[1]
Dash, C. Penicillin allergy and the cephalosporins. J. Antimicrob. Chemother., 1975, 1, 107-118.
[2]
Azami, H.; Tsutsumi, H.; Matsuda, K.; Barrett, D.; Hattori, K.; Nakajima, T.; Kuroda, S.; Kamimura, T.; Murata, M. Synthesis and antibacterial activity of novel 4-pyrrolidinylthio carbapenems—I. 2-alkoxymethyl derivatives. Bioorg. Med. Chem., 1997, 5, 2069-2087.
[3]
Czwan, E.; Brors, B.; Kipling, D. Modelling p-value distributions to improve theme-driven survival analysis of cancer transcriptome datasets. BMC Bioinformatics, 2010, 11, 19.
[4]
Florkin, M. Stotz, E.H. Comprehensive Biochemistry; Elsevier: Amsterdam, 1963, Vol. 11, pp. 181-190.
[5]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1, 65-70.
[6]
Raja, A.; Lebbos, J.; Kirkpatrick, P. Telithromycin. Nat. Rev. Drug Discov., 2004, 3, 733-734.
[7]
Phelan, E.K.; Miraula, M.; Selleck, C.; Ollis, D.L.; Schenk, G.; Mitić, N. Metallo-β-lactamases: A major threat to human health. Am. J. Mol. Biol., 2014, 4, 89-104.
[8]
Turck, M. Clinical application of the newer ß-lactam antibiotics. J. Antimicrob. Chemother., 1988, 22, 45-62.
[9]
Jacoby, G.A.; Archer, G.L. New mechanisms of bacterial resistance to antimicrobial agents. N. Engl. J. Med., 1991, 324, 601-612.
[10]
Nordmann, P.; Mariotte, S.; Naas, T.; Labia, R.; Nicolas, M. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob. Agents Chemother., 1993, 37, 939-946.
[11]
McGeary, R.P.; Tan, D.T.; Schenk, G. Progress toward inhibitors of metallo-β-lactamases. Future Med. Chem., 2017, 9, 673-691.
[12]
Gillies, M.; Ranakusuma, A.; Hoffmann, T.; Thorning, S.; McGuire, T.; Glasziou, P.; Del Mar, C. Common harms from amoxicillin: A systematic review and meta-analysis of randomized placebo-controlled trials for any indication. Can. Med. Assoc. J., 2015, 187, 21-31.
[13]
Arjomandi, O.K.; Hussein, W.M.; Vella, P.; Yusof, Y.; Sidjabat, H.E.; Schenk, G.; McGeary, R.P. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur. J. Med. Chem., 2016, 114, 318-327.
[14]
Toney, J.H.; Hammond, G.G.; Fitzgerald, P.M.; Sharma, N.; Balkovec, J.M.; Rouen, G.P.; Olson, S.H.; Hammond, M.L.; Greenlee, M.L.; Gao, Y-D. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-β-lactamase. J. Biol. Chem., 2001, 276, 31913-31918.
[15]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23, 160-201.
[16]
Elander, R. Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol., 2003, 61, 385-392.
[17]
Ambler, R. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B, 1980, 289, 321-331.
[18]
Vella, P.; Hussein, W.M.; Leung, E.W.; Clayton, D.; Ollis, D.L.; Mitić, N.; Schenk, G.; McGeary, R.P. The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg. Med. Chem. Lett., 2011, 21, 3282-3285.
[19]
Liénard, B.M.; Garau, G.; Horsfall, L.; Karsisiotis, A.I.; Damblon, C.; Lassaux, P.; Papamicael, C.; Roberts, G.C.; Galleni, M.; Dideberg, O. Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org. Biomol. Chem., 2008, 6, 2282-2294.
[20]
Dubois, V.; Arpin, C.; Quentin, C.; Texier-Maugein, J.; Poirel, L.; Nordmann, P. Decreased susceptibility to cefepime in a clinical strain of Escherichia coli related to plasmid-and integron-encoded OXA-30 β-lactamase. Antimicrob. Agents Chemother., 2003, 47, 2380-2381.
[21]
Tehrani, K.H.M.E.; Martin, N.I. Thiol-containing metallo-β-lactamase inhibitors resensitize resistant gram-negative bacteria to meropenem. ACS Infect. Dis., 2017, 3, 711-717.
[22]
Brandt, C.; Braun, S.D.; Stein, C.; Slickers, P.; Ehricht, R.; Pletz, M.W.; Makarewicz, O. In silico serine β-lactamases analysis reveals a huge potential resistome in environmental and pathogenic species. Sci. Rep., 2017, 7, 43232-43235.
[23]
Essack, S.Y. The development of β-lactam antibiotics in response to the evolution of β-lactamases. Pharm. Res., 2001, 18, 1391-1399.
[24]
Payne, D.J.; Bateson, J.H.; Gasson, B.C.; Khushi, T.; Proctor, D.; Pearson, S.C.; Reid, R. Inhibition of metallo-β-lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid. FEMS Microbiol. Lett., 1997, 157, 171-175.
[25]
Rotondo, C.M.; Wright, G.D. Inhibitors of metallo-β-lactamases. Curr. Opin. Microbiol., 2017, 39, 96-105.
[26]
Mohamed, M.S.; Hussein, W.M.; McGeary, R.P.; Vella, P.; Schenk, G.; El-hameed, R.H.A. Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur. J. Med. Chem., 2011, 46, 6075-6082.
[27]
Islam, N.U. An update on the status of potent inhibitors of metallo-β-lactamases. Sci. Pharm., 2013, 81, 309-328.
[28]
Weide, T.; Saldanha, S.A.; Minond, D.; Spicer, T.P.; Fotsing, J.R.; Spaargaren, M.; Frère, J-M.; Bebrone, C.; Sharpless, K.B.; Hodder, P.S. NH-1, 2, 3-triazole inhibitors of the VIM-2 metallo-β-lactamase. ACS Med. Chem. Lett., 2010, 1, 150-154.
[29]
Abrams, D.N.; Koslowsky, I.; Matte, G. Pharmaceutical interference with the [14C] carbon urea breath test for the detection of Helicobacter pylori infection. J. Pharm. Pharm. Sci., 2000, 3, 228-233.
[30]
Latli, B.; Kiesling, R.; Aßfalg, S.; Chevliakov, M.; Hrapchak, M.; Campbell, S.; Gonnella, N.; Busacca, C.A.; Senanayake, C.H. Carbon‐13 and carbon‐14 labeled dabigatran etexilate and tritium labeled dabigatran. J. Labelled Compd. Rad, 2016, 59, 648-656.
[31]
Schou, S.C. Fast and efficient synthesis of 14C labelled benzonitriles and their corresponding acids. J. Labelled Compd. Rad, 2009, 52, 173-176.
[32]
Rengan, K. Cerenkov counting technique for beta particles: Advantages and limitations. J. Chem. Educ., 1983, 60, 682-684.
[33]
Martins, P.D.A.; Moura, R.G.; Shiki, A.M.; Fukumori, N.T.; Matsuda, M.M. Determination of radiochemical yield of 99m Tc radiopharmaceutical
preparations using gamma counter and linear radiochromatography scanner:
International Nuclear Atlantic Conference, Recife, PE, Brazil, November 24-
29 2013, Associação Brasileira de Energia Nuclear - Aben ISBN: 978-85-
99141-05-2. 2013.
[34]
Xiong, H.; Chen, B.; Durand-Réville, T.F.; Joubran, C.; Alelyunas, Y.W.; Wu, D.; Huynh, H. Enantioselective synthesis and profiling of two novel diazabicyclooctanone β-lactamase inhibitors. ACS Med. Chem. Lett., 2014, 5, 1143-1147.
[35]
Vértes, A.; Kiss, I. Nuclear Chemistry; Elsevier: Amsterdam, 1987, Vol. 22, pp. 619-622.
[36]
Comar, C.L. Radioisotopes in Biology and Agriculture. Principles and Practice; McGrew Hills Book Company INC: London, 1955.
[37]
Seebach, D. Structure and reactivity of lithium enolates. from pinacolone to selective C‐alkylations of peptides. difficulties and opportunities afforded by complex structures. Angew. Chem. Int. Ed., 1988, 27, 1624-1654.
[38]
Zambito, J.; Howe, E.E. Diethyl acetamidomalonate. Org. Synth., 1960, 40, 21.
[39]
Singh, A.; Prasad, A.K.; Errington, W.; Belokon, Y.N.; Kochetkov, K.A.; Saxena, R.K.; Jain, S.C.; Parmar, V.S. Synthetic and biotransformation studies on prochiral non-proteinogenic amino acids: Diethyl α-acetamido, α-alkylmalonates. Indian J. Chem. Sect. B, 2000, 39, 10-15.
[40]
Isidro-Llobet, A.; Alvarez, M.; Albericio, F. Amino acid-protecting groups. Chem. Rev., 2009, 109, 2455-2504.
[41]
Maleki, A.; Taheri-Ledari, R.; Rahimi, J.; Soroushnejad, M.; Hajizadeh, Z. Facile peptide bond formation: Effective interplay between isothiazolone rings and silanol groups at silver/iron oxide nanocomposite surfaces. ACS Omega, 2019, 4, 10629-10639.
[42]
Maleki, A.; Taheri-Ledari, R.; Soroushnejad, M. Surface functionalization of magnetic nanoparticles via palladium-catalyzed Diels-Alder approach. Chem. Select, 2018, 3, 13057-13062.
[43]
Zambrowicz, A.; Timmer, M.; Polanowski, A.; Lubec, G.; Trziszka, T. Manufacturing of peptides exhibiting biological activity. Amino Acids, 2013, 44, 315-320.
[44]
Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. New coupling reagents in peptide chemistry. Tetrahedron Lett., 1989, 30, 1927-1930.
[45]
Saemian, N.; Arjomandi, O.K.; Shirvani, G. Synthesis of a series of carbon‐14 labelled 4‐aminoquinazolines and quinazolin‐4 (3H)‐ones. J. Labelled. Compd. Rad., 2009, 52, 453-456.
[46]
Saemian, N.; Shirvani, G.; Matloubi, H. Synthesis of carbon‐‐14 analogue of N‐‐(1‐‐methyl‐‐2‐‐oxo‐‐5‐‐phenyl‐‐2,3‐‐dihydro‐‐1H‐‐benzo[e][1,4] diazepin‐‐3‐‐yl)‐‐benzamide‐‐[carboxyl‐‐14C] as CCK‐‐A antagonist. J. Labelled. Compd. Rad., 2006, 49, 71-76.
[47]
Krauser, J.A. A perspective on tritium versus carbon‐14: Ensuring optimal label selection in pharmaceutical research and development. J. Labelled. Compd. Rad., 2013, 56, 441-446.
[48]
Goldstein, J.I.; Newbury, D.E. Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: New York, 2017.