Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Helminthicidal and Larvicidal Potentials of Biogenic Silver Nanoparticles Synthesized from Medicinal Plant Momordica charantia

Author(s): Amruta Shelar, Jaiprakash Sangshetti, Shampa Chakraborti*, Ajay Vikram Singh*, Rajendra Patil* and Suresh Gosavi*

Volume 15, Issue 7, 2019

Page: [781 - 789] Pages: 9

DOI: 10.2174/1573406415666190430142637

Price: $65

Abstract

Background: The drug formulations used to control mosquito vectors and helminth infections have resulted in the development of resistance, and negative impact on non-target organisms and environment.

Objective: Plant-mediated synthesis of silver nanoparticles (P-AgNPs) using aqueous fruit peel extract of M. charantia, applications of P-AgNPs for helminthicidal activity against Indian earthworms (P. posthuma) and larvicidal activity against larvae of mosquito A. albopictus and A. aegypti.

Methods: Aqueous fruit peel extract of Momordica charantia was used to reduce silver ions to silver nanoparticles (P-AgNPs). UV-Visible (UV-Vis) Spectroscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy and Transmission Electron Microscopy characterize synthesized P-AgNPs. The motility and survival rate of the worms were recorded for the helminthicidal activity. Percent mortality of larvae of A. albopictus and A. aegypti was recorded for larvicidal activity.

Results: The UV-Vis absorption spectrum of P-AgNPs showed a strong surface plasmon absorption band in the visible region with a maximum absorption at 445 nm indicating the synthesis of silver nanoparticles by the addition of aqueous fruit peel extract. The XRD spectrum of P-AgNPs showed Bragg's reflection peaks 2θ value characteristics for the Face-Centered Cubic (FCC) structure of silver. The sharp absorption peak in FTIR at 1659 cm-1 assigned to C=O stretching vibration in carbonyl compounds represents terpenoids, flavonoids and polyphenols in the corona of PAgNPs; a 2 mg/mL of P-AgNPs. The concentration aqueous extract and P-AgNPs showed complete death of worms (the morphological alteration/coiling of body). A 20 ppm concentration of PAgNPs showed 85% mortality in larvae of Ae. albopictus and Ae. aegypti. P-AgNPs were nontoxic at low concentrations.

Conclusion: The aqueous extracts played a dual role as reducing and capping agent during the biosynthesis of AgNPs as per FTIR and XRD results. The surface reactivity facilitated by biomolecule corona attached to silver nanoparticles can further help to functionalize AgNPs in various pharmaceuticals, biomedicals, and environmental applications.

Keywords: Helminths, mosquitoes, momordica, silver nanoparticles, biomolecules, corona.

Graphical Abstract
[1]
Organization, W.H. Informal Consultation on Intestinal Helminth Infections., Geneva, 9-12 July 1990, Geneva: World Health Organization. Available at: http://www.who.int/iris/handle/10665/59548 (Accessed April 7, 2019).
[2]
Bundy, D.A.P. The global burden of intestinal nematode disease. Trans. R. Soc. Trop. Med. Hyg., 1994, 88(3), 259-261.
[3]
Lamy, E.; van Harten, S.; Sales-Baptista, E.; Guerra, M.M.M.; de Almeida, A.M. Factors influencing livestock productivity. In: Environmental stress and amelioration in livestock production; Springer, 2012; pp. 19-51.
[4]
Conteh, L.; Engels, T.; Molyneux, D.H. Socioeconomic aspects of neglected tropical diseases. Lancet, 2010, 375(9710), 239-247.
[5]
James, C.E.; Hudson, A.L.; Davey, M.W. Drug resistance mechanisms in helminths: Is it survival of the fittest? Trends Parasitol., 2009, 25(7), 328-335.
[6]
Thamsborg, S.M.; Roepstorff, A.; Nejsum, P.; Mejer, H. Alternative approaches to control of parasites in livestock: Nordic and Baltic perspectives. Acta Vet. Scand., 2010, 52(1), S27.
[7]
Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol., 2002, 10(2), 100-103.
[8]
Organization, W.H. Report of the WHO Informal Consultation on the Evaluation and Testing of Insecticides, WHO/HQ, Geneva, 7 to 11 October 1996; 1996, Geneva: World Health Organization. Available at: https://apps.who.int/iris/handle/10665/65962 (Accessed April 7, 2019).
[9]
Lien, P.T.K.; Duoc, V.T.; Gavotte, L.; Cornillot, E.; Nga, P.T.; Briant, L.; Frutos, R.; Duong, T.N. Role of Aedes aegypti and Aedes albopictus during the 2011 dengue fever epidemics in Hanoi, Vietnam. Asian Pac. J. Trop. Med., 2015, 8(7), 543-548.
[10]
Hay, S.I.; Battle, K.E.; Pigott, D.M.; Smith, D.L.; Moyes, C.L.; Bhatt, S.; Brownstein, J.S.; Collier, N.; Myers, M.F.; George, D.B. Global mapping of infectious disease. Phil. Trans. R. Soc. B., 2013, 368(1614)20120250
[11]
Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res., 2002, 33(4), 330-342.
[12]
Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol., 2000, 45(1), 371-391.
[13]
Benelli, G. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: A systematic review. Parasitol. Res., 2015, 114(9), 3201-3212.
[14]
Mehlhorn, H. Nanoparticles in the fight against parasites; Springer, 2016, p. 8.
[15]
Athanasiadou, S.; Githiori, J.; Kyriazakis, I. Medicinal plants for helminth parasite control: Facts and fiction. Animal, 2007, 1(9), 1392-1400.
[16]
Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules, 2012, 17(11), 12771-12791.
[17]
Goodsell, D.S. Bionanotechnology: Lessons from nature; John Wiley & Sons, 2004.
[18]
Benelli, G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol. Res., 2016, 115(1), 23-34.
[19]
Ajaiyeoba, E.; Onocha, P.; Olarenwaju, O. In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharm. Biol., 2001, 39(3), 217-220.
[20]
Rahuman, A.A.; Gopalakrishnan, G.; Ghouse, B.S.; Arumugam, S.; Himalayan, B. Effect of Feronia limonia on mosquito larvae. Fitoterapia, 2000, 71(5), 553-555.
[21]
Finney, D.J.; Tattersfield, F. Probit analysis; Cambridge University Press: Cambridge, 1952.
[22]
Basch, E.; Gabardi, S.; Ulbricht, C. Bitter melon (Momordica charantia): A review of efficacy and safety. Am. J. Health Syst. Pharm., 2003, 60(4), 356-359.
[23]
Thenmozhi, A.J.; Subramanian, P. Momordica charantia (bitter melon) decreases serum/tissue lipid parameters in hyperammonemic rats. Int. J. Nutr. Pharmacol. Neurol. Dis., 2013, 3(3), 249.
[24]
Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601), 2176-2179.
[25]
Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3), 788-800.
[26]
Singh, A.V.; Jahnke, T.; Kishore, V.; Park, B-W.; Batuwangala, M.; Bill, J.; Sitti, M. Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides. Acta Biomater., 2018, 71, 61-71.
[27]
Das, R.; Nath, S.S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Synthesis of silver nanoparticles and their optical properties. J. Exp. Nanosci., 2010, 5(4), 357-362.
[28]
Rashid, M.M.O.; Ferdous, J.; Banik, S.; Islam, M.R.; Uddin, A.M.; Robel, F.N. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and Momordica charantia fruit extract. BMC Complement. Altern. Med., 2016, 16(1), 242.
[29]
Ajitha, B.; Reddy, Y.A.K.; Reddy, P.S. Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. J. Photochem. Photobiol. B Biol., 2015, 146, 1-9.
[30]
Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Sudhakaran, R.; Gobi, N.; Shanthini, G. Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal. Agric. Biotechnol., 2016, 8, 189-196.
[31]
Singh, A.V.; Gemmati, D.; Kanase, A.; Pandey, I.; Misra, V.; Kishore, V.; Jahnke, T.; Bill, J. Nanobiomaterials for vascular biology and wound management: A review. Veins Lymph., 2018, 7(2), 34-47.
[32]
Zhang, F.; Lin, L.; Xie, J. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int. J. Biol. Macromol., 2016, 92, 246-253.
[33]
Roopan, S.M.; Madhumitha, G.; Rahuman, A.A.; Kamaraj, C.; Bharathi, A.; Surendra, T. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crops Prod., 2013, 43, 631-635.
[34]
Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog., 2003, 19(6), 1627-1631.
[35]
Singh, A.V.; Vyas, V.; Maontani, E.; Cartelli, D.; Parazzoli, D.; Oldani, A.; Zeri, G.; Orioli, E.; Gemmati, D.; Zamboni, P. Investigation of in vitro cytotoxicity of the redox state of ionic iron in neuroblastoma cells. J. Neurosci. Rural Pract., 2012, 3(3), 301-310.
[36]
Singh, A.V.; Batuwangala, M.; Mundra, R.; Mehta, K.; Patke, S.; Falletta, E.; Patil, R.; Gade, W.N. Biomineralized anisotropic gold microplate–macrophage interactions reveal frustrated phagocytosis-like phenomenon: A novel paclitaxel drug delivery vehicle. ACS Appl. Mater. Interfaces, 2014, 6(16), 14679-14689.
[37]
Unfried, K.; Albrecht, C.; Klotz, L-O.; Von Mikecz, A.; Grether-Beck, S.; Schins, R.P. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicol, 2007, 1(1), 52-71.
[38]
Ndhlala, A.R.; Ghebrehiwot, H.M.; Ncube, B.; Aremu, A.O.; Gruz, J.; Subrtova, M.; Dolezal, K.; du Plooy, C.P.; Abdelgadir, H.A.; Van, S.J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn: A medicinal plant used for the treatment of wounds and ringworm in East Africa. Front. Pharmacol., 2015, 6, 274.
[39]
Pueblos, K.R.S.; Bajalla, M.; Pacheco, D.; Ganot, S.; Paig, D.; Tapales, R.; Lagare, J.; Quimque, M.T.J. In: Comparative anthelmintic activity investigation of selected ethno-medicinal weeds, AIP Conference Proceedings, AIP Publishing: , 2017. 020027.
[40]
Pappas, P.W. Acid phosphatase activity in the isolated brush border membrane of the tapeworm, Hymenolepis diminuta: Partial characterization and differentiation from the alkaline phosphatase activity. J. Cell. Biochem., 1988, 37(4), 395-403.
[41]
Tomar, R.S.; Preet, S. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J. Helminthol., 2017, 91(4), 454-461.
[42]
Khan, Y.A.; Singh, B.R.; Ullah, R.; Shoeb, M.; Naqvi, A.H.; Abidi, S.M.A. Anthelmintic effect of biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PLoS One, 2015, 10(7)e0133086
[43]
Govindarajan, M.; Rajeswary, M.; Muthukumaran, U.; Hoti, S.L.; Khater, H.F.; Benelli, G. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors. J. Photochem. Photobiol. B Biol., 2016, 161, 482-489.
[44]
Velu, K.; Elumalai, D.; Hemalatha, P.; Janaki, A.; Babu, M.; Hemavathi, M.; Kaleena, P.K. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17769-17779.
[45]
Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Nicoletti, M.; Madhiyazhagan, P.; Dinesh, D.; Suresh, U.; Khater, H.F.; Wei, H.; Canale, A.; Alarfaj, A.A.; Munusamy, M.A.; Higuchi, A.; Benelli, G. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf., 2015, 121, 31-38.
[46]
Govindarajan, M.; Kadaikunnan, S.; Alharbi, N.S.; Benelli, G. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: Larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1317-1325.
[47]
Lallawmawma, H.; Sathishkumar, G.; Sarathbabu, S.; Ghatak, S.; Sivaramakrishnan, S.; Gurusubramanian, G.; Kumar, N.S. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17753-17768.
[48]
Poopathi, S.; De Britto, L.J.; Praba, V.L.; Mani, C.; Praveen, M. Synthesis of silver nanoparticles from Azadirachta indica– a most effective method for mosquito control. Environ. Sci. Pollut. Res. Int., 2015, 22(4), 2956-2963.
[49]
Balakrishnan, S.; Srinivasan, M.; Mohanraj, J. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J. Parasit. Dis., 2016, 40(3), 991-996.
[50]
Jayaseelan, C.; Rahuman, A.A.; Rajakumar, G.; Vishnu, K.A.; Santhoshkumar, T.; Marimuthu, S.; Bagavan, A.; Kamaraj, C.; Zahir, A.A.; Elango, G. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia miers. Parasitol. Res., 2011, 109(1), 185-194.
[51]
Kumarasingha, R.; Preston, S.; Yeo, T-C.; Lim, D.S.L.; Tu, C-L.; Palombo, E.A.; Shaw, J.M.; Gasser, R.B.; Boag, P.R. Anthelmintic activity of selected ethno-medicinal plant extracts on parasitic stages of Haemonchus contortus. Parasit. Vectors, 2016, 9(1), 187.
[52]
Hassan, S.; Singh, A.V. Biophysicochemical perspective of nanoparticle compatibility: A critically ignored parameter in nanomedicine. J. Nanosci. Nanotechnol., 2014, 14(1), 402-414.
[53]
Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A-M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods, 2019, 4, 1-10.
[54]
Singh, A.V.; Jahnke, T.; Wang, S.; Xiao, Y.; Alapan, Y.; Kharratian, S.; Onbasli, M.C.; Kozielski, K.; David, H.; Richter, G.; Bill, J.; Laux, P.; Luch, A.; Sitti, M. Anisotropic gold nanostructures: Optimization via in silico modeling for hyperthermia. ACS Appl. Nano. Mater., 2018, 1(11), 6205-6216.
[55]
Singh, A.V.; Alapan, Y.; Jahnke, T.; Laux, P.; Luch, A.; Aghakhani, A.; Kharratian, S.; Onbasli, M.C.; Bill, J.; Sitti, M. Seed-mediated synthesis of plasmonic gold nanoribbons using cancer cells for hyperthermia applications. J. Mater. Chem., 2018, 6(46), 7573-7581.
[56]
Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: A review. Cell Death Dis., 2018, 9(3), 348.
[57]
Singh, A.V.; Raymond, M.; Pace, F.; Certo, A.; Zuidema, J.M.; McKay, C.A.; Gilbert, R.J.; Lu, X.L.; Wan, L.Q. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci. Rep., 2015, 5, 7847.
[58]
Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 2014, 55(2), 283-291.
[59]
Van Haute, D.; Liu, A.T.; Berlin, J.M. Coating metal nanoparticle surfaces with small organic molecules can reduce nonspecific cell uptake. ACS Nano, 2018, 12(1), 117-127.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy