Review Article

回顾正常和突变亨廷顿蛋白在亨廷顿病中的生化意义

卷 27, 期 31, 2020

页: [5137 - 5158] 页: 22

弟呕挨: 10.2174/0929867326666190621101909

价格: $65

摘要

亨廷顿蛋白(Htt)是一种大脑的多功能蛋白。正常的Htt显示一个常见的α 螺旋结构,但β链形式的构象变化是亨廷顿病的主要原因。亨廷顿病是一种由CAG三核苷酸反复膨胀引起的遗传性神经系统紊乱,导致亨廷顿蛋白编码基因n端不稳定。突变导致多聚谷氨酰胺束(polyQ)的生产异常膨胀,从而形成不稳定的亨廷顿蛋白,通常称为突变亨廷顿蛋白。突变亨廷顿蛋白是导致亨廷顿病复杂的神经代谢改变的原因,导致正常亨廷顿蛋白的所有功能丧失,以及由于这种突变的存在导致异常交互作用的发生。错误折叠亨廷顿蛋白引起的问题之一是氧化应激的增加,这在许多神经系统疾病中很常见,如阿尔茨海默氏症、帕金森氏症、肌萎缩性脊髓侧索硬化症和克雅氏病。在过去的几年里,抗氧化剂的使用促使人们寻找有效的治疗方法来防御神经退化。尽管还需要进一步的研究,使用抗氧化剂混合物来抵消神经损伤似乎是有希望的。

关键词: 亨廷顿病,亨廷顿蛋白,神经退行性病变,错误折叠,抗氧化剂,氧化应激

[1]
Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res. Rev., 2014, 14(100), 19-30.
[http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[2]
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature, 2016, 539(7628), 180-186.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[3]
Hung, C.W.; Chen, Y.C.; Hsieh, W.L.; Chiou, S.H.; Kao, C.L. Ageing and neurodegenerative diseases. Ageing Res. Rev., 2010, 9(1)(Suppl. 1), S36-S46.
[http://dx.doi.org/10.1016/j.arr.2010.08.006] [PMID: 20732460]
[4]
Kawas, C.H.; Kim, R.C.; Sonnen, J.A.; Bullain, S.S.; Trieu, T.; Corrada, M.M. Multiple pathologies are common and related to dementia in the oldest-old: the 90+ study. Neurology, 2015, 85(6), 535-542.
[http://dx.doi.org/10.1212/WNL.0000000000001831] [PMID: 26180144]
[5]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[6]
Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(6), 4094-4125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[7]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell. Longevity, 2017, 2017, 2.
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[8]
Andersen, J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med., 2004, 10(Suppl.), S18-S25.
[http://dx.doi.org/10.1038/nrn1434] [PMID: 15298006]
[9]
Lalkovičová, M.; Danielisová, V. Neuroprotection and antioxidants. Neural Regen. Res., 2016, 11(6), 865-874.
[http://dx.doi.org/10.4103/1673-5374.184447] [PMID: 27482198]
[10]
Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol., 2018, 15, 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[11]
Popescu, B.F.G.; Nichol, H. Mapping brain metals to evaluate therapies for neurodegenerative disease. CNS Neurosci. Ther., 2011, 17(4), 256-268.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00149.x] [PMID: 20553312]
[12]
Bentsen, H. Dietary polyunsaturated fatty acids, brain function and mental health. Microb. Ecol. Health Dis., 2017, 28(1) 1281916
[http://dx.doi.org/10.1080%2F16512235.2017.1281916 ]
[13]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[14]
Carvalho, J.C.T.; Fernandes, C.P.; Daleprane, J.B.; Alves, M.S.; Stien, D.; Dhammika Nanayakkara, N.P. Role of natural antioxidants from functional foods in neurodegenerative and metabolic disorders. Oxid. Med. Cell. Longev., 2018, 2018 1459753
[http://dx.doi.org/10.1155/2018/1459753] [PMID: 30405873]
[15]
Chang, B.J.; Jang, B.J.; Son, T.G.; Cho, I.H.; Quan, F.S.; Choe, N.H.; Nahm, S.S.; Lee, J.H. Ascorbic acid ameliorates oxidative damage induced by maternal low-level lead exposure in the hippocampus of rat pups during gestation and lactation. Food Chem. Toxicol., 2012, 50(2), 104-8.
[http://dx.doi.org/10.1016/j.fct.2011.09.043] [PMID: 22056337]
[16]
Roos, R.A.C. Huntington’s disease: a clinical review. Orphanet J. Rare Dis., 2010, 5, 40.
[http://dx.doi.org/10.1186/1750-1172-5-40] [PMID: 21171977]
[17]
Langbehn, D.R.; Hayden, M.R.; Paulsen, J.S. and the PREDICT-HD Investigators of the Huntington Study Group. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2010, 153B(2), 397-408.
[http://dx.doi.org/10.1002/ajmg.b.30992] [PMID: 19548255]
[18]
Eidelberg, D.; Surmeier, D.J. Brain networks in Huntington disease. J. Clin. Invest., 2011, 121(2), 484-492.
[http://dx.doi.org/10.1172/JCI45646] [PMID: 21285521]
[19]
Ross, C.A.; Tabrizi, S.J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol., 2011, 10(1), 83-98.
[http://dx.doi.org/10.1016/S1474-4422(10)70245-3] [PMID: 21163446]
[20]
Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov. Disord., 2012, 27(9), 1083-1091.
[http://dx.doi.org/10.1002/mds.25075] [PMID: 22692795]
[21]
Dorsey, E.R.; Beck, C.A.; Darwin, K.; Nichols, P.; Brocht, A.F.; Biglan, K.M.; Shoulson, I. Huntington Study Group COHORT Investigators. Natural history of Huntington disease. JAMA Neurol., 2013, 70(12), 1520-1530.
[http://dx.doi.org/10.1001/jamaneurol.2013.4408] [PMID: 24126537]
[22]
Labbadia, J.; Morimoto, R.I. Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci., 2013, 38(8), 378-385.
[http://dx.doi.org/10.1016/j.tibs.2013.05.003] [PMID: 23768628]
[23]
Ross, C.A.; Aylward, E.H.; Wild, E.J.; Langbehn, D.R.; Long, J.D.; Warner, J.H.; Scahill, R.I.; Leavitt, B.R.; Stout, J.C.; Paulsen, J.S.; Reilmann, R.; Unschuld, P.G.; Wexler, A.; Margolis, R.L.; Tabrizi, S.J. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol., 2014, 10(4), 204-216.
[http://dx.doi.org/10.1038/nrneurol.2014.24] [PMID: 24614516]
[24]
Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; Wild, E.J.; Tabrizi, S.J. Huntington disease. Nat. Rev. Dis. Primers, 2015, 1(23), 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[25]
Huang, W.J.; Chen, W.W.; Zhang, X. Huntington’s disease: molecular basis of pathology and status of current therapeutic approaches. Exp. Ther. Med., 2016, 12(4), 1951-1956.
[http://dx.doi.org/10.3892/etm.2016.3566] [PMID: 27698679]
[26]
Sun, Y.M.; Zhang, Y.B.; Wu, Z.Y. Huntington’s disease: relationship between phenotype and genotype. Mol. Neurobiol., 2017, 54(1), 342-348.
[http://dx.doi.org/10.1007/s12035-015-9662-8] [PMID: 26742514]
[27]
McColgan, P.; Tabrizi, S.J. Huntington’s disease: a clinical review. Eur. J. Neurol., 2018, 25(1), 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[28]
Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A mitochondria-associated oxidative stress perspective on Huntington’s disease. Front. Mol. Neurosci., 2018, 11, 329.
[http://dx.doi.org/10.3389/fnmol.2018.00329] [PMID: 30283298]
[29]
Hofer, S.; Kainz, K.; Zimmermann, A.; Bauer, M.A.; Pendl, T.; Poglitsch, M.; Madeo, F.; Carmona-Gutierrez, D. Studying Huntington’s disease in yeast: from mechanisms to pharmacological approaches. Front. Mol. Neurosci., 2018, 11(11), 318.
[http://dx.doi.org/10.3389/fnmol.2018.00318] [PMID: 30233317]
[30]
Myers, R.H.; MacDonald, M.E.; Koroshetz, W.J.; Duyao, M.P.; Ambrose, C.M.; Taylor, S.A.; Barnes, G.; Srinidhi, J.; Lin, C.S.; Whaley, W.L. De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nat. Genet., 1993, 5(2), 168-173.
[http://dx.doi.org/10.1038/ng1093-168] [PMID: 8252042]
[31]
Bates, G. Huntingtin aggregation and toxicity in Huntington’s disease. Lancet, 2003, 361(9369), 1642-1644.
[http://dx.doi.org/10.1016/S0140-6736(03)13304-1] [PMID: 12747895]
[32]
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[33]
Andrew, S.E.; Goldberg, Y.P.; Theilmann, J.; Zeisler, J.; Hayden, M.R. A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum. Mol. Genet., 1994, 3(1), 65-67.
[http://dx.doi.org/10.1093/hmg/3.1.65] [PMID: 8162053]
[34]
Cannella, M.; Gellera, C.; Maglione, V.; Giallonardo, P.; Cislaghi, G.; Muglia, M.; Quattrone, A.; Pierelli, F.; Di Donato, S.; Squitieri, F. The gender effect in juvenile Huntington disease patients of Italian origin. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2004, 125B(1), 92-98.
[http://dx.doi.org/10.1002/ajmg.b.20110] [PMID: 14755452]
[35]
Ranen, N.G.; Stine, O.C.; Abbott, M.H.; Sherr, M.; Codori, A.M.; Franz, M.L.; Chao, N.I.; Chung, A.S.; Pleasant, N.; Callahan, C. Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am. J. Hum. Genet., 1995, 57(3), 593-602.
[PMID: 7668287]
[36]
Pearson, C.E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med., 2003, 9(11), 490-495.
[http://dx.doi.org/10.1016/j.molmed.2003.09.006] [PMID: 14604827]
[37]
Perutz, M.F.; Johnson, T.; Suzuki, M.; Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA, 1994, 91(12), 5355-5358.
[http://dx.doi.org/10.1073/pnas.91.12.5355] [PMID: 8202492]
[38]
Li, S.H.; Li, X.J. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet., 2004, 20(3), 146-154.
[http://dx.doi.org/10.1016/j.tig.2004.01.008] [PMID: 15036808]
[39]
Kim, M.W.; Chelliah, Y.; Kim, S.W.; Otwinowski, Z.; Bezprozvanny, I. Secondary structure of huntingtin amino-terminal region. Structure, 2009, 17(9), 1205-1212.
[http://dx.doi.org/10.1016/j.str.2009.08.002] [PMID: 19748341]
[40]
Zuccato, C.; Valenza, M.; Cattaneo, E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol. Rev., 2010, 90(3), 905-981.
[http://dx.doi.org/10.1152/physrev.00041.2009] [PMID: 20664076]
[41]
Zoghbi, H.Y.; Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci., 2000, 23, 217-247.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.217] [PMID: 10845064]
[42]
Martí, E. RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol., 2016, 26(6), 779-786.
[http://dx.doi.org/10.1111/bpa.12427] [PMID: 27529325]
[43]
Steffan, J.S.; Kazantsev, A.; Spasic-Boskovic, O.; Greenwald, M.; Zhu, Y.Z.; Gohler, H.; Wanker, E.E.; Bates, G.P.; Housman, D.E.; Thompson, L.M. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6763-6768.
[http://dx.doi.org/10.1073/pnas.100110097] [PMID: 10823891]
[44]
Nucifora, F.C., Jr; Sasaki, M.; Peters, M.F.; Huang, H.; Cooper, J.K.; Yamada, M.; Takahashi, H.; Tsuji, S.; Troncoso, J.; Dawson, V.L.; Dawson, T.M.; Ross, C.A. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 2001, 291(5512), 2423-2428.
[http://dx.doi.org/10.1126/science.1056784] [PMID: 11264541]
[45]
Lee, W.; Reyes, R.C.; Gottipati, M.K.; Lewis, K.; Lesort, M.; Parpura, V.; Gray, M. Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington’s disease mouse model. Neurobiol. Dis., 2013, 58, 192-199.
[http://dx.doi.org/10.1016/j.nbd.2013.06.002] [PMID: 23756199]
[46]
Arndt, J.R.; Chaibva, M.; Legleiter, J. The emerging role of the first 17 amino acids of huntingtin in Huntington’s disease. Biomol. Concepts, 2015, 6(1), 33-46.
[http://dx.doi.org/10.1515/bmc-2015-0001] [PMID: 25741791]
[47]
Rockabrand, E.; Slepko, N.; Pantalone, A.; Nukala, V.N.; Kazantsev, A.; Marsh, J.L.; Sullivan, P.G.; Steffan, J.S.; Sensi, S.L.; Thompson, L.M. The first 17 amino acids of huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum. Mol. Genet., 2007, 16(1), 61-77.
[http://dx.doi.org/10.1093/hmg/ddl440] [PMID: 17135277]
[48]
Atwal, R.S.; Truant, R. A stress sensitive ER membrane-association domain in huntingtin protein defines a potential role for huntingtin in the regulation of autophagy. Autophagy, 2008, 4(1), 91-93.
[http://dx.doi.org/10.4161/auto.5201] [PMID: 17986868]
[49]
Maiuri, T.; Woloshansky, T.; Xia, J.; Truant, R. The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Hum. Mol. Genet., 2013, 22(7), 1383-1394.
[http://dx.doi.org/10.1093/hmg/dds554] [PMID: 23297360]
[50]
Zheng, Z.; Li, A.; Holmes, B.B.; Marasa, J.C.; Diamond, M.I. An N-terminal nuclear export signal regulates trafficking and aggregation of huntingtin (Htt) protein exon 1. J. Biol. Chem., 2013, 288(9), 6063-6071.
[http://dx.doi.org/10.1074/jbc.M112.413575] [PMID: 23319588]
[51]
Xia, J.; Lee, D.H.; Taylor, J.; Vandelft, M.; Truant, R. Huntingtin contains a highly conserved nuclear export signal. Hum. Mol. Genet., 2003, 12(12), 1393-1403.
[http://dx.doi.org/10.1093/hmg/ddg156] [PMID: 12783847]
[52]
Atwal, R.S.; Desmond, C.R.; Caron, N.; Maiuri, T.; Xia, J.; Sipione, S.; Truant, R. Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat. Chem. Biol., 2011, 7(7), 453-460.
[http://dx.doi.org/10.1038/nchembio.582] [PMID: 21623356]
[53]
Havel, L.S.; Wang, C.E.; Wade, B.; Huang, B.; Li, S.; Li, X.J. Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation. Hum. Mol. Genet., 2011, 20(7), 1424-1437.
[http://dx.doi.org/10.1093/hmg/ddr023] [PMID: 21245084]
[54]
Ignatova, Z.; Gierasch, L.M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA, 2006, 103(36), 13357-13361.
[http://dx.doi.org/10.1073/pnas.0603772103] [PMID: 16899544]
[55]
Bhattacharyya, A.; Thakur, A.K.; Chellgren, V.M.; Thiagarajan, G.; Williams, A.D.; Chellgren, B.W.; Creamer, T.P.; Wetzel, R. Oligoproline effects on polyglutamine conformation and aggregation. J. Mol. Biol., 2006, 355(3), 524-535.
[http://dx.doi.org/10.1016/j.jmb.2005.10.053] [PMID: 16321399]
[56]
Andrade, M.A.; Bork, P. HEAT repeats in the Huntington’s disease protein. Nat. Genet., 1995, 11(2), 115-116.
[http://dx.doi.org/10.1038/ng1095-115] [PMID: 7550332]
[57]
Takano, H.; Gusella, J.F. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci., 2002, 3(1), 15.
[http://dx.doi.org/10.1186/1471-2202-3-15] [PMID: 12379151]
[58]
Jones, L. Huntingtin-interacting proteins and their relevance to Huntington’s disease etiology. Neurosci. News, 2000, 3, 55-63.
[59]
Palidwor, G.A.; Shcherbinin, S.; Huska, M.R.; Rasko, T.; Stelzl, U.; Arumughan, A.; Foulle, R.; Porras, P.; Sanchez-Pulido, L.; Wanker, E.E.; Andrade-Navarro, M.A. Detection of alpha-rod protein repeats using a neural network and application to huntingtin. PLOS Comput. Biol., 2009, 5(3) e1000304
[http://dx.doi.org/10.1371/journal.pcbi.1000304] [PMID: 19282972]
[60]
Graham, R.K.; Deng, Y.; Slow, E.J.; Haigh, B.; Bissada, N.; Lu, G.; Pearson, J.; Shehadeh, J.; Bertram, L.; Murphy, Z.; Warby, S.C.; Doty, C.N.; Roy, S.; Wellington, C.L.; Leavitt, B.R.; Raymond, L.A.; Nicholson, D.W.; Hayden, M.R. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell, 2006, 125(6), 1179-1191.
[http://dx.doi.org/10.1016/j.cell.2006.04.026] [PMID: 16777606]
[61]
Kim, Y.J.; Yi, Y.; Sapp, E.; Wang, Y.; Cuiffo, B.; Kegel, K.B.; Qin, Z.H.; Aronin, N.; DiFiglia, M. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12784-12789.
[http://dx.doi.org/10.1073/pnas.221451398] [PMID: 11675509]
[62]
Wellington, C.L.; Ellerby, L.M.; Gutekunst, C.A.; Rogers, D.; Warby, S.; Graham, R.K.; Loubser, O.; van Raamsdonk, J.; Singaraja, R.; Yang, Y.Z.; Gafni, J.; Bredesen, D.; Hersch, S.M.; Leavitt, B.R.; Roy, S.; Nicholson, D.W.; Hayden, M.R. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci., 2002, 22(18), 7862-7872.
[http://dx.doi.org/10.1523/JNEUROSCI.22-18-07862.2002] [PMID: 12223539]
[63]
Lunkes, A.; Lindenberg, K.S.; Ben-Haïem, L.; Weber, C.; Devys, D.; Landwehrmeyer, G.B.; Mandel, J.L.; Trottier, Y. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol. Cell, 2002, 10(2), 259-269.
[http://dx.doi.org/10.1016/S1097-2765(02)00602-0] [PMID: 12191472]
[64]
Graham, R.K.; Deng, Y.; Carroll, J.; Vaid, K.; Cowan, C.; Pouladi, M.A.; Metzler, M.; Bissada, N.; Wang, L.; Faull, R.L.M.; Gray, M.; Yang, X.W.; Raymond, L.A.; Hayden, M.R. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J. Neurosci., 2010, 30(45), 15019-15029.
[http://dx.doi.org/10.1523/JNEUROSCI.2071-10.2010] [PMID: 21068307]
[65]
Warby, S.C.; Doty, C.N.; Graham, R.K.; Carroll, J.B.; Yang, Y.Z.; Singaraja, R.R.; Overall, C.M.; Hayden, M.R. Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum. Mol. Genet., 2008, 17(15), 2390-2404.
[http://dx.doi.org/10.1093/hmg/ddn139] [PMID: 18445618]
[66]
Waldron-Roby, E.; Ratovitski, T.; Wang, X.; Jiang, M.; Watkin, E.; Arbez, N.; Graham, R.K.; Hayden, M.R.; Hou, Z.; Mori, S.; Swing, D.; Pletnikov, M.; Duan, W.; Tessarollo, L.; Ross, C.A. Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J. Neurosci., 2012, 32(1), 183-193.
[http://dx.doi.org/10.1523/JNEUROSCI.1305-11.2012] [PMID: 22219281]
[67]
El-Daher, M.T.; Hangen, E.; Bruyère, J.; Poizat, G.; Al-Ramahi, I.; Pardo, R.; Bourg, N.; Souquere, S.; Mayet, C.; Pierron, G.; Lévêque-Fort, S.; Botas, J.; Humbert, S.; Saudou, F. Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J., 2015, 34(17), 2255-2271.
[http://dx.doi.org/10.15252/embj.201490808] [PMID: 26165689]
[68]
Jimenez-Sanchez, M.; Rubinsztein, D.C. Huntington’s disease-the sting in the tail. EMBO J., 2015, 34(17), 2215-2216.
[http://dx.doi.org/10.15252/embj.201592467] [PMID: 26224597]
[69]
Luo, S.; Vacher, C.; Davies, J.E.; Rubinsztein, D.C. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J. Cell Biol., 2005, 169(4), 647-656.
[http://dx.doi.org/10.1083/jcb.200412071] [PMID: 15911879]
[70]
Schilling, B.; Gafni, J.; Torcassi, C.; Cong, X.; Row, R.H.; LaFevre-Bernt, M.A.; Cusack, M.P.; Ratovitski, T.; Hirschhorn, R.; Ross, C.A.; Gibson, B.W.; Ellerby, L.M. Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity. J. Biol. Chem., 2006, 281(33), 23686-23697.
[http://dx.doi.org/10.1074/jbc.M513507200] [PMID: 16782707]
[71]
Thompson, L.M.; Aiken, C.T.; Kaltenbach, L.S.; Agrawal, N.; Illes, K.; Khoshnan, A.; Martinez-Vincente, M.; Arrasate, M.; O’Rourke, J.G.; Khashwji, H.; Lukacsovich, T.; Zhu, Y.Z.; Lau, A.L.; Massey, A.; Hayden, M.R.; Zeitlin, S.O.; Finkbeiner, S.; Green, K.N.; LaFerla, F.M.; Bates, G.; Huang, L.; Patterson, P.H.; Lo, D.C.; Cuervo, A.M.; Marsh, J.L.; Steffan, J.S. IKK phosphorylates huntingtin and targets it for degradation by the proteasome and lysosome. J. Cell Biol., 2009, 187(7), 1083-1099.
[http://dx.doi.org/10.1083/jcb.200909067] [PMID: 20026656]
[72]
Khoshnan, A.; Patterson, P.H. The role of IκB kinase complex in the neurobiology of Huntington’s disease. Neurobiol. Dis., 2011, 43(2), 305-311.
[http://dx.doi.org/10.1016/j.nbd.2011.04.015] [PMID: 21554955]
[73]
Watkin, E.E.; Arbez, N.; Waldron-Roby, E.; O’Meally, R.; Ratovitski, T.; Cole, R.N.; Ross, C.A. Phosphorylation of mutant huntingtin at serine 116 modulates neuronal toxicity. PLoS One, 2014, 9(2) e88284
[http://dx.doi.org/10.1371/journal.pone.0088284] [PMID: 24505464]
[74]
Mishra, R.; Hoop, C.L.; Kodali, R.; Sahoo, B.; van der Wel, P.C.; Wetzel, R. Serine phosphorylation suppresses huntingtin amyloid accumulation by altering protein aggregation properties. J. Mol. Biol., 2012, 424(1-2), 1-14.
[http://dx.doi.org/10.1016/j.jmb.2012.09.011] [PMID: 22999956]
[75]
Jablonski, M.R.; Cooper, L.; Jacob, D.A. NMDA receptor excitotoxicity: impact on phosphatase activity and phosphorylation of huntingtin. J. Neurosci., 2011, 31(12), 4357-4359.
[http://dx.doi.org/10.1523/JNEUROSCI.6747-10.2011] [PMID: 21430136]
[76]
Wilkinson, K.A.; Nakamura, Y.; Henley, J.M. Targets and consequences of protein SUMOylation in neurons. Brain Res. Brain Res. Rev., 2010, 64(1), 195-212.
[http://dx.doi.org/10.1016/j.brainresrev.2010.04.002] [PMID: 20382182]
[77]
Gareau, J.R.; Lima, C.D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol., 2010, 11(12), 861-871.
[http://dx.doi.org/10.1038/nrm3011] [PMID: 21102611]
[78]
Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem., 2004, 73, 355-382.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.074118] [PMID: 15189146]
[79]
Bohren, K.M.; Nadkarni, V.; Song, J.H.; Gabbay, K.H.; Owerbach, D.A. M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem., 2004, 279(26), 27233-27238.
[http://dx.doi.org/10.1074/jbc.M402273200] [PMID: 15123604]
[80]
O’Rourke, J.G.; Gareau, J.R.; Ochaba, J.; Song, W.; Raskó, T.; Reverter, D.; Lee, J.; Monteys, A.M.; Pallos, J.; Mee, L.; Vashishtha, M.; Apostol, B.L.; Nicholson, T.P.; Illes, K.; Zhu, Y.Z.; Dasso, M.; Bates, G.P.; Difiglia, M.; Davidson, B.; Wanker, E.E.; Marsh, J.L.; Lima, C.D.; Steffan, J.S.; Thompson, L.M. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep., 2013, 4(2), 362-375.
[http://dx.doi.org/10.1016/j.celrep.2013.06.034] [PMID: 23871671]
[81]
Kim, Y.M.; Jang, W.H.; Quezado, M.M.; Oh, Y.; Chung, K.C.; Junn, E.; Mouradian, M.M. Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. J. Neurol. Sci., 2011, 307(1-2), 157-161.
[http://dx.doi.org/10.1016/j.jns.2011.04.015] [PMID: 21641618]
[82]
Tatham, M.H.; Matic, I.; Mann, M.; Hay, R.T. Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci. Signal., 2011, 4(178), rs4.
[http://dx.doi.org/10.1126/scisignal.2001484] [PMID: 21693764]
[83]
Subramaniam, S.; Mealer, R.G.; Sixt, K.M.; Barrow, R.K.; Usiello, A.; Snyder, S.H. Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9. J. Biol. Chem., 2010, 285(27), 20428-20432.
[http://dx.doi.org/10.1074/jbc.C110.127191] [PMID: 20424159]
[84]
Falk, J.D.; Vargiu, P.; Foye, P.E.; Usui, H.; Perez, J.; Danielson, P.E.; Lerner, D.L.; Bernal, J.; Sutcliffe, J.G. Rhes: A striatal-specific Ras homolog related to Dexras1. J. Neurosci. Res., 1999, 57(6), 782-788.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990915)57:6<782:AID-JNR3>3.0.CO;2-9] [PMID: 10467249]
[85]
Pellegrino, S.; Altmeyer, M. Interplay between ubiquitin, SUMO and Poly(ADP-Ribose) in the cellular response to genotoxic stress. Front. Genet., 2016, 7, 63.
[http://dx.doi.org/10.3389/fgene.2016.00063] [PMID: 27148359]
[86]
Lin, X.; Liang, M.; Liang, Y.Y.; Brunicardi, F.C.; Feng, X.H. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem., 2003, 278(33), 31043-31048.
[http://dx.doi.org/10.1074/jbc.C300112200] [PMID: 12813045]
[87]
Feligioni, M.; Marcelli, S.; Knock, E.; Nadeem, U.; Arancio, O.; Fraser, P.E. SUMO modulation of protein aggregation and degradation. AIMS Mol. Sci., 2015, 2(4), 382-410.
[http://dx.doi.org/10.3934/molsci.2015.4.382]
[88]
Ehrnhoefer, D.E.; Sutton, L.; Hayden, M.R. Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist, 2011, 17(5), 475-492.
[http://dx.doi.org/10.1177/1073858410390378] [PMID: 21311053]
[89]
Huang, K.; Sanders, S.; Singaraja, R.; Orban, P.; Cijsouw, T.; Arstikaitis, P.; Yanai, A.; Hayden, M.R.; El-Husseini, A. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J., 2009, 23(8), 2605-2615.
[http://dx.doi.org/10.1096/fj.08-127399] [PMID: 19299482]
[90]
Yanai, A.; Huang, K.; Kang, R.; Singaraja, R.R.; Arstikaitis, P.; Gan, L.; Orban, P.C.; Mullard, A.; Cowan, C.M.; Raymond, L.A.; Drisdel, R.C.; Green, W.N.; Ravikumar, B.; Rubinsztein, D.C.; El-Husseini, A.; Hayden, M.R. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat. Neurosci., 2006, 9(6), 824-831.
[http://dx.doi.org/10.1038/nn1702] [PMID: 16699508]
[91]
Fukata, Y.; Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci., 2010, 11(3), 161-175.
[http://dx.doi.org/10.1038/nrn2788] [PMID: 20168314]
[92]
Jeong, H.; Then, F.; Melia, T.J., Jr; Mazzulli, J.R.; Cui, L.; Savas, J.N.; Voisine, C.; Paganetti, P.; Tanese, N.; Hart, A.C.; Yamamoto, A.; Krainc, D. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 2009, 137(1), 60-72.
[http://dx.doi.org/10.1016/j.cell.2009.03.018] [PMID: 19345187]
[93]
Harjes, P.; Wanker, E.E. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci., 2003, 28(8), 425-433.
[http://dx.doi.org/10.1016/S0968-0004(03)00168-3] [PMID: 12932731]
[94]
Zurawel, A.A.; Kabeche, R.; Di Gregorio, S.E.; Deng, L.; Menon, K.M.; Opalko, H.; Duennwald, M.L.; Moseley, J.B.; Supattapone, S. CAG expansions are genetically stable and form nontoxic aggregates in cells lacking endogenous polyglutamine proteins. MBio, 2016, 7(5), e01367-e013616.
[http://dx.doi.org/10.1128/mbio.01367-16] [PMID: 27677791]
[95]
Cattaneo, E.; Rigamonti, D.; Goffredo, D.; Zuccato, C.; Squitieri, F.; Sipione, S. Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci., 2001, 24(3), 182-188.
[http://dx.doi.org/10.1016/S0166-2236(00)01721-5] [PMID: 11182459]
[96]
Cosker, K.E.; Courchesne, S.L.; Segal, R.A. Action in the axon: generation and transport of signaling endosomes. Curr. Opin. Neurobiol., 2008, 18(3), 270-275.
[http://dx.doi.org/10.1016/j.conb.2008.08.005] [PMID: 18778772]
[97]
Ha, J.; Lo, K.W.; Myers, K.R.; Carr, T.M.; Humsi, M.K.; Rasoul, B.A.; Segal, R.A.; Pfister, K.K. A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes. J. Cell Biol., 2008, 181(6), 1027-1039.
[http://dx.doi.org/10.1083/jcb.200803150] [PMID: 18559670]
[98]
Baydyuk, M.; Russell, T.; Liao, G.Y.; Zang, K.; An, J.J.; Reichardt, L.F.; Xu, B. TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1669-1674.
[http://dx.doi.org/10.1073/pnas.1004744108] [PMID: 21205893]
[99]
Zuccato, C.; Tartari, M.; Crotti, A.; Goffredo, D.; Valenza, M.; Conti, L.; Cataudella, T.; Leavitt, B.R.; Hayden, M.R.; Timmusk, T.; Rigamonti, D.; Cattaneo, E. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet., 2003, 35(1), 76-83.
[http://dx.doi.org/10.1038/ng1219] [PMID: 12881722]
[100]
Caviston, J.P.; Ross, J.L.; Antony, S.M.; Tokito, M.; Holzbaur, E.L.F. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10045-10050.
[http://dx.doi.org/10.1073/pnas.0610628104] [PMID: 17548833]
[101]
Wu, L.L.; Fan, Y.; Li, S.; Li, X.J.; Zhou, X.F. Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J. Biol. Chem., 2010, 285(8), 5614-5623.
[http://dx.doi.org/10.1074/jbc.M109.073197] [PMID: 19996106]
[102]
Gauthier, L.R.; Charrin, B.C.; Borrell-Pagès, M.; Dompierre, J.P.; Rangone, H.; Cordelières, F.P.; De Mey, J.; MacDonald, M.E.; Lessmann, V.; Humbert, S.; Saudou, F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 2004, 118(1), 127-138.
[http://dx.doi.org/10.1016/j.cell.2004.06.018] [PMID: 15242649]
[103]
Colin, E.; Zala, D.; Liot, G.; Rangone, H.; Borrell-Pagès, M.; Li, X.J.; Saudou, F.; Humbert, S. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J., 2008, 27(15), 2124-2134.
[http://dx.doi.org/10.1038/emboj.2008.133] [PMID: 18615096]
[104]
Zala, D.; Hinckelmann, M.V.; Yu, H.; Lyra da Cunha, M.M.; Liot, G.; Cordelières, F.P.; Marco, S.; Saudou, F. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell, 2013, 152(3), 479-491.
[http://dx.doi.org/10.1016/j.cell.2012.12.029] [PMID: 23374344]
[105]
Parker, J.A.; Metzler, M.; Georgiou, J.; Mage, M.; Roder, J.C.; Rose, A.M.; Hayden, M.R.; Néri, C. Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J. Neurosci., 2007, 27(41), 11056-11064.
[http://dx.doi.org/10.1523/JNEUROSCI.1941-07.2007] [PMID: 17928447]
[106]
Hackam, A.S.; Yassa, A.S.; Singaraja, R.; Metzler, M.; Gutekunst, C.A.; Gan, L.; Warby, S.; Wellington, C.L.; Vaillancourt, J.; Chen, N.; Gervais, F.G.; Raymond, L.; Nicholson, D.W.; Hayden, M.R. Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J. Biol. Chem., 2000, 275(52), 41299-41308.
[http://dx.doi.org/10.1074/jbc.M008408200] [PMID: 11007801]
[107]
Choi, S.A.; Kim, S.J.; Chung, K.C. Huntingtin-interacting protein 1-mediated neuronal cell death occurs through intrinsic apoptotic pathways and mitochondrial alterations. FEBS Lett., 2006, 580(22), 5275-5282.
[http://dx.doi.org/10.1016/j.febslet.2006.08.076] [PMID: 16979168]
[108]
Sun, Y.; Savanenin, A.; Reddy, P.H.; Liu, Y.F. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J. Biol. Chem., 2001, 276(27), 24713-24718.
[http://dx.doi.org/10.1074/jbc.M103501200] [PMID: 11319238]
[109]
Parsons, M.P.; Kang, R.; Buren, C.; Dau, A.; Southwell, A.L.; Doty, C.N.; Sanders, S.S.; Hayden, M.R.; Raymond, L.A. Bidirectional control of postsynaptic density-95 (PSD-95) clustering by huntingtin. J. Biol. Chem., 2014, 289(6), 3518-3528.
[http://dx.doi.org/10.1074/jbc.M113.513945] [PMID: 24347167]
[110]
Kim, E.; Cho, K.O.; Rothschild, A.; Sheng, M. Heteromultimerization and NMDA receptor-clustering activity of chapsyn-110, a member of the PSD-95 family of proteins. Neuron, 1996, 17(1), 103-113.
[http://dx.doi.org/10.1016/S0896-6273(00)80284-6] [PMID: 8755482]
[111]
Garcia, E.P.; Mehta, S.; Blair, L.A.; Wells, D.G.; Shang, J.; Fukushima, T.; Fallon, J.R.; Garner, C.C.; Marshall, J. SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron, 1998, 21(4), 727-739.
[http://dx.doi.org/10.1016/S0896-6273(00)80590-5] [PMID: 9808460]
[112]
Huang, K.; Sanders, S.S.; Kang, R.; Carroll, J.B.; Sutton, L.; Wan, J.; Singaraja, R.; Young, F.B.; Liu, L.; El-Husseini, A.; Davis, N.G.; Hayden, M.R. Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Hum. Mol. Genet., 2011, 20(17), 3356-3365.
[http://dx.doi.org/10.1093/hmg/ddr242] [PMID: 21636527]
[113]
Yoshii, A.; Murata, Y.; Kim, J.; Zhang, C.; Shokat, K.M.; Constantine-Paton, M. TrkB and protein kinase Mζ regulate synaptic localization of PSD-95 in developing cortex. J. Neurosci., 2011, 31(33), 11894-11904.
[http://dx.doi.org/10.1523/JNEUROSCI.2190-11.2011] [PMID: 21849550]
[114]
Schaefer, M.H.; Wanker, E.E.; Andrade-Navarro, M.A. Evolution and function of CAG/polyglutamine repeats in protein-protein interaction networks. Nucleic Acids Res., 2012, 40(10), 4273-4287.
[http://dx.doi.org/10.1093/nar/gks011] [PMID: 22287626]
[115]
Cattaneo, E.; Zuccato, C.; Tartari, M. Normal huntingtin function: an alternative approach to Huntington’s disease. Nat. Rev. Neurosci., 2005, 6(12), 919-930.
[http://dx.doi.org/10.1038/nrn1806] [PMID: 16288298]
[116]
Zhao, X.; Chen, X.Q.; Han, E.; Hu, Y.; Paik, P.; Ding, Z.; Overman, J.; Lau, A.L.; Shahmoradian, S.H.; Chiu, W.; Thompson, L.M.; Wu, C.; Mobley, W.C. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5655-E5664.
[http://dx.doi.org/10.1073/pnas.1603020113] [PMID: 27601642]
[117]
Fornasiero, E.F.; Bonanomi, D.; Benfenati, F.; Valtorta, F. The role of synapsins in neuronal development. Cell. Mol. Life Sci., 2010, 67(9), 1383-1396.
[http://dx.doi.org/10.1007/s00018-009-0227-8] [PMID: 20035364]
[118]
Shupliakov, O.; Haucke, V.; Pechstein, A. How synapsin I may cluster synaptic vesicles. Semin. Cell Dev. Biol., 2011, 22(4), 393-399.
[http://dx.doi.org/10.1016/j.semcdb.2011.07.006] [PMID: 21798362]
[119]
Ren, X.; Hurley, J.H. Proline-rich regions and motifs in trafficking: from ESCRT interaction to viral exploitation. Traffic, 2011, 12(10), 1282-1290.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01208.x] [PMID: 21518163]
[120]
Xu, Q.; Huang, S.; Song, M.; Wang, C.E.; Yan, S.; Liu, X.; Gaertig, M.A.; Yu, S.P.; Li, H.; Li, S.; Li, X.J. Synaptic mutant huntingtin inhibits synapsin-1 phosphorylation and causes neurological symptoms. J. Cell Biol., 2013, 202(7), 1123-1138.
[http://dx.doi.org/10.1083/jcb.201303146] [PMID: 24081492]
[121]
Huang, K.; Kang, M.H.; Askew, C.; Kang, R.; Sanders, S.S.; Wan, J.; Davis, N.G.; Hayden, M.R. Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 2010, 40(1), 207-215.
[http://dx.doi.org/10.1016/j.nbd.2010.05.027] [PMID: 20685337]
[122]
Milnerwood, A.J.; Gladding, C.M.; Pouladi, M.A.; Kaufman, A.M.; Hines, R.M.; Boyd, J.D.; Ko, R.W.; Vasuta, O.C.; Graham, R.K.; Hayden, M.R.; Murphy, T.H.; Raymond, L.A. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 2010, 65(2), 178-190.
[http://dx.doi.org/10.1016/j.neuron.2010.01.008] [PMID: 20152125]
[123]
Bradford, J.; Shin, J.Y.; Roberts, M.; Wang, C.E.; Sheng, G.; Li, S.; Li, X.J. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J. Biol. Chem., 2010, 285(14), 10653-10661.
[http://dx.doi.org/10.1074/jbc.M109.083287] [PMID: 20145253]
[124]
Chen, L.L.; Wu, J.C.; Wang, L.H.; Wang, J.; Qin, Z.H.; Difiglia, M.; Lin, F. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes. Acta Pharmacol. Sin., 2012, 33(3), 385-392.
[http://dx.doi.org/10.1038/aps.2011.162] [PMID: 22266730]
[125]
Estrada-Sánchez, A.M.; Rebec, G.V. Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: interactions between neurons and astrocytes. Basal Ganglia, 2012, 2(2), 57-66.
[http://dx.doi.org/10.1016/j.baga.2012.04.029] [PMID: 22905336]
[126]
Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.cell.2006.09.015] [PMID: 17018277]
[127]
Johri, A.; Starkov, A.A.; Chandra, A.; Hennessey, T.; Sharma, A.; Orobello, S.; Squitieri, F.; Yang, L.; Beal, M.F. Truncated peroxisome proliferator-activated receptor- γ coactivator 1 α splice variant is severely altered inHuntington's disease. Neurodegener. Dis. Neurodegener. Dis., 2011, 8(6), 496-503.
[http://dx.doi.org/10.1159/000327910] [PMID: 21757867]
[128]
Kim, J.; Moody, J.P.; Edgerly, C.K.; Bordiuk, O.L.; Cormier, K.; Smith, K.; Beal, M.F.; Ferrante, R.J. Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum. Mol. Genet., 2010, 19(20), 3919-3935.
[http://dx.doi.org/10.1093/hmg/ddq306] [PMID: 20660112]
[129]
Poirier, M.A.; Jiang, H.; Ross, C.A. A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact beta-sheet structure. Hum. Mol. Genet., 2005, 14(6), 765-774.
[http://dx.doi.org/10.1093/hmg/ddi071] [PMID: 15689354]
[130]
Kim, M. Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues. Prion, 2013, 7(3), 221-228.
[http://dx.doi.org/10.4161/pri.23807] [PMID: 23370273]
[131]
Blesa, J.; Phani, S.; Jackson-Lewis, V.; Przedborski, S. Classic and new animal models of Parkinson’s disease. J. Biomed. Biotechnol., 2012, 2012 845618
[http://dx.doi.org/10.1155/2012/845618] [PMID: 22536024]
[132]
Bruijn, L.I.; Miller, T.M.; Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci., 2004, 27, 723-749.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144244] [PMID: 15217349]
[133]
Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362(6415), 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[134]
Roberts, B.R.; Ryan, T.M.; Bush, A.I.; Masters, C.L.; Duce, J.A. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J. Neurochem., 2012, 120(1)(Suppl. 1), 149-166.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07500.x] [PMID: 22121980]
[135]
Prusiner, S.B. Molecular biology of prion diseases. Science, 1991, 252(5012), 1515-1522.
[http://dx.doi.org/10.1126/science.1675487] [PMID: 1675487]
[136]
Halliwell, B.; Gutteridge, Free radicals in biology and medicine, ; 3rd ed; Oxford Science Publications, 1999, 226(229), 66.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0 00]
[137]
Maddipati, K.R.; Marnett, L.J. Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J. Biol. Chem., 1987, 262(36), 17398-17403.
[PMID: 3693360]
[138]
Moffitt, W. The Electronic Structure of the Oxygen Molecule Proceedings of the Royal Society of London Series A, 1951, 210(1101), 224-245.
[http://dx.doi.org/10.1098/rspa.1951.0243]
[139]
Sas, K.; Robotka, H.; Toldi, J.; Vécsei, L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci., 2007, 257(1-2), 221-239.
[http://dx.doi.org/10.1016/j.jns.2007.01.033] [PMID: 17462670]
[140]
Wei, Y.H.; Lu, C.Y.; Wei, C.Y.; Ma, Y.S.; Lee, H.C. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin. J. Physiol., 2001, 44(1), 1-11.
[PMID: 11403514]
[141]
Halliwell, B.; Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol., 1990, 186, 1-85.
[http://dx.doi.org/10.1016/0076-6879(90)86093-B] [PMID: 2172697]
[142]
Gao, H.M.; Liu, B.; Zhang, W.; Hong, J.S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J., 2003, 17(13), 1954-1956.
[http://dx.doi.org/10.1096/fj.03-0109fje] [PMID: 12897068]
[143]
Floyd, R.A. Neuroinflammatory processes are important in neurodegenerative diseases: a hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic. Biol. Med., 1999, 26(9-10), 1346-1355.
[http://dx.doi.org/10.1016/S0891-5849(98)00293-7] [PMID: 10381209]
[144]
Halliwell, B.; Gutteridge, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 1984, 219(1), 1-14.
[http://dx.doi.org/10.1042/bj2190001] [PMID: 6326753]
[145]
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[146]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[147]
Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086] [PMID: 28212725]
[148]
Ciancarelli, I.; De Amicis, D.; Di Massimo, C.; Di Scanno, C.; Pistarini, C.; D’Orazio, N.; Tozzi Ciancarelli, M.G. Peripheral biomarkers of oxidative stress and their limited potential in evaluation of clinical features of Huntington’s patients. Biomarkers, 2014, 19(6), 452-456.
[http://dx.doi.org/10.3109/1354750X.2014.935955] [PMID: 24980251]
[149]
Klepac, N.; Relja, M.; Klepac, R.; Hećimović, S.; Babić, T.; Trkulja, V. Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: a cross-sectional study. J. Neurol., 2007, 254(12), 1676-1683.
[http://dx.doi.org/10.1007/s00415-007-0611-y] [PMID: 17990062]
[150]
Chen, C.M.; Wu, Y.R.; Cheng, M.L.; Liu, J.L.; Lee, Y.M.; Lee, P.W.; Soong, B.W.; Chiu, D.T. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem. Biophys. Res. Commun., 2007, 359(2), 335-340.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.093] [PMID: 17543886]
[151]
Sorolla, M.A.; Rodríguez-Colman, M.J.; Vall-llaura, N.; Tamarit, J.; Ros, J.; Cabiscol, E. Protein oxidation in Huntington disease. Biofactors, 2012, 38(3), 173-185.
[http://dx.doi.org/10.1002/biof.1013] [PMID: 22473822]
[152]
Finkel, T. Radical medicine: treating ageing to cure disease. Nat. Rev. Mol. Cell Biol., 2005, 6(12), 971-976.
[http://dx.doi.org/10.1038/nrm1763] [PMID: 16227974]
[153]
Zecca, L.; Youdim, M.B.; Riederer, P.; Connor, J.R.; Crichton, R.R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci., 2004, 5(11), 863-873.
[http://dx.doi.org/10.1038/nrn1537] [PMID: 15496864]
[154]
Ke, Y.; Qian, Z.M. Brain iron metabolism: neurobiology and neurochemistry. Prog. Neurobiol., 2007, 83(3), 149-173.
[http://dx.doi.org/10.1016/j.pneurobio.2007.07.009] [PMID: 17870230]
[155]
Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci., 1998, 158(1), 47-52.
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6] [PMID: 9667777]
[156]
Bishop, G.M.; Robinson, S.R.; Liu, Q.; Perry, G.; Atwood, C.S.; Smith, M.A. Iron: a pathological mediator of Alzheimer disease? Dev. Neurosci., 2002, 24(2-3), 184-187.
[http://dx.doi.org/10.1159/000065696] [PMID: 12401957]
[157]
Zatta, P.; Drago, D.; Bolognin, S.; Sensi, S.L. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol. Sci., 2009, 30(7), 346-355.
[http://dx.doi.org/10.1016/j.tips.2009.05.002] [PMID: 19540003]
[158]
Miller, L.M.; Wang, Q.; Telivala, T.P.; Smith, R.J.; Lanzirotti, A.; Miklossy, J. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J. Struct. Biol., 2006, 155(1), 30-37.
[http://dx.doi.org/10.1016/j.jsb.2005.09.004] [PMID: 16325427]
[159]
Berg, D. Transcranial ultrasound as a risk marker for Parkinson’s disease. Mov. Disord., 2009, 24(2)(Suppl. 2), S677-S683.
[http://dx.doi.org/10.1002/mds.22540] [PMID: 19877199]
[160]
Gorell, J.M.; Ordidge, R.J.; Brown, G.G.; Deniau, J.C.; Buderer, N.M.; Helpern, J.A. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology, 1995, 45(6), 1138-1143.
[http://dx.doi.org/10.1212/WNL.45.6.1138] [PMID: 7783878]
[161]
Ahtoniemi, T.; Goldsteins, G.; Keksa-Goldsteine, V.; Malm, T.; Kanninen, K.; Salminen, A.; Koistinaho, J. Pyrrolidine dithiocarbamate inhibits induction of immunoproteasome and decreases survival in a rat model of amyotrophic lateral sclerosis. Mol. Pharmacol., 2007, 71(1), 30-37.
[http://dx.doi.org/10.1124/mol.106.028415] [PMID: 17008387]
[162]
Tokuda, E.; Ono, S.; Ishige, K.; Naganuma, A.; Ito, Y.; Suzuki, T. Metallothionein proteins expression, copper and zinc concentrations, and lipid peroxidation level in a rodent model for amyotrophic lateral sclerosis. Toxicology, 2007, 229(1-2), 33-41.
[http://dx.doi.org/10.1016/j.tox.2006.09.011] [PMID: 17097207]
[163]
Nadjar, Y.; Gordon, P.; Corcia, P.; Bensimon, G.; Pieroni, L.; Meininger, V.; Salachas, F. Elevated serum ferritin is associated with reduced survival in amyotrophic lateral sclerosis. PLoS One, 2012, 7(9) e45034
[http://dx.doi.org/10.1371/journal.pone.0045034] [PMID: 23024788]
[164]
Bartzokis, G.; Cummings, J.; Perlman, S.; Hance, D.B.; Mintz, J. Increased basal ganglia iron levels in Huntington disease. Arch. Neurol., 1999, 56(5), 569-574.
[http://dx.doi.org/10.1001/archneur.56.5.569] [PMID: 10328252]
[165]
Fox, J.H.; Kama, J.A.; Lieberman, G.; Chopra, R.; Dorsey, K.; Chopra, V.; Volitakis, I.; Cherny, R.A.; Bush, A.I.; Hersch, S. Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One, 2007, 2(3) e334
[http://dx.doi.org/10.1371/journal.pone.0000334] [PMID: 17396163]
[166]
Fox, J.H.; Connor, T.; Stiles, M.; Kama, J.; Lu, Z.; Dorsey, K.; Lieberman, G.; Sapp, E.; Cherny, R.A.; Banks, M.; Volitakis, I.; DiFiglia, M.; Berezovska, O.; Bush, A.I.; Hersch, S.M. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J. Biol. Chem., 2011, 286(20), 18320-18330.
[http://dx.doi.org/10.1074/jbc.M110.199448] [PMID: 21454633]
[167]
Dashtipour, K.; Liu, M.; Kani, C.; Dalaie, P.; Obenaus, A.; Simmons, D.; Gatto, N.M.; Zarifi, M. Iron accumulation is not homogenous among patients with Parkinson’s Disease. Parkinsons Dis., 2015, 2015 324843
[http://dx.doi.org/10.1155/2015/324843] [PMID: 25945281]
[168]
Bush, A.I. Metals and neuroscience. Curr. Opin. Chem. Biol., 2000, 4(2), 184-191.
[http://dx.doi.org/10.1016/S1367-5931(99)00073-3] [PMID: 10742195]
[169]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12.
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[170]
Paulson, H.L.; Bonini, N.M.; Roth, K.A. Polyglutamine disease and neuronal cell death. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 12957-12958.
[http://dx.doi.org/10.1073/pnas.210395797] [PMID: 11058149]
[171]
Goswami, A.; Dikshit, P.; Mishra, A.; Mulherkar, S.; Nukina, N.; Jana, N.R. Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem. Biophys. Res. Commun., 2006, 342(1), 184-190.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.136] [PMID: 16472774]
[172]
Deckel, A.W.; Tang, V.; Nuttal, D.; Gary, K.; Elder, R. Altered neuronal nitric oxide synthase expression contributes to disease progression in Huntington’s disease transgenic mice. Brain Res., 2002, 939(1-2), 76-86.
[http://dx.doi.org/10.1016/S0006-8993(02)02550-7] [PMID: 12020853]
[173]
Santamaría, A.; Pérez-Severiano, F.; Rodríguez-Martínez, E.; Maldonado, P.D.; Pedraza-Chaverri, J.; Ríos, C.; Segovia, J. Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington’s disease. Neurochem. Res., 2001, 26(4), 419-424.
[http://dx.doi.org/10.1023/A:1010911417383] [PMID: 11495354]
[174]
Rebec, G.V.; Barton, S.J.; Ennis, M.D. Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington’s disease gene. J. Neurosci., 2002, 22(2), RC202.
[http://dx.doi.org/10.1523/JNEUROSCI.22-02-j0006.2002] [PMID: 11784814]
[175]
Lee, J.; Kosaras, B.; Del Signore, S.J.; Cormier, K.; McKee, A.; Ratan, R.R.; Kowall, N.W.; Ryu, H. Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol., 2011, 121(4), 487-498.
[http://dx.doi.org/10.1007/s00401-010-0788-5] [PMID: 21161248]
[176]
Browne, S.E. Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models. Ann. N. Y. Acad. Sci., 2008, 1147, 358-382.
[http://dx.doi.org/10.1196/annals.1427.018] [PMID: 19076457]
[177]
Choo, Y.S.; Johnson, G.V.; MacDonald, M.; Detloff, P.J.; Lesort, M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet., 2004, 13(14), 1407-1420.
[http://dx.doi.org/10.1093/hmg/ddh162] [PMID: 15163634]
[178]
Hands, S.; Sajjad, M.U.; Newton, M.J.; Wyttenbach, A. In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J. Biol. Chem., 2011, 286(52), 44512-44520.
[http://dx.doi.org/10.1074/jbc.M111.307587] [PMID: 21984825]
[179]
Dexter, D.T.; Carayon, A.; Javoy-Agid, F.; Agid, Y.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 1991, 114(Pt 4), 1953-1975.
[http://dx.doi.org/10.1093/brain/114.4.1953] [PMID: 1832073]
[180]
Hands, S.L.; Mason, R.; Sajjad, M.U.; Giorgini, F.; Wyttenbach, A. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington’s disease. Biochem. Soc. Trans., 2010, 38(2), 552-558.
[http://dx.doi.org/10.1042/BST0380552] [PMID: 20298220]
[181]
Talarek, S.; Listos, J.; Barreca, D.; Tellone, E.; Sureda, A.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Neuroprotective effects of honokiol: from chemistry to medicine. Biofactors, 2017, 43(6), 760-769.
[http://dx.doi.org/10.1002/biof.1385] [PMID: 28817221]
[182]
Barreca, D.; Currò, M.; Bellocco, E.; Ficarra, S.; Laganà, G.; Tellone, E.; Laura Giunta, M.; Visalli, G.; Caccamo, D.; Galtieri, A.; Ientile, R. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells. Biofactors, 2017, 43(4), 549-557.
[http://dx.doi.org/10.1002/biof.1358] [PMID: 28401997]
[183]
Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. Protective effects of the caffeine against neurodegenerative diseases. Curr. Med. Chem., 2019, 26(27), 5137-5151.
[http://dx.doi.org/10.2174/0929867324666171009104040] [PMID: 28990513]
[184]
Carelli-Alinovi, C.; Ficarra, S.; Russo, A.M.; Giunta, E.; Barreca, D.; Galtieri, A.; Misiti, F.; Tellone, E. Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells. Biochimie, 2016, 121, 52-59.
[http://dx.doi.org/10.1016/j.biochi.2015.11.022] [PMID: 26620258]
[185]
Tellone, E.; Galtieri, A.; Russo, A.; Giardina, B.; Ficarra, S. Resveratrol: a focus on several neurodegenerative diseases. Oxid. Med. Cell. Longev., 2015, 2015 392169
[http://dx.doi.org/10.1155/2015/392169] [PMID: 26180587]
[186]
Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. How does resveratrol influence the genesis of some neurodegenerative diseases? Neural Regen. Res., 2016, 11(1), 86-87.
[http://dx.doi.org/10.4103/1673-5374.175047] [PMID: 26981091]
[187]
Rebec, G.V. Dysregulation of corticostriatal ascorbate release and glutamate uptake in transgenic models of Huntington’s disease. Antioxid. Redox Signal., 2013, 19(17), 2115-2128.
[http://dx.doi.org/10.1089/ars.2013.5387] [PMID: 23642110]
[188]
Beal, M.F.; Ferrante, R.J. Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nat. Rev. Neurosci., 2004, 5(5), 373-384.
[http://dx.doi.org/10.1038/nrn1386] [PMID: 15100720]
[189]
Rebec, G.V.; Barton, S.J.; Marseilles, A.M.; Collins, K. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. Neuroreport, 2003, 14(9), 1263-1265.
[http://dx.doi.org/10.1097/00001756-200307010-00015] [PMID: 12824772]
[190]
Balazs, Z.; Panzenboeck, U.; Hammer, A.; Sovic, A.; Quehenberger, O.; Malle, E.; Sattler, W. Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model. J. Neurochem., 2004, 89(4), 939-950.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02373.x] [PMID: 15140193]
[191]
Peyser, C.E.; Folstein, M.; Chase, G.A.; Starkstein, S.; Brandt, J.; Cockrell, J.R.; Bylsma, F.; Coyle, J.T.; McHugh, P.R.; Folstein, S.E. Trial of d-alpha-tocopherol in Huntington’s disease. Am. J. Psychiatry, 1995, 152(12), 1771-1775.
[http://dx.doi.org/10.1176/ajp.152.12.1771] [PMID: 8526244]
[192]
Miyamoto, M.; Murphy, T.H.; Schnaar, R.L.; Coyle, J.T. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J. Pharmacol. Exp. Ther., 1989, 250(3), 1132-1140.
[PMID: 2778712]
[193]
Mehrotra, A.; Kanwal, A.; Banerjee, S.K.; Sandhir, R. Mitochondrial modulators in experimental Huntington’s disease: reversal of mitochondrial dysfunctions and cognitive deficits. Neurobiol. Aging, 2015, 36(6), 2186-2200.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.02.004] [PMID: 25976011]
[194]
Andreassen, O.A.; Ferrante, R.J.; Dedeoglu, A.; Beal, M.F. Lipoic acid improves survival in transgenic mouse models of Huntington’s disease. Neuroreport, 2001, 12(15), 3371-3373.
[http://dx.doi.org/10.1097/00001756-200110290-00044] [PMID: 11711888]
[195]
Lu, Z.; Marks, E.; Chen, J.; Moline, J.; Barrows, L.; Raisbeck, M.; Volitakis, I.; Cherny, R.A.; Chopra, V.; Bush, A.I.; Hersch, S.; Fox, J.H. Altered selenium status in Huntington’s disease: neuroprotection by selenite in the N171-82Q mouse model. Neurobiol. Dis., 2014, 71, 34-42.
[http://dx.doi.org/10.1016/j.nbd.2014.06.022] [PMID: 25014023]
[196]
Bortolatto, C.F.; Jesse, C.R.; Wilhelm, E.A.; Chagas, P.M.; Nogueira, C.W. Organoselenium bis selenide attenuates 3-nitropropionic acid-induced neurotoxicity in rats. Neurotox. Res., 2013, 23(3), 214-224.
[http://dx.doi.org/10.1007/s12640-012-9336-5] [PMID: 22739838]
[197]
Hussein, A. A convenient mechanism for the free radical scavenging activity of resveratrol. Int. J. Phytomed., 2011, 3(4), 459-469.
[198]
Iuga, C.; Alvarez-Idaboy, J.R.; Russo, N. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study. J. Org. Chem., 2012, 77(8), 3868-3877.
[http://dx.doi.org/10.1021/jo3002134] [PMID: 22475027]
[199]
de Almeida, L.M.; Piñeiro, C.C.; Leite, M.C.; Brolese, G.; Tramontina, F.; Feoli, A.M.; Gottfried, C.; Gonçalves, C.A. Resveratrol increases glutamate uptake, glutathione content and S100B secretion in cortical astrocyte cultures. Cell. Mol. Neurobiol., 2007, 27(5), 661-668.
[http://dx.doi.org/10.1007/s10571-007-9152-2] [PMID: 17554623]
[200]
Yáñez, M.; Galán, L.; Matías-Guiu, J.; Vela, A.; Guerrero, A.; García, A.G. CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: protection by resveratrol but not riluzole. Brain Res., 2011, 1423, 77-86.
[http://dx.doi.org/10.1016/j.brainres.2011.09.025] [PMID: 21983205]
[201]
Feng, X.; Liang, N.; Zhu, D.; Gao, Q.; Peng, L.; Dong, H.; Yue, Q.; Liu, H.; Bao, L.; Zhang, J.; Hao, J.; Gao, Y.; Yu, X.; Sun, J. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One, 2013, 8(3) e59888
[http://dx.doi.org/10.1371/journal.pone.0059888] [PMID: 23555824]
[202]
Dasgupta, B.; Milbrandt, J. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA, 2007, 104(17), 7217-7222.
[http://dx.doi.org/10.1073/pnas.0610068104] [PMID: 17438283]
[203]
Qian, C.; Jin, J.; Chen, J.; Li, J.; Yu, X.; Mo, H.; Chen, G. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol. Med. Rep., 2017, 16(6), 9627-9635.
[http://dx.doi.org/10.3892/mmr.2017.7773] [PMID: 29039533]
[204]
Zeidán-Chuliá, F.; Gelain, D.P.; Kolling, E.A.; Rybarczyk-Filho, J.L.; Ambrosi, P.; Terra, S.R.; Pires, A.S.; da Rocha, J.B.; Behr, G.A.; Moreira, J.C. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid. Med. Cell. Longev., 2013, 2013(6) 791795
[http://dx.doi.org/10.1155/2013/791795] [PMID: 23766861]
[205]
Costa, M.S.; Botton, P.H.; Mioranzza, S.; Ardais, A.P.; Moreira, J.D.; Souza, D.O.; Porciúncula, L.O. Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus. Neurochem. Int., 2008, 53(3-4), 89-94.
[http://dx.doi.org/10.1016/j.neuint.2008.06.006] [PMID: 18620014]
[206]
Moy, G.A.; McNay, E.C. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF. Physiol. Behav., 2013, 109, 69-74.
[http://dx.doi.org/10.1016/j.physbeh.2012.11.008] [PMID: 23220362]
[207]
McConell, G.K.; Ng, G.P.; Phillips, M.; Ruan, Z.; Macaulay, S.L.; Wadley, G.D. Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. J. Appl. Physiol., 2010, 108(3), 589-595.
[http://dx.doi.org/10.1152/japplphysiol.00377.2009] [PMID: 20044477]
[208]
Jornayvaz, F.R.; Shulman, G.I. Regulation of mitochondrial biogenesis. Essays Biochem., 2010, 47, 69-84.
[http://dx.doi.org/10.1042/bse0470069] [PMID: 20533901]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy