. J. Mol. Med. (Berl.), 2002, 80(1), 5-15.
[http://dx.doi.org/10.1007/s00109-001-0289-z] [PMID: 11862319]
[266]
Schiltz, J.C.; Sawchenko, P.E. Signaling the brain in systemic inflammation: The role of perivascular cells. Front. Biosci., 2003, 80, s1321-s1329.
[267]
Han, Y.; Shi, Z.; Zhang, F.; Yu, Y.; Zhong, M.K.; Gao, X.Y.; Wang, W.; Zhu, G.Q. Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats. Eur. J. Heart Fail., 2007, 9(10), 967-973.
[http://dx.doi.org/10.1016/j.ejheart.2007.07.004] [PMID: 17719272]
[268]
Guggilam, A.; Cardinale, J.P.; Mariappan, N.; Sriramula, S.; Haque, M.; Francis, J. Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res. Cardiol., 2011, 106(2), 273-286.
[http://dx.doi.org/10.1007/s00395-010-0146-8] [PMID: 21246206]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy